Best Seldon Alternatives in 2024

Find the top alternatives to Seldon currently available. Compare ratings, reviews, pricing, and features of Seldon alternatives in 2024. Slashdot lists the best Seldon alternatives on the market that offer competing products that are similar to Seldon. Sort through Seldon alternatives below to make the best choice for your needs

  • 1
    Labelbox Reviews
    The training data platform for AI teams. A machine learning model can only be as good as the training data it uses. Labelbox is an integrated platform that allows you to create and manage high quality training data in one place. It also supports your production pipeline with powerful APIs. A powerful image labeling tool for segmentation, object detection, and image classification. You need precise and intuitive image segmentation tools when every pixel is important. You can customize the tools to suit your particular use case, including custom attributes and more. The performant video labeling editor is for cutting-edge computer visual. Label directly on the video at 30 FPS, with frame level. Labelbox also provides per-frame analytics that allow you to create faster models. It's never been easier to create training data for natural language intelligence. You can quickly and easily label text strings, conversations, paragraphs, or documents with fast and customizable classification.
  • 2
    BentoML Reviews
    Your ML model can be served in minutes in any cloud. Unified model packaging format that allows online and offline delivery on any platform. Our micro-batching technology allows for 100x more throughput than a regular flask-based server model server. High-quality prediction services that can speak the DevOps language, and seamlessly integrate with common infrastructure tools. Unified format for deployment. High-performance model serving. Best practices in DevOps are incorporated. The service uses the TensorFlow framework and the BERT model to predict the sentiment of movie reviews. DevOps-free BentoML workflow. This includes deployment automation, prediction service registry, and endpoint monitoring. All this is done automatically for your team. This is a solid foundation for serious ML workloads in production. Keep your team's models, deployments and changes visible. You can also control access via SSO and RBAC, client authentication and auditing logs.
  • 3
    KServe Reviews
    Kubernetes is a highly scalable platform for model inference that uses standards-based models. Trusted AI. KServe, a Kubernetes standard model inference platform, is designed for highly scalable applications. Provides a standardized, performant inference protocol that works across all ML frameworks. Modern serverless inference workloads supported by autoscaling, including a scale up to zero on GPU. High scalability, density packing, intelligent routing with ModelMesh. Production ML serving is simple and pluggable. Pre/post-processing, monitoring and explainability are all possible. Advanced deployments using the canary rollout, experiments and ensembles as well as transformers. ModelMesh was designed for high-scale, high density, and often-changing model use cases. ModelMesh intelligently loads, unloads and transfers AI models to and fro memory. This allows for a smart trade-off between user responsiveness and computational footprint.
  • 4
    Datatron Reviews
    Datatron provides tools and features that are built from scratch to help you make machine learning in production a reality. Many teams realize that there is more to deploying models than just the manual task. Datatron provides a single platform that manages all your ML, AI and Data Science models in production. We can help you automate, optimize and accelerate your ML model production to ensure they run smoothly and efficiently. Data Scientists can use a variety frameworks to create the best models. We support any framework you use to build a model (e.g. TensorFlow and H2O, Scikit-Learn and SAS are supported. Explore models that were created and uploaded by your data scientists, all from one central repository. In just a few clicks, you can create scalable model deployments. You can deploy models using any language or framework. Your model performance will help you make better decisions.
  • 5
    Azure Machine Learning Reviews
    Accelerate the entire machine learning lifecycle. Developers and data scientists can have more productive experiences building, training, and deploying machine-learning models faster by empowering them. Accelerate time-to-market and foster collaboration with industry-leading MLOps -DevOps machine learning. Innovate on a trusted platform that is secure and trustworthy, which is designed for responsible ML. Productivity for all levels, code-first and drag and drop designer, and automated machine-learning. Robust MLOps capabilities integrate with existing DevOps processes to help manage the entire ML lifecycle. Responsible ML capabilities – understand models with interpretability, fairness, and protect data with differential privacy, confidential computing, as well as control the ML cycle with datasheets and audit trials. Open-source languages and frameworks supported by the best in class, including MLflow and Kubeflow, ONNX and PyTorch. TensorFlow and Python are also supported.
  • 6
    NVIDIA Triton Inference Server Reviews
    NVIDIA Triton™, an inference server, delivers fast and scalable AI production-ready. Open-source inference server software, Triton inference servers streamlines AI inference. It allows teams to deploy trained AI models from any framework (TensorFlow or NVIDIA TensorRT®, PyTorch or ONNX, XGBoost or Python, custom, and more on any GPU or CPU-based infrastructure (cloud or data center, edge, or edge). Triton supports concurrent models on GPUs to maximize throughput. It also supports x86 CPU-based inferencing and ARM CPUs. Triton is a tool that developers can use to deliver high-performance inference. It integrates with Kubernetes to orchestrate and scale, exports Prometheus metrics and supports live model updates. Triton helps standardize model deployment in production.
  • 7
    Amazon SageMaker Model Deployment Reviews
    Amazon SageMaker makes it easy for you to deploy ML models to make predictions (also called inference) at the best price and performance for your use case. It offers a wide range of ML infrastructure options and model deployment options to meet your ML inference requirements. It integrates with MLOps tools to allow you to scale your model deployment, reduce costs, manage models more efficiently in production, and reduce operational load. Amazon SageMaker can handle all your inference requirements, including low latency (a few seconds) and high throughput (hundreds upon thousands of requests per hour).
  • 8
    Wallaroo.AI Reviews
    Wallaroo is the last mile of your machine-learning journey. It helps you integrate ML into your production environment and improve your bottom line. Wallaroo was designed from the ground up to make it easy to deploy and manage ML production-wide, unlike Apache Spark or heavy-weight containers. ML that costs up to 80% less and can scale to more data, more complex models, and more models at a fraction of the cost. Wallaroo was designed to allow data scientists to quickly deploy their ML models against live data. This can be used for testing, staging, and prod environments. Wallaroo supports the most extensive range of machine learning training frameworks. The platform will take care of deployment and inference speed and scale, so you can focus on building and iterating your models.
  • 9
    Fiddler Reviews
    Fiddler is a pioneer in enterprise Model Performance Management. Data Science, MLOps, and LOB teams use Fiddler to monitor, explain, analyze, and improve their models and build trust into AI. The unified environment provides a common language, centralized controls, and actionable insights to operationalize ML/AI with trust. It addresses the unique challenges of building in-house stable and secure MLOps systems at scale. Unlike observability solutions, Fiddler seamlessly integrates deep XAI and analytics to help you grow into advanced capabilities over time and build a framework for responsible AI practices. Fortune 500 organizations use Fiddler across training and production models to accelerate AI time-to-value and scale and increase revenue.
  • 10
    Modzy Reviews

    Modzy

    Modzy

    $3.79 per hour
    Easy deployment, management, monitoring, and security of AI models in production. Modzy is an Enterprise AI platform that makes it easy to scale trusted AI in your enterprise. Modzy can help you accelerate the deployment, management and governance of trusted AI. It offers enterprise-grade platform features such as security, APIs and SDKs that allow unlimited model deployment, management and governance. You can deploy on your hardware, private cloud, or public cloud. Includes AirGap deployments, and tactical edge. Auditing and governance for central AI management. This will give you access to all AI models in production in real time. The world's fastest explanation (beta), deep neural network solution, creating audit logs for model predictions. High-tech security features to prevent data poisoning, as well as a full-suite patented Adversarial Defence to protect models in production.
  • 11
    Lightning AI Reviews

    Lightning AI

    Lightning AI

    $10 per credit
    Our platform allows you to create AI products, train, fine-tune, and deploy models on the cloud. You don't have to worry about scaling, infrastructure, cost management, or other technical issues. Prebuilt, fully customizable modular components make it easy to train, fine tune, and deploy models. The science, not the engineering, should be your focus. Lightning components organize code to run on the cloud and manage its own infrastructure, cloud cost, and other details. 50+ optimizations to lower cloud cost and deliver AI in weeks, not months. Enterprise-grade control combined with consumer-level simplicity allows you to optimize performance, reduce costs, and take on less risk. Get more than a demo. In days, not months, you can launch your next GPT startup, diffusion startup or cloud SaaSML service.
  • 12
    Comet Reviews

    Comet

    Comet

    $179 per user per month
    Manage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders.
  • 13
    VESSL AI Reviews

    VESSL AI

    VESSL AI

    $100 + compute/month
    Fully managed infrastructure, tools and workflows allow you to build, train and deploy models faster. Scale inference and deploy custom AI & LLMs in seconds on any infrastructure. Schedule batch jobs to handle your most demanding tasks, and only pay per second. Optimize costs by utilizing GPUs, spot instances, and automatic failover. YAML simplifies complex infrastructure setups by allowing you to train with a single command. Automate the scaling up of workers during periods of high traffic, and scaling down to zero when inactive. Deploy cutting edge models with persistent endpoints within a serverless environment to optimize resource usage. Monitor system and inference metrics, including worker counts, GPU utilization, throughput, and latency in real-time. Split traffic between multiple models to evaluate.
  • 14
    Striveworks Chariot Reviews
    Make AI an integral part of your business. With the flexibility and power of a cloud native platform, you can build better, deploy faster and audit easier. Import models and search cataloged model from across your organization. Save time by quickly annotating data with model-in the-loop hinting. Flyte's integration with Chariot allows you to quickly create and launch custom workflows. Understand the full origin of your data, models and workflows. Deploy models wherever you need them. This includes edge and IoT applications. Data scientists are not the only ones who can get valuable insights from their data. With Chariot's low code interface, teams can collaborate effectively.
  • 15
    Deep Infra Reviews

    Deep Infra

    Deep Infra

    $0.70 per 1M input tokens
    Self-service machine learning platform that allows you to turn models into APIs with just a few mouse clicks. Sign up for a Deep Infra Account using GitHub, or login using GitHub. Choose from hundreds of popular ML models. Call your model using a simple REST API. Our serverless GPUs allow you to deploy models faster and cheaper than if you were to build the infrastructure yourself. Depending on the model, we have different pricing models. Some of our models have token-based pricing. The majority of models are charged by the time it takes to execute an inference. This pricing model allows you to only pay for the services you use. You can easily scale your business as your needs change. There are no upfront costs or long-term contracts. All models are optimized for low latency and inference performance on A100 GPUs. Our system will automatically scale up the model based on your requirements.
  • 16
    Snitch AI Reviews

    Snitch AI

    Snitch AI

    $1,995 per year
    Simplified quality assurance for machine learning. Snitch eliminates all noise so you can find the most relevant information to improve your models. With powerful dashboards and analysis, you can track your model's performance beyond accuracy. Identify potential problems in your data pipeline or distribution shifts and fix them before they impact your predictions. Once you've deployed, stay in production and have visibility to your models and data throughout the entire cycle. You can keep your data safe, whether it's cloud, on-prem or private cloud. Use the tools you love to integrate Snitch into your MLops process! We make it easy to get up and running quickly. Sometimes accuracy can be misleading. Before you deploy your models, make sure to assess their robustness and importance. Get actionable insights that will help you improve your models. Compare your models against historical metrics.
  • 17
    Amazon EC2 Inf1 Instances Reviews
    Amazon EC2 Inf1 instances were designed to deliver high-performance, cost-effective machine-learning inference. Amazon EC2 Inf1 instances offer up to 2.3x higher throughput, and up to 70% less cost per inference compared with other Amazon EC2 instance. Inf1 instances are powered by up to 16 AWS inference accelerators, designed by AWS. They also feature Intel Xeon Scalable 2nd generation processors, and up to 100 Gbps of networking bandwidth, to support large-scale ML apps. These instances are perfect for deploying applications like search engines, recommendation system, computer vision and speech recognition, natural-language processing, personalization and fraud detection. Developers can deploy ML models to Inf1 instances by using the AWS Neuron SDK. This SDK integrates with popular ML Frameworks such as TensorFlow PyTorch and Apache MXNet.
  • 18
    Xilinx Reviews
    The Xilinx AI development platform for AI Inference on Xilinx hardware platforms consists optimized IP, tools and libraries, models, examples, and models. It was designed to be efficient and easy-to-use, allowing AI acceleration on Xilinx FPGA or ACAP. Supports mainstream frameworks as well as the most recent models that can perform diverse deep learning tasks. A comprehensive collection of pre-optimized models is available for deployment on Xilinx devices. Find the closest model to your application and begin retraining! This powerful open-source quantizer supports model calibration, quantization, and fine tuning. The AI profiler allows you to analyze layers in order to identify bottlenecks. The AI library provides open-source high-level Python and C++ APIs that allow maximum portability from the edge to the cloud. You can customize the IP cores to meet your specific needs for many different applications.
  • 19
    Valohai Reviews

    Valohai

    Valohai

    $560 per month
    Pipelines are permanent, models are temporary. Train, Evaluate, Deploy, Repeat. Valohai is the only MLOps platform to automate everything, from data extraction to model deployment. Automate everything, from data extraction to model installation. Automatically store every model, experiment, and artifact. Monitor and deploy models in a Kubernetes cluster. Just point to your code and hit "run". Valohai launches workers and runs your experiments. Then, Valohai shuts down the instances. You can create notebooks, scripts, or shared git projects using any language or framework. Our API allows you to expand endlessly. Track each experiment and trace back to the original training data. All data can be audited and shared.
  • 20
    Censius AI Observability Platform Reviews
    Censius, an innovative startup in machine learning and AI, is a pioneering company. We provide AI observability for enterprise ML teams. With the extensive use machine learning models, it is essential to ensure that ML models perform well. Censius, an AI Observability platform, helps organizations of all sizes to make their machine-learning models in production. The company's flagship AI observability platform, Censius, was launched to help bring accountability and explanation to data science projects. Comprehensive ML monitoring solutions can be used to monitor all ML pipelines and detect and fix ML problems such as drift, skew and data integrity. After integrating Censius you will be able to: 1. Keep track of the model vitals and log them 2. By detecting problems accurately, you can reduce the time it takes to recover. 3. Stakeholders should be able to understand the issues and recovery strategies. 4. Explain model decisions 5. Reduce downtime for end-users 6. Building customer trust
  • 21
    Oracle Machine Learning Reviews
    Machine learning uncovers hidden patterns in enterprise data and generates new value for businesses. Oracle Machine Learning makes it easier to create and deploy machine learning models for data scientists by using AutoML technology and reducing data movement. It also simplifies deployment. Apache Zeppelin notebook technology, which is open-source-based, can increase developer productivity and decrease their learning curve. Notebooks are compatible with SQL, PL/SQL and Python. Users can also use markdown interpreters for Oracle Autonomous Database to create models in their preferred language. No-code user interface that supports AutoML on Autonomous Database. This will increase data scientist productivity as well as non-expert users' access to powerful in-database algorithms to classify and regression. Data scientists can deploy integrated models using the Oracle Machine Learning AutoML User Interface.
  • 22
    Peltarion Reviews
    The Peltarion Platform, a low-code deep-learning platform that allows you build AI-powered solutions at speed and scale, is called the Peltarion Platform. The platform allows you build, tweak, fine-tune, and deploy deep learning models. It's end-to-end and allows you to do everything, from uploading data to building models and putting them in production. The Peltarion Platform, along with its predecessor, have been used to solve problems at NASA, Dell, Microsoft, and Harvard. You can either create your own AI models, or you can use our pre-trained ones. Drag and drop even the most advanced models! You can manage the entire development process, from building, training, tweaking, and finally deploying AI. All this under one roof. Our platform helps you to operationalize AI and drive business value. Our Faster AI course was created for those with no previous knowledge of AI. After completing seven modules, users will have the ability to create and modify their own AI models using the Peltarion platform.
  • 23
    Towhee Reviews
    Towhee can automatically optimize your pipeline for production-ready environments by using our Python API. Towhee supports data conversion for almost 20 unstructured data types, including images, text, and 3D molecular structure. Our services include pipeline optimizations that cover everything from data decoding/encoding to model inference. This makes your pipeline execution 10x more efficient. Towhee integrates with your favorite libraries and tools, making it easy to develop. Towhee also includes a Python method-chaining API that allows you to describe custom data processing pipelines. Schemas are also supported, making it as simple as handling tabular data to process unstructured data.
  • 24
    Alegion Reviews
    A powerful labeling platform for all stages and types of ML development. We leverage a suite of industry-leading computer vision algorithms to automatically detect and classify the content of your images and videos. Creating detailed segmentation information is a time-consuming process. Machine assistance speeds up task completion by as much as 70%, saving you both time and money. We leverage ML to propose labels that accelerate human labeling. This includes computer vision models to automatically detect, localize, and classify entities in your images and videos before handing off the task to our workforce. Automatic labelling reduces workforce costs and allows annotators to spend their time on the more complicated steps of the annotation process. Our video annotation tool is built to handle 4K resolution and long-running videos natively and provides innovative features like interpolation, object proposal, and entity resolution.
  • 25
    cnvrg.io Reviews
    An end-to-end solution gives you all the tools your data science team needs to scale your machine learning development, from research to production. cnvrg.io, the world's leading data science platform for MLOps (model management) is a leader in creating cutting-edge machine-learning development solutions that allow you to build high-impact models in half the time. In a collaborative and clear machine learning management environment, bridge science and engineering teams. Use interactive workspaces, dashboards and model repositories to communicate and reproduce results. You should be less concerned about technical complexity and more focused on creating high-impact ML models. The Cnvrg.io container based infrastructure simplifies engineering heavy tasks such as tracking, monitoring and configuration, compute resource management, server infrastructure, feature extraction, model deployment, and serving infrastructure.
  • 26
    Nebius Reviews
    Platform with NVIDIA H100 Tensor core GPUs. Competitive pricing. Support from a dedicated team. Built for large-scale ML workloads. Get the most from multihost training with thousands of H100 GPUs in full mesh connections using the latest InfiniBand networks up to 3.2Tb/s. Best value: Save up to 50% on GPU compute when compared with major public cloud providers*. You can save even more by purchasing GPUs in large quantities and reserving GPUs. Onboarding assistance: We provide a dedicated engineer to ensure smooth platform adoption. Get your infrastructure optimized, and k8s installed. Fully managed Kubernetes - Simplify the deployment and scaling of ML frameworks using Kubernetes. Use Managed Kubernetes to train GPUs on multiple nodes. Marketplace with ML Frameworks: Browse our Marketplace to find ML-focused libraries and applications, frameworks, and tools that will streamline your model training. Easy to use. All new users are entitled to a one-month free trial.
  • 27
    IBM Watson Machine Learning Accelerator Reviews
    Your deep learning workload can be accelerated. AI model training and inference can speed up your time to value. Deep learning is becoming more popular as enterprises adopt it to gain and scale insight through speech recognition and natural language processing. Deep learning can read text, images and video at scale and generate patterns for recommendation engines. It can also model financial risk and detect anomalies. Due to the sheer number of layers and volumes of data required to train neural networks, it has been necessary to use high computational power. Businesses are finding it difficult to demonstrate results from deep learning experiments that were implemented in silos.
  • 28
    RTE Runner Reviews

    RTE Runner

    Cybersoft North America

    It is an artificial intelligence solution that analyzes complex data and empowers decision making. This can transform industrial productivity and human life. It automates the data science process, which can reduce the workload on already overburdened teams. It breaks down data silos by intuitively creating data pipelines that feed live data into deployed model and then dynamically creating model execution pipelines to make real-time predictions based on incoming data. It monitors the health and maintenance of deployed models using the confidence of predicted results.
  • 29
    Kepler Reviews
    Kepler's Automated Data Science workflows make it easy to eliminate the need for programming and machine learning. You can quickly join and get data-driven insights that are unique to your company and your data. Our SaaS-based model allows you to receive continuous updates and additional Workflows from our AI and ML teams. With a platform that grows with you business, scale AI and accelerate time to value using the skills and team already within your company. Advanced AI and machine learning capabilities can solve complex business problems without the need to have any technical ML knowledge. You can leverage state-of the-art, end to end automation, a large library of AI algorithms, as well as the ability to quickly deploy machine-learning models. Organizations use Kepler to automate and augment critical business processes in order to increase productivity and agility.
  • 30
    ClearML Reviews
    ClearML is an open-source MLOps platform that enables data scientists, ML engineers, and DevOps to easily create, orchestrate and automate ML processes at scale. Our frictionless and unified end-to-end MLOps Suite allows users and customers to concentrate on developing ML code and automating their workflows. ClearML is used to develop a highly reproducible process for end-to-end AI models lifecycles by more than 1,300 enterprises, from product feature discovery to model deployment and production monitoring. You can use all of our modules to create a complete ecosystem, or you can plug in your existing tools and start using them. ClearML is trusted worldwide by more than 150,000 Data Scientists, Data Engineers and ML Engineers at Fortune 500 companies, enterprises and innovative start-ups.
  • 31
    Neuton AutoML Reviews
    Neuton.AI, an automated solution, empowering users to build accurate predictive models and make smart predictions with: Zero code solution Zero need for technical skills Zero need for data science knowledge
  • 32
    Descartes Labs Reviews
    The Descartes Labs Platform was created to address some of the most pressing geospatial analysis questions in the world. The platform allows customers to quickly and efficiently build models and algorithms that transform their businesses. We help AI become a core competency by providing data scientists and their line of business colleagues with the best geospatial and modeling tools in one package. Our massive data archive and their own data can be used by data science teams to create models faster than ever before. Our cloud-based platform allows customers to rapidly and securely scale machine learning, statistical, or computer vision models to inform business decisions using powerful raster-based analytics. Our extensive API documentation, tutorials and guides, as well as demos, provide users with a rich knowledge base that allows them to quickly deploy high-value apps across a variety of industries.
  • 33
    Arize AI Reviews
    Arize's machine-learning observability platform automatically detects and diagnoses problems and improves models. Machine learning systems are essential for businesses and customers, but often fail to perform in real life. Arize is an end to-end platform for observing and solving issues in your AI models. Seamlessly enable observation for any model, on any platform, in any environment. SDKs that are lightweight for sending production, validation, or training data. You can link real-time ground truth with predictions, or delay. You can gain confidence in your models' performance once they are deployed. Identify and prevent any performance or prediction drift issues, as well as quality issues, before they become serious. Even the most complex models can be reduced in time to resolution (MTTR). Flexible, easy-to use tools for root cause analysis are available.
  • 34
    Tecton Reviews
    Machine learning applications can be deployed to production in minutes instead of months. Automate the transformation of raw data and generate training data sets. Also, you can serve features for online inference at large scale. Replace bespoke data pipelines by robust pipelines that can be created, orchestrated, and maintained automatically. You can increase your team's efficiency and standardize your machine learning data workflows by sharing features throughout the organization. You can serve features in production at large scale with confidence that the systems will always be available. Tecton adheres to strict security and compliance standards. Tecton is neither a database nor a processing engine. It can be integrated into your existing storage and processing infrastructure and orchestrates it.
  • 35
    Domino Enterprise MLOps Platform Reviews
    The Domino Enterprise MLOps Platform helps data science teams improve the speed, quality, and impact of data science at scale. Domino is open and flexible, empowering professional data scientists to use their preferred tools and infrastructure. Data science models get into production fast and are kept operating at peak performance with integrated workflows. Domino also delivers the security, governance and compliance that enterprises expect. The Self-Service Infrastructure Portal makes data science teams become more productive with easy access to their preferred tools, scalable compute, and diverse data sets. By automating time-consuming and tedious DevOps tasks, data scientists can focus on the tasks at hand. The Integrated Model Factory includes a workbench, model and app deployment, and integrated monitoring to rapidly experiment, deploy the best models in production, ensure optimal performance, and collaborate across the end-to-end data science lifecycle. The System of Record has a powerful reproducibility engine, search and knowledge management, and integrated project management. Teams can easily find, reuse, reproduce, and build on any data science work to amplify innovation.
  • 36
    Segmind Reviews
    Segmind simplifies access to large compute. It can be used to run high-performance workloads like Deep learning training and other complex processing jobs. Segmind allows you to create zero-setup environments in minutes and lets you share the access with other members of your team. Segmind's MLOps platform is also able to manage deep learning projects from start to finish with integrated data storage, experiment tracking, and data storage.
  • 37
    Oracle Data Science Reviews
    Data science platform that increases productivity and has unparalleled capabilities. Create and evaluate machine learning (ML), models of higher quality. Easy deployment of ML models can help increase business flexibility and enable enterprise-trusted data work faster. Cloud-based platforms can be used to uncover new business insights. Iterative processes are necessary to build a machine-learning model. This ebook will explain how machine learning models are constructed and break down the process. Use notebooks to build and test machine learning algorithms. AutoML will show you the results of data science. It is easier and faster to create high-quality models. Automated machine-learning capabilities quickly analyze the data and recommend the best data features and algorithms. Automated machine learning also tunes the model and explains its results.
  • 38
    Mystic Reviews
    You can deploy Mystic in your own Azure/AWS/GCP accounts or in our shared GPU cluster. All Mystic features can be accessed directly from your cloud. In just a few steps, you can get the most cost-effective way to run ML inference. Our shared cluster of graphics cards is used by hundreds of users at once. Low cost, but performance may vary depending on GPU availability in real time. We solve the infrastructure problem. A Kubernetes platform fully managed that runs on your own cloud. Open-source Python API and library to simplify your AI workflow. You get a platform that is high-performance to serve your AI models. Mystic will automatically scale GPUs up or down based on the number API calls that your models receive. You can easily view and edit your infrastructure using the Mystic dashboard, APIs, and CLI.
  • 39
    AWS Neuron Reviews
    It supports high-performance learning on AWS Trainium based Amazon Elastic Compute Cloud Trn1 instances. It supports low-latency and high-performance inference for model deployment on AWS Inferentia based Amazon EC2 Inf1 and AWS Inferentia2-based Amazon EC2 Inf2 instance. Neuron allows you to use popular frameworks such as TensorFlow or PyTorch and train and deploy machine-learning (ML) models using Amazon EC2 Trn1, inf1, and inf2 instances without requiring vendor-specific solutions. AWS Neuron SDK is natively integrated into PyTorch and TensorFlow, and supports Inferentia, Trainium, and other accelerators. This integration allows you to continue using your existing workflows within these popular frameworks, and get started by changing only a few lines. The Neuron SDK provides libraries for distributed model training such as Megatron LM and PyTorch Fully Sharded Data Parallel (FSDP).
  • 40
    Vaex Reviews
    Vaex.io aims to democratize the use of big data by making it available to everyone, on any device, at any scale. Your prototype is the solution to reducing development time by 80%. Create automatic pipelines for every model. Empower your data scientists. Turn any laptop into an enormous data processing powerhouse. No clusters or engineers required. We offer reliable and fast data-driven solutions. Our state-of-the art technology allows us to build and deploy machine-learning models faster than anyone else on the market. Transform your data scientists into big data engineers. We offer comprehensive training for your employees to enable you to fully utilize our technology. Memory mapping, a sophisticated Expression System, and fast Out-of-Core algorithms are combined. Visualize and explore large datasets and build machine-learning models on a single computer.
  • 41
    HumanFirst Reviews
    HumanFirst offers a highly efficient infrastructure and workflows for exploring, curating and scaling your AI training data. We produce the capabilities to scale NLU & NLP. HumanFirst is a conversational AI platform. Real voice-of-the-customer data, always in the loop. HumanFirst Studio makes it easy to work with text and voice data to train and maintain NLU models that understand natural language. You can replace ad-hoc data collection and labeling with a seamless experience that lets you build and improve your AI's performance with real data. To train AI that understands customers, import your Search and Help Center requests and emails. Improve accuracy and discover intents. It is difficult to figure out what intents you need and to come up with training phrases manually. This can lead to poor coverage and inaccurate intents.
  • 42
    C3 AI Suite Reviews
    Enterprise AI applications can be built, deployed, and operated. C3 AI®, Suite uses a unique model driven architecture to speed delivery and reduce the complexity of developing enterprise AI apps. The C3 AI model-driven architecture allows developers to create enterprise AI applications using conceptual models, rather than long code. This has significant benefits: AI applications and models can be used to optimize processes for every product or customer across all regions and businesses. You will see results in just 1-2 quarters. Also, you can quickly roll out new applications and capabilities. You can unlock sustained value - hundreds to billions of dollars annually - through lower costs, higher revenue and higher margins. C3.ai's unified platform, which offers data lineage as well as governance, ensures enterprise-wide governance for AI.
  • 43
    Anaconda Reviews
    Top Pick
    A fully-featured machine learning platform empowers enterprises to conduct real data science at scale and speed. You can spend less time managing infrastructure and tools so that you can concentrate on building machine learning applications to propel your business forward. Anaconda Enterprise removes the hassle from ML operations and puts open-source innovation at the fingertips. It provides the foundation for serious machine learning and data science production without locking you into any specific models, templates, workflows, or models. AE allows data scientists and software developers to work together to create, test, debug and deploy models using their preferred languages. AE gives developers and data scientists access to both notebooks as well as IDEs, allowing them to work more efficiently together. They can also choose between preconfigured projects and example projects. AE projects can be easily moved from one environment to the next by being automatically packaged.
  • 44
    HPE Ezmeral ML OPS Reviews
    HPE Ezmeral ML Ops offers pre-packaged tools that enable you to operate machine learning workflows at any stage of the ML lifecycle. This will give you DevOps-like speed, agility, and speed. You can quickly set up environments using your preferred data science tools. This allows you to explore multiple enterprise data sources, and simultaneously experiment with multiple deep learning frameworks or machine learning models to find the best model for the business problems. On-demand, self-service environments that can be used for testing and development as well as production workloads. Highly performant training environments with separation of compute/storage that securely access shared enterprise data sources in cloud-based or on-premises storage.
  • 45
    Google Cloud TPU Reviews
    Machine learning has led to business and research breakthroughs in everything from network security to medical diagnosis. To make similar breakthroughs possible, we created the Tensor Processing unit (TPU). Cloud TPU is a custom-designed machine learning ASIC which powers Google products such as Translate, Photos and Search, Assistant, Assistant, and Gmail. Here are some ways you can use the TPU and machine-learning to accelerate your company's success, especially when it comes to scale. Cloud TPU is designed for cutting-edge machine learning models and AI services on Google Cloud. Its custom high-speed network provides over 100 petaflops performance in a single pod. This is enough computational power to transform any business or create the next breakthrough in research. It is similar to compiling code to train machine learning models. You need to update frequently and you want to do it as efficiently as possible. As apps are built, deployed, and improved, ML models must be trained repeatedly.
  • 46
    Amazon EC2 Trn2 Instances Reviews
    Amazon EC2 Trn2 instances powered by AWS Trainium2 are designed for high-performance deep-learning training of generative AI model, including large language models, diffusion models, and diffusion models. They can save up to 50% on the cost of training compared to comparable Amazon EC2 Instances. Trn2 instances can support up to 16 Trainium2 accelerations, delivering up to 3 petaflops FP16/BF16 computing power and 512GB of high bandwidth memory. Trn2 instances support up to 1600 Gbps second-generation Elastic Fabric Adapter network bandwidth. NeuronLink is a high-speed nonblocking interconnect that facilitates efficient data and models parallelism. They are deployed as EC2 UltraClusters and can scale up to 30,000 Trainium2 processors interconnected by a nonblocking, petabit-scale, network, delivering six exaflops in compute performance. The AWS neuron SDK integrates with popular machine-learning frameworks such as PyTorch or TensorFlow.
  • 47
    Cogito Reviews
    Our nucleus is innovation. Cogito supports AI businesses and business initiatives by deploying a skilled workforce for data annotation, content moderation and any other data processing services. Our data enrichment services offer one-stop solutions to all your data-related requirements. Our highly skilled, scalable and brilliant minds combine their knowledge to quickly meet your needs with precision accuracy while maintaining complete data confidentiality. We specialize in Human Empowered Automation. Our mission is to help customers innovate and scale through solving their daily data problems. We partner with Artificial Intelligence, Technology, and eCommerce clients to create high-quality data sets that can be used to enhance and build cutting-edge business applications. Businesses and AI Enterprises can benefit from cost-effective, high-quality, scalable, and secure data enrichment services.
  • 48
    Superb AI Reviews
    Superb AI offers a new generation of machine learning data platform to AI team members so they can create better AI in a shorter time. The Superb AI Suite, an enterprise SaaS platform, was created to aid ML engineers, product teams and data annotators in creating efficient training data workflows that save time and money. Superb AI can help ML teams save more than 50% on managing training data. Our customers have averaged a 80% reduction in the time it takes for models to be trained. Fully managed workforce, powerful labeling and training data quality control tools, pre-trained models predictions, advanced auto-labeling and filtering your datasets, data source and integration, robust developer tools, ML work flow integrations and many other benefits. Superb AI makes it easier to manage your training data. Superb AI provides enterprise-level features to every layer of an ML organization.
  • 49
    PredictSense Reviews
    PredictSense is an AI-powered machine learning platform that uses AutoML to power its end-to-end Machine Learning platform. Accelerating machine intelligence will fuel the technological revolution of tomorrow. AI is key to unlocking the value of enterprise data investments. PredictSense allows businesses to quickly create AI-driven advanced analytical solutions that can help them monetize their technology investments and critical data infrastructure. Data science and business teams can quickly develop and deploy robust technology solutions at scale. Integrate AI into your existing product ecosystem and quickly track GTM for new AI solution. AutoML's complex ML models allow you to save significant time, money and effort.
  • 50
    Hopsworks Reviews

    Hopsworks

    Logical Clocks

    $1 per month
    Hopsworks is an open source Enterprise platform that allows you to develop and operate Machine Learning (ML), pipelines at scale. It is built around the first Feature Store for ML in the industry. You can quickly move from data exploration and model building in Python with Jupyter notebooks. Conda is all you need to run production-quality end-to-end ML pipes. Hopsworks can access data from any datasources you choose. They can be in the cloud, on premise, IoT networks or from your Industry 4.0-solution. You can deploy on-premises using your hardware or your preferred cloud provider. Hopsworks will offer the same user experience in cloud deployments or the most secure air-gapped deployments.