What Integrates with SAS Life Science Analytics Framework?

Find out what SAS Life Science Analytics Framework integrations exist in 2025. Learn what software and services currently integrate with SAS Life Science Analytics Framework, and sort them by reviews, cost, features, and more. Below is a list of products that SAS Life Science Analytics Framework currently integrates with:

  • 1
    Python Reviews
    At the heart of extensible programming lies the definition of functions. Python supports both mandatory and optional parameters, keyword arguments, and even allows for arbitrary lists of arguments. Regardless of whether you're just starting out in programming or you have years of experience, Python is accessible and straightforward to learn. This programming language is particularly welcoming for beginners, while still offering depth for those familiar with other programming environments. The subsequent sections provide an excellent foundation to embark on your Python programming journey! The vibrant community organizes numerous conferences and meetups for collaborative coding and sharing ideas. Additionally, Python's extensive documentation serves as a valuable resource, and the mailing lists keep users connected. The Python Package Index (PyPI) features a vast array of third-party modules that enrich the Python experience. With both the standard library and community-contributed modules, Python opens the door to limitless programming possibilities, making it a versatile choice for developers of all levels.
  • 2
    R Reviews

    R

    The R Foundation

    Free
    R is a comprehensive environment and programming language tailored for statistical analysis and graphical representation. As a part of the GNU project, it shares similarities with the S language, which was originally designed by John Chambers and his team at Bell Laboratories, now known as Lucent Technologies. Essentially, R serves as an alternative implementation of S, and while there are notable distinctions between the two, a significant amount of S code can be executed in R without modification. This versatile language offers a broad spectrum of statistical methods, including both linear and nonlinear modeling, classical statistical tests, time-series analytics, classification, and clustering, among others, and it boasts a high level of extensibility. The S language is frequently utilized in research focused on statistical methodologies, and R presents an Open Source avenue for engaging in this field. Moreover, one of R's key advantages lies in its capability to generate high-quality publication-ready graphics, facilitating the inclusion of mathematical symbols and formulas as needed, which enhances its usability for researchers and analysts alike. Ultimately, R continues to be a powerful tool for those seeking to explore and visualize data effectively.
  • Previous
  • You're on page 1
  • Next