What Integrates with Roo Code?
Find out what Roo Code integrations exist in 2026. Learn what software and services currently integrate with Roo Code, and sort them by reviews, cost, features, and more. Below is a list of products that Roo Code currently integrates with:
-
1
Visual Studio Code
Microsoft
Free 26 RatingsVisual Studio Code is a highly extensible AI-powered code editor built for developers who demand flexibility and performance. It combines intelligent coding assistance, modern debugging tools, and collaboration features in one lightweight package. With Agent Mode, VS Code reads your codebase, runs terminal commands, and edits across files automatically until tasks are complete. Its Next Edit Suggestions feature predicts and completes your next move as you type, enhancing speed and code accuracy. The Model Context Protocol (MCP) enables developers to connect their favorite AI models—from OpenAI, Anthropic, Azure, or Google—and extend functionality through custom servers. Developers can work in any language, from JavaScript and Python to C#, Java, and Go, while leveraging over 75,000 extensions for added productivity. Seamless integration with GitHub Codespaces, cloud storage, and CI/CD tools allows teams to code, collaborate, and deploy anywhere. Open-source at its core, VS Code empowers both individuals and enterprises to innovate without limits. -
2
OpenAI aims to guarantee that artificial general intelligence (AGI)—defined as highly autonomous systems excelling beyond human capabilities in most economically significant tasks—serves the interests of all humanity. While we intend to develop safe and advantageous AGI directly, we consider our mission successful if our efforts support others in achieving this goal. You can utilize our API for a variety of language-related tasks, including semantic search, summarization, sentiment analysis, content creation, translation, and beyond, all with just a few examples or by clearly stating your task in English. A straightforward integration provides you with access to our continuously advancing AI technology, allowing you to explore the API’s capabilities through these illustrative completions and discover numerous potential applications.
-
3
Grok Code Fast 1
xAI
$0.20 per million input tokensGrok Code Fast 1 introduces a new class of coding-focused AI models that prioritize responsiveness, affordability, and real-world usability. Tailored for agentic coding platforms, it eliminates the lag developers often experience with reasoning loops and tool calls, creating a smoother workflow in IDEs. Its architecture was trained on a carefully curated mix of programming content and fine-tuned on real pull requests to reflect authentic development practices. With proficiency across multiple languages, including Python, Rust, TypeScript, C++, Java, and Go, it adapts to full-stack development scenarios. Grok Code Fast 1 excels in speed, processing nearly 190 tokens per second while maintaining reliable performance across bug fixes, code reviews, and project generation. Pricing makes it widely accessible at $0.20 per million input tokens, $1.50 per million output tokens, and just $0.02 for cached inputs. Early testers, including GitHub Copilot and Cursor users, praise its responsiveness and quality. For developers seeking a reliable coding assistant that’s both fast and cost-effective, Grok Code Fast 1 is a daily driver built for practical software engineering needs. -
4
GLM-4.7
Zhipu AI
FreeGLM-4.7 is a next-generation AI model built to serve as a powerful coding and reasoning partner. It improves significantly on its predecessor across software engineering, multilingual coding, and terminal interaction benchmarks. GLM-4.7 introduces enhanced agentic behavior by thinking before tool use or execution, improving reliability in long and complex tasks. The model demonstrates strong performance in real-world coding environments and popular coding agents. GLM-4.7 also advances visual and frontend generation, producing modern UI designs and well-structured presentation slides. Its improved tool-use capabilities allow it to browse, analyze, and interact with external systems more effectively. Mathematical and logical reasoning have been strengthened through higher benchmark performance on challenging exams. The model supports flexible reasoning modes, allowing users to trade latency for accuracy. GLM-4.7 can be accessed via Z.ai, OpenRouter, and agent-based coding tools. It is designed for developers who need high performance without excessive cost. -
5
Model Context Protocol (MCP)
Anthropic
FreeThe Model Context Protocol (MCP) is a flexible, open-source framework that streamlines the interaction between AI models and external data sources. It enables developers to create complex workflows by connecting LLMs with databases, files, and web services, offering a standardized approach for AI applications. MCP’s client-server architecture ensures seamless integration, while its growing list of integrations makes it easy to connect with different LLM providers. The protocol is ideal for those looking to build scalable AI agents with strong data security practices. -
6
GLM-4.6
Zhipu AI
FreeGLM-4.6 builds upon the foundations laid by its predecessor, showcasing enhanced reasoning, coding, and agent capabilities, resulting in notable advancements in inferential accuracy, improved tool usage during reasoning tasks, and a more seamless integration within agent frameworks. In comprehensive benchmark evaluations that assess reasoning, coding, and agent performance, GLM-4.6 surpasses GLM-4.5 and competes robustly against other models like DeepSeek-V3.2-Exp and Claude Sonnet 4, although it still lags behind Claude Sonnet 4.5 in terms of coding capabilities. Furthermore, when subjected to practical tests utilizing an extensive “CC-Bench” suite that includes tasks in front-end development, tool creation, data analysis, and algorithmic challenges, GLM-4.6 outperforms GLM-4.5 while nearing parity with Claude Sonnet 4, achieving victory in approximately 48.6% of direct comparisons and demonstrating around 15% improved token efficiency. This latest model is accessible through the Z.ai API, providing developers the flexibility to implement it as either an LLM backend or as the core of an agent within the platform's API ecosystem. In addition, its advancements could significantly enhance productivity in various application domains, making it an attractive option for developers looking to leverage cutting-edge AI technology. -
7
GLM-4.6V
Zhipu AI
FreeThe GLM-4.6V is an advanced, open-source multimodal vision-language model that belongs to the Z.ai (GLM-V) family, specifically engineered for tasks involving reasoning, perception, and action. It is available in two configurations: a comprehensive version with 106 billion parameters suitable for cloud environments or high-performance computing clusters, and a streamlined “Flash” variant featuring 9 billion parameters, which is tailored for local implementation or scenarios requiring low latency. With a remarkable native context window that accommodates up to 128,000 tokens during its training phase, GLM-4.6V can effectively manage extensive documents or multimodal data inputs. One of its standout features is the built-in Function Calling capability, allowing the model to accept various forms of visual media — such as images, screenshots, and documents — as inputs directly, eliminating the need for manual text conversion. This functionality not only facilitates reasoning about the visual content but also enables the model to initiate tool calls, effectively merging visual perception with actionable results. The versatility of GLM-4.6V opens the door to a wide array of applications, including the generation of interleaved image-and-text content, which can seamlessly integrate document comprehension with text summarization or the creation of responses that include image annotations, thereby greatly enhancing user interaction and output quality. -
8
GLM-4.1V
Zhipu AI
FreeGLM-4.1V is an advanced vision-language model that offers a robust and streamlined multimodal capability for reasoning and understanding across various forms of media, including images, text, and documents. The 9-billion-parameter version, known as GLM-4.1V-9B-Thinking, is developed on the foundation of GLM-4-9B and has been improved through a unique training approach that employs Reinforcement Learning with Curriculum Sampling (RLCS). This model accommodates a context window of 64k tokens and can process high-resolution inputs, supporting images up to 4K resolution with any aspect ratio, which allows it to tackle intricate tasks such as optical character recognition, image captioning, chart and document parsing, video analysis, scene comprehension, and GUI-agent workflows, including the interpretation of screenshots and recognition of UI elements. In benchmark tests conducted at the 10 B-parameter scale, GLM-4.1V-9B-Thinking demonstrated exceptional capabilities, achieving the highest performance on 23 out of 28 evaluated tasks. Its advancements signify a substantial leap forward in the integration of visual and textual data, setting a new standard for multimodal models in various applications. -
9
GLM-4.5V-Flash
Zhipu AI
FreeGLM-4.5V-Flash is a vision-language model that is open source and specifically crafted to integrate robust multimodal functionalities into a compact and easily deployable framework. It accommodates various types of inputs including images, videos, documents, and graphical user interfaces, facilitating a range of tasks such as understanding scenes, parsing charts and documents, reading screens, and analyzing multiple images. In contrast to its larger counterparts, GLM-4.5V-Flash maintains a smaller footprint while still embodying essential visual language model features such as visual reasoning, video comprehension, handling GUI tasks, and parsing complex documents. This model can be utilized within “GUI agent” workflows, allowing it to interpret screenshots or desktop captures, identify icons or UI components, and assist with both automated desktop and web tasks. While it may not achieve the performance enhancements seen in the largest models, GLM-4.5V-Flash is highly adaptable for practical multimodal applications where efficiency, reduced resource requirements, and extensive modality support are key considerations. Its design ensures that users can harness powerful functionalities without sacrificing speed or accessibility. -
10
GLM-4.5V
Zhipu AI
FreeGLM-4.5V is an evolution of the GLM-4.5-Air model, incorporating a Mixture-of-Experts (MoE) framework that boasts a remarkable total of 106 billion parameters, with 12 billion specifically dedicated to activation. This model stands out by delivering top-tier performance among open-source vision-language models (VLMs) of comparable scale, demonstrating exceptional capabilities across 42 public benchmarks in diverse contexts such as images, videos, documents, and GUI interactions. It offers an extensive array of multimodal functionalities, encompassing image reasoning tasks like scene understanding, spatial recognition, and multi-image analysis, alongside video comprehension tasks that include segmentation and event recognition. Furthermore, it excels in parsing complex charts and lengthy documents, facilitating GUI-agent workflows through tasks like screen reading and desktop automation, while also providing accurate visual grounding by locating objects and generating bounding boxes. Additionally, the introduction of a "Thinking Mode" switch enhances user experience by allowing the selection of either rapid responses or more thoughtful reasoning based on the situation at hand. This innovative feature makes GLM-4.5V not only versatile but also adaptable to various user needs. -
11
MiniMax-M2.1
MiniMax
FreeMiniMax-M2.1 is a state-of-the-art open-source AI model built specifically for agent-based development and real-world automation. It focuses on delivering strong performance in coding, tool calling, and long-term task execution. Unlike closed models, MiniMax-M2.1 is fully transparent and can be deployed locally or integrated through APIs. The model excels in multilingual software engineering tasks and complex workflow automation. It demonstrates strong generalization across different agent frameworks and development environments. MiniMax-M2.1 supports advanced use cases such as autonomous coding, application building, and office task automation. Benchmarks show significant improvements over previous MiniMax versions. The model balances high reasoning ability with stability and control. Developers can fine-tune or extend it for specialized agent workflows. MiniMax-M2.1 empowers teams to build reliable AI agents without vendor lock-in. -
12
VSCodium
VSCodium
The source code for Microsoft's Visual Studio Code (VSCode) is available as open source under the MIT license, yet the downloadable version of the product is subject to a different license that is not considered free and open-source software (FLOSS) and includes telemetry features. To provide an alternative, the VSCodium project was created, allowing users to avoid the hassle of downloading and building from the source code by offering pre-built binaries. This project utilizes specialized build scripts that fetch Microsoft's VSCode repository, execute the necessary build commands, and subsequently upload the finished binaries to GitHub releases, all of which are licensed under the MIT license and have telemetry features disabled. For users on Mac OS X Mojave, if you encounter the message “App can’t be opened because Apple cannot check it for malicious software” when you first try to open VSCodium, you can simply right-click the application and select Open, which should only be necessary the first time you launch it on that operating system. Additionally, comprehensive documentation is available for anyone looking to transition from Visual Studio Code, as well as for addressing various issues that may arise during use of VSCodium. This ensures users have access to all the guidance they need for a smooth experience. -
13
Requesty
Requesty
Requesty is an innovative platform tailored to enhance AI workloads by smartly directing requests to the best-suited model for each specific task. It boasts sophisticated capabilities like automatic fallback systems and queuing processes, guaranteeing seamless service continuity even when certain models are temporarily unavailable. Supporting an extensive array of models, including GPT-4, Claude 3.5, and DeepSeek, Requesty also provides AI application observability, enabling users to monitor model performance and fine-tune their application usage effectively. By lowering API expenses and boosting operational efficiency, Requesty equips developers with the tools to create more intelligent and dependable AI solutions. This platform not only optimizes performance but also fosters innovation in AI development, paving the way for groundbreaking applications.
- Previous
- You're on page 1
- Next