DataBuck
Big Data Quality must always be verified to ensure that data is safe, accurate, and complete. Data is moved through multiple IT platforms or stored in Data Lakes. The Big Data Challenge: Data often loses its trustworthiness because of (i) Undiscovered errors in incoming data (iii). Multiple data sources that get out-of-synchrony over time (iii). Structural changes to data in downstream processes not expected downstream and (iv) multiple IT platforms (Hadoop DW, Cloud). Unexpected errors can occur when data moves between systems, such as from a Data Warehouse to a Hadoop environment, NoSQL database, or the Cloud. Data can change unexpectedly due to poor processes, ad-hoc data policies, poor data storage and control, and lack of control over certain data sources (e.g., external providers). DataBuck is an autonomous, self-learning, Big Data Quality validation tool and Data Matching tool.
Learn more
dbt
dbt Labs is redefining how data teams work with SQL. Instead of waiting on complex ETL processes, dbt lets data analysts and data engineers build production-ready transformations directly in the warehouse, using code, version control, and CI/CD. This community-driven approach puts power back in the hands of practitioners while maintaining governance and scalability for enterprise use.
With a rapidly growing open-source community and an enterprise-grade cloud platform, dbt is at the heart of the modern data stack. It’s the go-to solution for teams who want faster analytics, higher quality data, and the confidence that comes from transparent, testable transformations.
Learn more
Collate
Collate is a metadata platform powered by AI that equips data teams with automated tools for discovery, observability, quality, and governance, utilizing agent-based workflows for efficiency. It is constructed on the foundation of OpenMetadata and features a cohesive metadata graph, providing over 90 seamless connectors for gathering metadata from various sources like databases, data warehouses, BI tools, and data pipelines. This platform not only offers detailed column-level lineage and data profiling but also implements no-code quality tests to ensure data integrity. The AI agents play a crucial role in streamlining processes such as data discovery, permission-sensitive querying, alert notifications, and incident management workflows on a large scale. Furthermore, the platform includes real-time dashboards, interactive analyses, and a shared business glossary that cater to both technical and non-technical users, facilitating the management of high-quality data assets. Additionally, its continuous monitoring and governance automation help uphold compliance with regulations such as GDPR and CCPA, which significantly minimizes the time taken to resolve data-related issues and reduces the overall cost of ownership. This comprehensive approach to data management not only enhances operational efficiency but also fosters a culture of data stewardship across the organization.
Learn more
DATPROF
Mask, generate, subset, virtualize, and automate your test data with the DATPROF Test Data Management Suite. Our solution helps managing Personally Identifiable Information and/or too large databases. Long waiting times for test data refreshes are a thing of the past.
Learn more