Best Sarvam AI Alternatives in 2024
Find the top alternatives to Sarvam AI currently available. Compare ratings, reviews, pricing, and features of Sarvam AI alternatives in 2024. Slashdot lists the best Sarvam AI alternatives on the market that offer competing products that are similar to Sarvam AI. Sort through Sarvam AI alternatives below to make the best choice for your needs
-
1
Teuken 7B
OpenGPT-X
FreeTeuken-7B, a multilingual open source language model, was developed under the OpenGPT-X project. It is specifically designed to accommodate Europe's diverse linguistic landscape. It was trained on a dataset that included over 50% non-English text, covering all 24 official European Union languages, to ensure robust performance. Teuken-7B's custom multilingual tokenizer is a key innovation. It has been optimized for European languages and enhances training efficiency. The model comes in two versions: Teuken-7B Base, a pre-trained foundational model, and Teuken-7B Instruct, a model that has been tuned to better follow user prompts. Hugging Face makes both versions available, promoting transparency and cooperation within the AI community. The development of Teuken-7B demonstrates a commitment to create AI models that reflect Europe’s diversity. -
2
Qwen
Alibaba
FreeQwen LLM is a family of large-language models (LLMs), developed by Damo Academy, an Alibaba Cloud subsidiary. These models are trained using a large dataset of text and codes, allowing them the ability to understand and generate text that is human-like, translate languages, create different types of creative content and answer your question in an informative manner. Here are some of the key features of Qwen LLMs. Variety of sizes: Qwen's series includes sizes ranging from 1.8 billion parameters to 72 billion, offering options that meet different needs and performance levels. Open source: Certain versions of Qwen have open-source code, which is available to anyone for use and modification. Qwen is multilingual and can translate multiple languages including English, Chinese and Japanese. Qwen models are capable of a wide range of tasks, including text summarization and code generation, as well as generation and translation. -
3
GPT4All
Nomic AI
FreeGPT4All provides an ecosystem for training and deploying large language models, which run locally on consumer CPUs. The goal is to be the best assistant-style language models that anyone or any enterprise can freely use and distribute. A GPT4All is a 3GB to 8GB file you can download and plug in the GPT4All ecosystem software. Nomic AI maintains and supports this software ecosystem in order to enforce quality and safety, and to enable any person or company to easily train and deploy large language models on the edge. Data is a key ingredient in building a powerful and general-purpose large-language model. The GPT4All Community has created the GPT4All Open Source Data Lake as a staging area for contributing instruction and assistance tuning data for future GPT4All Model Trains. -
4
IBM Granite
IBM
FreeIBM® Granite™ is an AI family that was designed from scratch for business applications. It helps to ensure trust and scalability of AI-driven apps. Granite models are open source and available today. We want to make AI accessible to as many developers as we can. We have made the core Granite Code, Time Series models, Language and GeoSpatial available on Hugging Face, under a permissive Apache 2.0 licence that allows for broad commercial use. Granite models are all trained using carefully curated data. The data used to train them is transparent at a level that is unmatched in the industry. We have also made the tools that we use available to ensure that the data is of high quality and meets the standards required by enterprise-grade applications. -
5
Aya
Cohere AI
Aya is an open-source, state-of-the art, massively multilingual large language research model (LLM), which covers 101 different languages. This is more than twice the number of languages that are covered by open-source models. Aya helps researchers unlock LLMs' powerful potential for dozens of cultures and languages that are largely ignored by the most advanced models available today. We open-source both the Aya Model, as well as the most comprehensive multilingual instruction dataset with 513 million words covering 114 different languages. This data collection contains rare annotations by native and fluent speakers from around the world. This ensures that AI technology is able to effectively serve a global audience who have had limited access up until now. -
6
Smaug-72B
Abacus
FreeSmaug 72B is an open-source large-language model (LLM), which is known for its key features. High Performance: It is currently ranked first on the Hugging face Open LLM leaderboard. This model has surpassed models such as GPT-3.5 across a range of benchmarks. This means that it excels in tasks such as understanding, responding to and generating text similar to human speech. Open Source: Smaug-72B, unlike many other advanced LLMs is available to anyone for free use and modification, fostering collaboration, innovation, and creativity in the AI community. Focus on Math and Reasoning: It excels at handling mathematical and reasoning tasks. This is attributed to the unique fine-tuning technologies developed by Abacus, the creators Smaug 72B. Based on Qwen 72B: This is a finely tuned version of another powerful LLM, called Qwen 72B, released by Alibaba. It further improves its capabilities. Smaug-72B is a significant advance in open-source AI. -
7
NVIDIA Nemotron
NVIDIA
NVIDIA Nemotron, a family open-source models created by NVIDIA is designed to generate synthetic language data for commercial applications. The Nemotron-4 model 340B is an important release by NVIDIA. It offers developers a powerful tool for generating high-quality data, and filtering it based upon various attributes, using a reward system. -
8
OpenELM
Apple
OpenELM is a family of open-source language models developed by Apple. It uses a layering strategy to allocate parameters efficiently within each layer of a transformer model. This leads to improved accuracy compared to other open language models. OpenELM was trained using publicly available datasets, and it achieves the best performance for its size. -
9
Granite Code
IBM
FreeWe introduce the Granite family of decoder only code models for code generation tasks (e.g. fixing bugs, explaining codes, documenting codes), trained with code in 116 programming language. The Granite Code family has been evaluated on a variety of tasks and demonstrates that the models are consistently at the top of their game among open source code LLMs. Granite Code models have a number of key advantages. Granite Code models are able to perform at a competitive level or even at the cutting edge of technology in a variety of code-related tasks including code generation, explanations, fixing, translation, editing, and more. Demonstrating the ability to solve a variety of coding tasks. IBM's Corporate Legal team guides all models for trustworthy enterprise use. All models are trained using license-permissible datasets collected according to IBM's AI Ethics Principles. -
10
OpenGPT-X
OpenGPT-X
FreeOpenGPT is a German initiative that focuses on developing large AI languages models tailored to European requirements, with an emphasis on versatility, trustworthiness and multilingual capabilities. It also emphasizes open-source accessibility. The project brings together partners to cover the whole generative AI value-chain, from scalable GPU-based infrastructure to data for training large language model to model design, practical applications, and prototypes and proofs-of concept. OpenGPT-X aims at advancing cutting-edge research, with a focus on business applications. This will accelerate the adoption of generative AI within the German economy. The project also stresses responsible AI development to ensure that the models are reliable and aligned with European values and laws. The project provides resources, such as the LLM Workbook and a three part reference guide with examples and resources to help users better understand the key features and characteristics of large AI language model. -
11
Baichuan-13B
Baichuan Intelligent Technology
FreeBaichuan-13B, a large-scale language model with 13 billion parameters that is open source and available commercially by Baichuan Intelligent, was developed following Baichuan -7B. It has the best results for a language model of the same size in authoritative Chinese and English benchmarks. This release includes two versions of pretraining (Baichuan-13B Base) and alignment (Baichuan-13B Chat). Baichuan-13B has more data and a larger size. It expands the number parameters to 13 billion based on Baichuan -7B, and trains 1.4 trillion coins on high-quality corpus. This is 40% more than LLaMA-13B. It is open source and currently the model with the most training data in 13B size. Support Chinese and English bi-lingual, use ALiBi code, context window is 4096. -
12
Llama 3.2
Meta
FreeThere are now more versions of the open-source AI model that you can refine, distill and deploy anywhere. Choose from 1B or 3B, or build with Llama 3. Llama 3.2 consists of a collection large language models (LLMs), which are pre-trained and fine-tuned. They come in sizes 1B and 3B, which are multilingual text only. Sizes 11B and 90B accept both text and images as inputs and produce text. Our latest release allows you to create highly efficient and performant applications. Use our 1B and 3B models to develop on-device applications, such as a summary of a conversation from your phone, or calling on-device features like calendar. Use our 11B and 90B models to transform an existing image or get more information from a picture of your surroundings. -
13
RedPajama
RedPajama
FreeGPT-4 and other foundation models have accelerated AI's development. The most powerful models, however, are closed commercial models or partially open. RedPajama aims to create a set leading, open-source models. Today, we're excited to announce that the first phase of this project is complete: the reproduction of LLaMA's training dataset of more than 1.2 trillion tokens. The most capable foundations models are currently closed behind commercial APIs. This limits research, customization and their use with sensitive information. If the open community can bridge the quality gap between closed and open models, fully open-source models could be the answer to these limitations. Recent progress has been made in this area. AI is in many ways having its Linux moment. Stable Diffusion demonstrated that open-source software can not only compete with commercial offerings such as DALL-E, but also lead to incredible creative results from community participation. -
14
Stable LM
Stability AI
FreeStableLM: Stability AI language models StableLM builds upon our experience with open-sourcing previous language models in collaboration with EleutherAI. This nonprofit research hub. These models include GPTJ, GPTNeoX and the Pythia Suite, which were all trained on The Pile dataset. Cerebras GPT and Dolly-2 are two recent open-source models that continue to build upon these efforts. StableLM was trained on a new dataset that is three times bigger than The Pile and contains 1.5 trillion tokens. We will provide more details about the dataset at a later date. StableLM's richness allows it to perform well in conversational and coding challenges, despite the small size of its dataset (3-7 billion parameters, compared to GPT-3's 175 billion). The development of Stable LM 3B broadens the range of applications that are viable on the edge or on home PCs. This means that individuals and companies can now develop cutting-edge technologies with strong conversational capabilities – like creative writing assistance – while keeping costs low and performance high. -
15
Ferret
Apple
FreeA MLLM system that accepts any form of referral and grounds anything in response. Ferret Model- Hybrid Region representation + Spatial-aware visual sampler allows for fine-grained and open vocabulary referring and grounding. GRIT Dataset - A large-scale, hierarchical, robust ground-and refer instruction tuning dataset. Ferret Bench - A multimodal benchmark that requires Referring/Grounding as well as Semantics, Knowledge and Reasoning. -
16
GPT-J
EleutherAI
FreeGPT-J, a cutting edge language model developed by EleutherAI, is a leading-edge language model. GPT-J's performance is comparable to OpenAI's GPT-3 model on a variety of zero-shot tasks. GPT-J, in particular, has shown that it can surpass GPT-3 at tasks relating to code generation. The latest version of this language model is GPT-J-6B and is built on a linguistic data set called The Pile. This dataset is publically available and contains 825 gibibytes worth of language data organized into 22 subsets. GPT-J has some similarities with ChatGPT. However, GPTJ is not intended to be a chatbot. Its primary function is to predict texts. Databricks made a major development in March 2023 when they introduced Dolly, an Apache-licensed model that follows instructions. -
17
Azure OpenAI Service
Microsoft
$0.0004 per 1000 tokensYou can use advanced language models and coding to solve a variety of problems. To build cutting-edge applications, leverage large-scale, generative AI models that have deep understandings of code and language to allow for new reasoning and comprehension. These coding and language models can be applied to a variety use cases, including writing assistance, code generation, reasoning over data, and code generation. Access enterprise-grade Azure security and detect and mitigate harmful use. Access generative models that have been pretrained with trillions upon trillions of words. You can use them to create new scenarios, including code, reasoning, inferencing and comprehension. A simple REST API allows you to customize generative models with labeled information for your particular scenario. To improve the accuracy of your outputs, fine-tune the hyperparameters of your model. You can use the API's few-shot learning capability for more relevant results and to provide examples. -
18
PygmalionAI
PygmalionAI
FreePygmalionAI, a community of open-source projects based upon EleutherAI’s GPT-J 6B models and Meta’s LLaMA model, was founded in 2009. Pygmalion AI is designed for roleplaying and chatting. The 7B variant of the Pygmalion AI is currently actively supported. It is based on Meta AI’s LLaMA AI model. Pygmalion's chat capabilities are superior to larger language models that require much more resources. Our curated datasets of high-quality data on roleplaying ensure that your bot is the best RP partner. The model weights as well as the code used to train the model are both open-source. You can modify/re-distribute them for any purpose you like. Pygmalion and other language models run on GPUs because they require fast memory and massive processing to produce coherent text at a reasonable speed. -
19
Codestral
Mistral AI
FreeWe are proud to introduce Codestral, the first code model we have ever created. Codestral is a generative AI model that is open-weight and specifically designed for code generation. It allows developers to interact and write code using a shared API endpoint for instructions and completion. It can be used for advanced AI applications by software developers as it is able to master both code and English. Codestral has been trained on a large dataset of 80+ languages, including some of the most popular, such as Python and Java. It also includes C, C++ JavaScript, Bash, C, C++. It also performs well with more specific ones, such as Swift and Fortran. Codestral's broad language base allows it to assist developers in a variety of coding environments and projects. -
20
Arcee-SuperNova
Arcee.ai
FreeOur new flagship model, the Small Language Model (SLM), has all the power and performance that you would expect from a leading LLM. Excels at generalized tasks, instruction-following, and human preferences. The best 70B model available. SuperNova is a generalized task-based AI that can be used for any generalized task. It's similar to Open AI's GPT4o and Claude Sonnet 3.5. SuperNova is trained with the most advanced optimization & learning techniques to generate highly accurate responses. It is the most flexible, cost-effective, and secure language model available. Customers can save up to 95% in total deployment costs when compared with traditional closed-source models. SuperNova can be used to integrate AI in apps and products, as well as for general chat and a variety of other uses. Update your models regularly with the latest open source tech to ensure you're not locked into a single solution. Protect your data using industry-leading privacy features. -
21
Hermes 3
Nous Research
FreeHermes 3 contains advanced long-term context retention and multi-turn conversation capabilities, complex roleplaying and internal monologue abilities, and enhanced agentic function-calling. Hermes 3 has advanced long-term contextual retention, multi-turn conversation capabilities, complex roleplaying, internal monologue, and enhanced agentic functions-calling. Our training data encourages the model in a very aggressive way to follow the system prompts and instructions exactly and in a highly adaptive manner. Hermes 3 was developed by fine-tuning Llama 3.0 8B, 70B and 405B and training with a dataset primarily containing synthetic responses. The model has a performance that is comparable to Llama 3.1, but with deeper reasoning and creative abilities. Hermes 3 is an instruct and tool-use model series with strong reasoning and creativity abilities. -
22
DeepSeek LLM
DeepSeek
Introducing DeepSeek LLM - an advanced language model with 67 billion parameters. It was trained from scratch using a massive dataset of 2 trillion tokens, both in English and Chinese. To encourage research, we made DeepSeek LLM 67B Base and DeepSeek LLM 67B Chat available as open source to the research community. -
23
Cerebras-GPT
Cerebras
FreeThe training of state-of-the art language models is extremely difficult. They require large compute budgets, complex distributed computing techniques and deep ML knowledge. Few organizations are able to train large language models from scratch. The number of organizations that do not open source their results is increasing, even though they have the expertise and resources to do so. We at Cerebras believe in open access to the latest models. Cerebras is proud to announce that Cerebras GPT, a family GPT models with 111 million to thirteen billion parameters, has been released to the open-source community. These models are trained using the Chinchilla Formula and provide the highest accuracy within a given computing budget. Cerebras GPT has faster training times and lower training costs. It also consumes less power than any other publicly available model. -
24
GPT-4 (Generative Pretrained Transformer 4) a large-scale, unsupervised language model that is yet to be released. GPT-4, which is the successor of GPT-3, is part of the GPT -n series of natural-language processing models. It was trained using a dataset of 45TB text to produce text generation and understanding abilities that are human-like. GPT-4 is not dependent on additional training data, unlike other NLP models. It can generate text and answer questions using its own context. GPT-4 has been demonstrated to be capable of performing a wide range of tasks without any task-specific training data, such as translation, summarization and sentiment analysis.
-
25
Lune AI
LuneAI
$10 per monthA marketplace of LLMs created by developers on technical topics, and managed by a community. Outperforms standalone AI models. Lunes, which are constantly updated on the latest technical knowledge sources, such as Github repositories and documentation, can reduce hallucinations when it comes to technical queries. You can get references back, just like with Perplexity. Use hundreds of Lunes created by other users, ranging from Lunes that are trained on open-source software to curated collections based on tech blog posts. Get exposure by creating one using a variety sources, such as your own projects. Our API can be hot-swapped with OpenAI's. Integrate with Cursor and Continue, as well as other tools that support OpenAI compatible models. You can continue your conversation from your IDE on Lune Web anytime. Get paid for each approved comment you make directly in the chat. Create a public Lune, share it and get paid based on its popularity. -
26
OLMo 2
Ai2
OLMo 2 is an open language model family developed by the Allen Institute for AI. It provides researchers and developers with open-source code and reproducible training recipes. These models can be trained with up to 5 trillion tokens, and they are competitive against other open-weight models such as Llama 3.0 on English academic benchmarks. OLMo 2 focuses on training stability by implementing techniques that prevent loss spikes in long training runs. It also uses staged training interventions to address capability deficits during late pretraining. The models incorporate the latest post-training methods from AI2's Tulu 3 resulting in OLMo 2-Instruct. The Open Language Modeling Evaluation System, or OLMES, was created to guide improvements throughout the development stages. It consists of 20 evaluation benchmarks assessing key capabilities. -
27
ChatGPT is an OpenAI language model. It can generate human-like responses to a variety prompts, and has been trained on a wide range of internet texts. ChatGPT can be used to perform natural language processing tasks such as conversation, question answering, and text generation. ChatGPT is a pretrained language model that uses deep-learning algorithms to generate text. It was trained using large amounts of text data. This allows it to respond to a wide variety of prompts with human-like ease. It has a transformer architecture that has been proven to be efficient in many NLP tasks. ChatGPT can generate text in addition to answering questions, text classification and language translation. This allows developers to create powerful NLP applications that can do specific tasks more accurately. ChatGPT can also process code and generate it.
-
28
Llama 2
Meta
FreeThe next generation of the large language model. This release includes modelweights and starting code to pretrained and fine tuned Llama languages models, ranging from 7B-70B parameters. Llama 1 models have a context length of 2 trillion tokens. Llama 2 models have a context length double that of Llama 1. The fine-tuned Llama 2 models have been trained using over 1,000,000 human annotations. Llama 2, a new open-source language model, outperforms many other open-source language models in external benchmarks. These include tests of reasoning, coding and proficiency, as well as knowledge tests. Llama 2 has been pre-trained using publicly available online data sources. Llama-2 chat, a fine-tuned version of the model, is based on publicly available instruction datasets, and more than 1 million human annotations. We have a wide range of supporters in the world who are committed to our open approach for today's AI. These companies have provided early feedback and have expressed excitement to build with Llama 2 -
29
Inflection AI
Inflection AI
FreeInflection AI, a leading artificial intelligence research and technology company, focuses on developing advanced AI systems that interact with humans more naturally and intuitively. The company was founded in 2022 by entrepreneurs like Mustafa Suleyman (one of the cofounders of DeepMind) and Reid Hoffman (co-founder of LinkedIn). Its mission is to make powerful AI accessible and aligned to human values. Inflection AI is a company that specializes in creating large-scale language systems to enhance human-AI interaction. It aims to transform industries from customer service to productivity by designing AI systems that are intelligent, responsive and ethical. The company's focus is on safety, transparency and user control to ensure that their innovations are positive for society while addressing the potential risks associated with AI. -
30
NVIDIA NeMo Megatron
NVIDIA
NVIDIA NeMo megatron is an end to-end framework that can be used to train and deploy LLMs with billions or trillions of parameters. NVIDIA NeMo Megatron is part of the NVIDIAAI platform and offers an efficient, cost-effective, and cost-effective containerized approach to building and deploying LLMs. It is designed for enterprise application development and builds upon the most advanced technologies of NVIDIA research. It provides an end-to–end workflow for automated distributed processing, training large-scale customized GPT-3 and T5 models, and deploying models to infer at scale. The validation of converged recipes that allow for training and inference is a key to unlocking the power and potential of LLMs. The hyperparameter tool makes it easy to customize models. It automatically searches for optimal hyperparameter configurations, performance, and training/inference for any given distributed GPU cluster configuration. -
31
Pixtral 12B
Mistral AI
FreePixtral 12B, a multimodal AI model pioneered by Mistral AI and designed to process and understand both text and images data seamlessly, is a groundbreaking AI model. This model represents a significant advance in the integration of data types. It allows for more intuitive interaction and enhanced content creation abilities. Pixtral 12B, which is based on Mistral's NeMo 12B Text Model, incorporates an additional Vision Adapter that adds 400 million parameters. This allows it to handle visual inputs of up to 1024x1024 pixels. This model is capable of a wide range of applications from image analysis to answering visual content questions. Its versatility is demonstrated in real-world scenarios. Pixtral 12B is a powerful tool for developers, as it not only has a large context of 128k tokens, but also uses innovative techniques such as GeLU activation and RoPE 2D for its vision components. -
32
Samsung Gauss
Samsung
Samsung Gauss, a new AI-model developed by Samsung Electronics, is a powerful AI tool. It is a large-language model (LLM) which has been trained using a massive dataset. Samsung Gauss can generate text, translate different languages, create creative content and answer questions in a helpful way. Samsung Gauss, which is still in development, has already mastered many tasks, including Follow instructions and complete requests with care. Answering questions in an informative and comprehensive way, even when they are open-ended, challenging or strange. Creating different creative text formats such as poems, code, musical pieces, emails, letters, etc. Here are some examples to show what Samsung Gauss is capable of: Translation: Samsung Gauss is able to translate text between many languages, including English and German, as well as Spanish, Chinese, Japanese and Korean. Coding: Samsung Gauss can generate code. -
33
Qwen-7B
Alibaba
FreeQwen-7B, also known as Qwen-7B, is the 7B-parameter variant of the large language models series Qwen. Tongyi Qianwen, proposed by Alibaba Cloud. Qwen-7B, a Transformer-based language model, is pretrained using a large volume data, such as web texts, books, code, etc. Qwen-7B is also used to train Qwen-7B Chat, an AI assistant that uses large models and alignment techniques. The Qwen-7B features include: Pre-trained with high quality data. We have pretrained Qwen-7B using a large-scale, high-quality dataset that we constructed ourselves. The dataset contains over 2.2 trillion tokens. The dataset contains plain texts and codes and covers a wide range domains including general domain data as well as professional domain data. Strong performance. We outperform our competitors in a series benchmark datasets that evaluate natural language understanding, mathematics and coding. And more. -
34
CodeGen
Salesforce
FreeCodeGen is a model for program synthesis that is open-source. Trained on TPU v4. OpenAI Codex is competitive with TPU-v4. -
35
NLP Cloud
NLP Cloud
$29 per monthProduction-ready AI models that are fast and accurate. High-availability inference API that leverages the most advanced NVIDIA GPUs. We have selected the most popular open-source natural language processing models (NLP) and deployed them for the community. You can fine-tune your models (including GPT-J) or upload your custom models. Then, deploy them to production. Upload your AI models, including GPT-J, to your dashboard and immediately use them in production. -
36
Mistral 7B
Mistral AI
We solve the most difficult problems to make AI models efficient, helpful and reliable. We are the pioneers of open models. We give them to our users, and empower them to share their ideas. Mistral-7B is a powerful, small model that can be adapted to many different use-cases. Mistral 7B outperforms Llama 13B in all benchmarks. It has 8k sequence length, natural coding capabilities, and is faster than Llama 2. It is released under Apache 2.0 License and we made it simple to deploy on any cloud. -
37
Gemma
Google
Gemma is the family of lightweight open models that are built using the same research and technology as the Gemini models. Gemma was developed by Google DeepMind, along with other teams within Google. The name is derived from the Latin gemma meaning "precious stones". We're also releasing new tools to encourage developer innovation, encourage collaboration, and guide responsible use of Gemma model. Gemma models are based on the same infrastructure and technical components as Gemini, Google's largest and most powerful AI model. Gemma 2B, 7B and other open models can achieve the best performance possible for their size. Gemma models can run directly on a desktop or laptop computer for developers. Gemma is able to surpass much larger models in key benchmarks, while adhering our rigorous standards of safe and responsible outputs. -
38
Qwen2
Alibaba
FreeQwen2 is a large language model developed by Qwen Team, Alibaba Cloud. Qwen2 is an extensive series of large language model developed by the Qwen Team at Alibaba Cloud. It includes both base models and instruction-tuned versions, with parameters ranging from 0.5 to 72 billion. It also features dense models and a Mixture of Experts model. The Qwen2 Series is designed to surpass previous open-weight models including its predecessor Qwen1.5 and to compete with proprietary model across a wide spectrum of benchmarks, such as language understanding, generation and multilingual capabilities. -
39
OpenLLaMA
OpenLLaMA
FreeOpenLLaMA, a permissively-licensed open source reproduction of Meta AI’s LLaMA 7B, is trained on the RedPajama data set. Our model weights are a drop-in replacement for LLaMA7B in existing implementations. We also offer a smaller 3B version of the LLaMA Model. -
40
InstructGPT
OpenAI
$0.0200 per 1000 tokensInstructGPT is an open source framework that trains language models to generate natural language instruction from visual input. It uses a generative, pre-trained transformer model (GPT) and the state of the art object detector Mask R-CNN to detect objects in images. Natural language sentences are then generated that describe the image. InstructGPT has been designed to be useful in all domains including robotics, gaming, and education. It can help robots navigate complex tasks using natural language instructions or it can help students learn by giving descriptive explanations of events or processes. -
41
Stable Beluga
Stability AI
FreeStability AI, in collaboration with its CarperAI Lab, announces Stable Beluga 1 (formerly codenamed FreeWilly) and its successor Stable Beluga 2 - two powerful, new Large Language Models. Both models show exceptional reasoning abilities across a variety of benchmarks. Stable Beluga 1 leverages the original LLaMA 65B foundation model and was carefully fine-tuned with a new synthetically-generated dataset using Supervised Fine-Tune (SFT) in standard Alpaca format. Stable Beluga 2 uses the LLaMA 270B foundation model for industry-leading performance. -
42
Reka
Reka
Our enterprise-grade multimodal Assistant is designed with privacy, efficiency, and security in mind. Yasa is trained to read text, images and videos. Tabular data will be added in the future. Use it to generate creative tasks, find answers to basic questions or gain insights from your data. With a few simple commands, you can generate, train, compress or deploy your model on-premise. Our proprietary algorithms can be used to customize our model for your data and use case. We use proprietary algorithms for retrieval, fine tuning, self-supervised instructions tuning, and reinforcement to tune our model using your datasets. -
43
Vicuna
lmsys.org
FreeVicuna-13B, an open-source chatbot, is trained by fine-tuning LLaMA using user-shared conversations from ShareGPT. Vicuna-13B's preliminary evaluation using GPT-4, as a judge, shows that it achieves a quality of more than 90%* for OpenAI ChatGPT or Google Bard and outperforms other models such as LLaMA or Stanford Alpaca. Vicuna-13B costs around $300 to train. The online demo and the code, along with weights, are available to non-commercial users. -
44
Giga ML
Giga ML
We have just launched the X1 large model series. Giga ML’s most powerful model can be used for pre-training, fine-tuning and on-prem deployment. We are Open AI compliant, so your existing integrations, such as long chain, llama index, and others, will work seamlessly. You can continue to pre-train LLM's using domain-specific databooks or docs, or company documents. The world of large-scale language models (LLMs), which offer unprecedented opportunities for natural language process across different domains, is rapidly expanding. Despite this, there are still some critical challenges that remain unresolved. Giga ML proudly introduces the X1 Large model 32k, a pioneering LLM solution on-premise that addresses these critical challenges. -
45
Amazon Titan
Amazon
Amazon Titan models are exclusive to Amazon Bedrock. They incorporate Amazon's 25-year experience in AI and machine learning innovation across its business. Amazon Titan foundation models (FMs), via a fully-managed API, provide customers with an array of high-performing text, image, and multimodal models. Amazon Titan models were created by AWS, and pre-trained on large datasets. They are powerful, general purpose models that support a wide range of use cases while also supporting responsible AI. You can use them as-is or customize them privately with your own data. Amazon Titan Text Premier is an advanced model in the Amazon Titan Text family that delivers superior performance for a variety of enterprise applications. This model is optimized to integrate with Agents and knowledge bases for Amazon Bedrock. It's an ideal option for creating interactive generative AI apps. -
46
Falcon-40B
Technology Innovation Institute (TII)
FreeFalcon-40B is a 40B parameter causal decoder model, built by TII. It was trained on 1,000B tokens from RefinedWeb enhanced by curated corpora. It is available under the Apache 2.0 licence. Why use Falcon-40B Falcon-40B is the best open source model available. Falcon-40B outperforms LLaMA, StableLM, RedPajama, MPT, etc. OpenLLM Leaderboard. It has an architecture optimized for inference with FlashAttention, multiquery and multiquery. It is available under an Apache 2.0 license that allows commercial use without any restrictions or royalties. This is a raw model that should be finetuned to fit most uses. If you're looking for a model that can take generic instructions in chat format, we suggest Falcon-40B Instruct. -
47
Alpa
Alpa
FreeAlpa aims automate large-scale distributed training. Alpa was originally developed by people at UC Berkeley's Sky Lab. Alpa's advanced techniques were described in a paper published by OSDI'2022. Google is adding new members to the Alpa community. A language model is a probabilistic distribution of probability over a sequence of words. It uses all the words it has seen to predict the next word. It is useful in a variety AI applications, including the auto-completion of your email or chatbot service. You can find more information on the language model Wikipedia page. GPT-3 is a large language model with 175 billion parameters that uses deep learning to produce text that looks human-like. GPT-3 was described by many researchers and news articles as "one the most important and interesting AI systems ever created." GPT-3 is being used as a backbone for the latest NLP research. -
48
TinyLlama
TinyLlama
FreeThe TinyLlama Project aims to pretrain an 1.1B Llama on 3 trillion tokens. We can achieve this in "just" 90 day using 16 A100-40G graphics cards with some optimization. We used the exact same architecture and tokenizers as Llama 2 TinyLlama is compatible with many open-source Llama projects. TinyLlama has only 1.1B of parameters. This compactness allows TinyLlama to be used for a variety of applications that require a small computation and memory footprint. -
49
Falcon-7B
Technology Innovation Institute (TII)
FreeFalcon-7B is a 7B parameter causal decoder model, built by TII. It was trained on 1,500B tokens from RefinedWeb enhanced by curated corpora. It is available under the Apache 2.0 licence. Why use Falcon-7B Falcon-7B? It outperforms similar open-source models, such as MPT-7B StableLM RedPajama, etc. It is a result of being trained using 1,500B tokens from RefinedWeb enhanced by curated corpora. OpenLLM Leaderboard. It has an architecture optimized for inference with FlashAttention, multiquery and multiquery. It is available under an Apache 2.0 license that allows commercial use without any restrictions or royalties. -
50
ChatGLM
Zhipu AI
FreeChatGLM-6B, a Chinese-English bilingual dialogue model based on General Language Model architecture (GLM), has 6.2 billion parameters. Users can deploy model quantization locally on consumer-grade graphic cards (only 6GB video memory required at INT4 quantization levels). ChatGLM-6B is based on technology similar to ChatGPT and optimized for Chinese dialogue and Q&A. After approximately 1T identifiers for Chinese and English bilingual training and supplemented with supervision and fine-tuning as well as feedback self-help and human feedback reinforcement learning, ChatGLM-6B, with 6.2 billion parameters, has been able generate answers that are in line with human preference.