Best Posit Alternatives in 2025

Find the top alternatives to Posit currently available. Compare ratings, reviews, pricing, and features of Posit alternatives in 2025. Slashdot lists the best Posit alternatives on the market that offer competing products that are similar to Posit. Sort through Posit alternatives below to make the best choice for your needs

  • 1
    Domo Reviews
    Top Pick
    Domo puts data to work for everyone so they can multiply their impact on the business. Underpinned by a secure data foundation, our cloud-native data experience platform makes data visible and actionable with user-friendly dashboards and apps. Domo helps companies optimize critical business processes at scale and in record time to spark bold curiosity that powers exponential business results.
  • 2
    IBM SPSS Statistics Reviews
    Top Pick
    IBM® SPSS® Statistics software is used by a variety of customers to solve industry-specific business issues to drive quality decision-making. The IBM® SPSS® software platform offers advanced statistical analysis, a vast library of machine learning algorithms, text analysis, open-source extensibility, integration with big data and seamless deployment into applications. Its ease of use, flexibility and scalability make SPSS accessible to users of all skill levels. What’s more, it’s suitable for projects of all sizes and levels of complexity, and can help you find new opportunities, improve efficiency and minimize risk.
  • 3
    Minitab Statistical Software Reviews
    Our namesake product, Minitab Statistical Software, leads the way in data analysis with the power to visualize, analyze and harness your data to gain insights and solve your toughest challenges. Access trusted, proven and modern analytics combined with dynamic visualizations to empower you and your decisions. The latest version of Minitab Statistical Software includes access to Minitab on the cloud so you can analyze from anywhere, and Graph Builder, our new interactive tool to instantly create multiple graph options at once. Minitab offers modules for Predictive Analytics and Healthcare to boost your analytics even further. Available in 8 languages: English, Chinese, French, German, Japanese, Korean, Spanish, and Portuguese. For 50 years, Minitab has helped thousands of companies and institutions spot trends, solve problems, and discover valuable insights in their data through our comprehensive, best-in-class suite of data analysis and process improvement tools.
  • 4
    K.Explorer Reviews
    K.Explorer is an AI system that creates better software faster, cheaper, and more efficiently. A coding assistant that increases developer productivity. An AI pair programmer that suggests code completions and complete function bodies as you type. You can also search the engine for help. It is an AI-powered Code Assistant that has been trained on millions of lines of code from private corporations, as well as billions of lines of open-source code for general purposes. Natural Language allows programmers to receive guidance and tell a text story about what code they are writing.
  • 5
    Azure Data Science Virtual Machines Reviews
    DSVMs, or Data Science Virtual Machines, are pre-configured Azure Virtual Machine images equipped with a variety of widely-used tools for data analysis, machine learning, and AI training. They ensure a uniform setup across teams, encouraging seamless collaboration and sharing of resources while leveraging Azure's scalability and management features. Offering a near-zero setup experience, these VMs provide a fully cloud-based desktop environment tailored for data science applications. They facilitate rapid and low-friction deployment suitable for both classroom settings and online learning environments. Users can execute analytics tasks on diverse Azure hardware configurations, benefiting from both vertical and horizontal scaling options. Moreover, the pricing structure allows individuals to pay only for the resources they utilize, ensuring cost-effectiveness. With readily available GPU clusters that come pre-configured for deep learning tasks, users can hit the ground running. Additionally, the VMs include various examples, templates, and sample notebooks crafted or validated by Microsoft, which aids in the smooth onboarding process for numerous tools and capabilities, including but not limited to Neural Networks through frameworks like PyTorch and TensorFlow, as well as data manipulation using R, Python, Julia, and SQL Server. This comprehensive package not only accelerates the learning curve for newcomers but also enhances productivity for seasoned data scientists.
  • 6
    Jupyter Notebook Reviews
    The Jupyter Notebook is a web-based open-source tool that enables users to create and distribute documents featuring live code, visualizations, equations, and written explanations. Its applications are diverse and encompass tasks such as data cleaning and transformation, statistical modeling, numerical simulations, data visualization, machine learning, among others, showcasing its versatility in various fields. Additionally, it serves as an excellent platform for collaboration and sharing insights within the data science community.
  • 7
    MatDeck Reviews
    MatDeck is a universal technical software that can be used for mathematics, science, engineering, chemistry, programming, databases, and many other purposes. Our software includes a complete Python IDE, thousands of mathematical functions, a drag-and-drop GUI Designer, and many visualization tools. All this is embedded in a cutting-edge, live document that provides a professional computing environment at a low cost.
  • 8
    JetBrains Datalore Reviews
    Datalore is a platform for collaborative data science and analytics that aims to improve the entire analytics workflow and make working with data more enjoyable for both data scientists as well as data-savvy business teams. Datalore is a collaborative platform that focuses on data teams workflow. It offers technical-savvy business users the opportunity to work with data teams using no-code and low-code, as well as the power of Jupyter Notebooks. Datalore allows business users to perform analytic self-service. They can work with data using SQL or no-code cells, create reports, and dive deep into data. It allows core data teams to focus on simpler tasks. Datalore allows data scientists and analysts to share their results with ML Engineers. You can share your code with ML Engineers on powerful CPUs and GPUs, and you can collaborate with your colleagues in real time.
  • 9
    OpenText Magellan Reviews
    A platform for Machine Learning and Predictive Analytics enhances data-driven decision-making and propels business growth through sophisticated artificial intelligence within an integrated machine learning and big data analytics framework. OpenText Magellan leverages AI technologies to deliver predictive analytics through user-friendly and adaptable data visualizations that enhance the utility of business intelligence. The implementation of artificial intelligence software streamlines the big data processing task, providing essential business insights in a format that aligns with the organization’s most significant goals. By enriching business operations with a tailored combination of features such as predictive modeling, data exploration tools, data mining methods, and IoT data analytics, companies can effectively utilize their data to refine their decision-making processes based on actionable business intelligence and analytics. This comprehensive approach not only improves operational efficiency but also fosters a culture of data-driven innovation within the organization.
  • 10
    SAS Visual Statistics Reviews
    SAS Visual Statistics allows for collaborative data exploration among multiple users, enabling them to interactively develop and refine predictive models. Data scientists and statisticians can leverage the most suitable analytical techniques to act on insights at a detailed level. Consequently, you will discover insights at remarkable speeds, uncovering new opportunities for revenue growth. The platform facilitates the construction and fine-tuning of models aimed at specific demographics or segments while simultaneously running various scenarios. This capability encourages users to pose numerous what-if questions to enhance outcomes. Additionally, results can be operationalized through automatically generated score code. Users are empowered to visually manipulate data by adding or adjusting variables, eliminating outliers, and more. Changes can be instantly assessed for their impact on the model's predictive accuracy, allowing for swift adjustments. Data science teams enjoy the ultimate flexibility by working in their preferred programming languages, maximizing their expertise. Ultimately, SAS Visual Statistics integrates all analytical resources, making it a comprehensive solution for data-driven decision-making. It fosters an environment where innovation can thrive, pushing the boundaries of what data analysis can achieve.
  • 11
    PhpStorm Reviews

    PhpStorm

    JetBrains

    $199 per user per year
    5 Ratings
    Introducing the Lightning-Smart PHP IDE, PhpStorm, which has a profound comprehension of your code. Tailored for frameworks like Symfony, Laravel, Drupal, WordPress, Zend Framework, Magento, Joomla!, CakePHP, Yii, and more, PhpStorm truly grasps the intricacies of your code structure. It accommodates all PHP language features, making it an ideal choice for both modern and legacy projects. With PhpStorm, you benefit from unparalleled code completion, advanced refactorings, and proactive error prevention. Additionally, it seamlessly integrates cutting-edge front-end technologies such as HTML 5, CSS, Sass, Less, Stylus, CoffeeScript, TypeScript, Emmet, and JavaScript, offering robust refactoring, debugging, and unit testing functionalities. The Live Edit feature allows you to see changes in real-time within the browser, enhancing your development experience. Moreover, you can efficiently execute various routine tasks directly from the IDE, thanks to its integration with Version Control Systems, support for remote deployments, databases/SQL, command-line tools, Docker, Composer, REST Client, and an array of other essential tools, thus streamlining your workflow. Ultimately, PhpStorm empowers developers to work more efficiently and effectively across multiple platforms and technologies.
  • 12
    Bytesafe Reviews

    Bytesafe

    Bitfront

    €1100 per month
    Enhance your security framework for open source by implementing automated best practices, creating an integrated workflow that benefits both security and development teams. This cloud-native security solution minimizes risk and safeguards revenue while allowing developers to maintain their pace. The dependency firewall effectively isolates harmful open source elements before they can affect developers and infrastructure, thus preserving data integrity, company assets, and brand reputation. Our comprehensive policy engine examines various threat indicators, including recognized vulnerabilities, licensing details, and rules defined by the customer. Gaining visibility into the open-source components utilized in applications is essential for mitigating potential vulnerabilities. The Software Composition Analysis (SCA) and dashboard reporting provide stakeholders with a complete perspective and prompt updates regarding the existing environment. Additionally, you can detect the introduction of new open-source licenses within the codebase and automatically monitor compliance issues involving licenses, effectively managing any problematic or unlicensed packages. By adopting these measures, organizations can significantly improve their ability to respond to security challenges in real time.
  • 13
    Visplore Reviews
    Visplore makes the analysis of large, dirty time series data intuitive and extremely efficient. For process experts, R&D engineers, quality managers, industry consultants, and everyone who has spent a lot of time on the tedious preparation of complex measurement data. Knowing your data is the fundament of unlocking its value. Visplore offers ready-to-use tools to understand correlations, patterns, trends and much more, faster than ever. Cleansing and annotating make the difference between valuable and useless data. In Visplore, you deal with dirty data like outliers, anomalies and process changes as easily as using a drawing program. Integrations with Python, R, Matlab and many other sources makes workflow integration straightforward. And all of that at a performance that is still fun even with millions of data records, and allows for unexpectedly creative analyses.
  • 14
    Analance Reviews
    Analance is a comprehensive and scalable solution that integrates Data Science, Advanced Analytics, Business Intelligence, and Data Management into one seamless, self-service platform. Designed to empower users with essential analytical capabilities, it ensures that data insights are readily available to all, maintains consistent performance as user demands expand, and meets ongoing business goals within a singular framework. Analance is dedicated to transforming high-quality data into precise predictions, providing both seasoned data scientists and novice users with intuitive, point-and-click pre-built algorithms alongside a flexible environment for custom coding. By bridging the gap between advanced analytics and user accessibility, Analance facilitates informed decision-making across organizations. Company – Overview Ducen IT supports Business and IT professionals in Fortune 1000 companies by offering advanced analytics, business intelligence, and data management through its distinctive, all-encompassing data science platform known as Analance.
  • 15
    Coder Reviews
    Coder offers self-hosted cloud development environments, provisioned as code and ready for developers from day one. Favored by enterprises, Coder is open source and can be deployed air-gapped on-premise or in your cloud, ensuring powerful infrastructure access without sacrificing governance. By shifting local development and source code to a centralized infrastructure, Coder allows developers to access their remote environments via their preferred desktop or web-based IDE. This approach enhances developer experience, productivity, and security. With Coder’s ephemeral development environments, provisioned as code from pre-defined templates, developers can instantly create new workspaces. This streamlines the process, eliminating the need to deal with local dependency versioning issues or lengthy security approvals. Coder enables developers to onboard or switch projects in a matter of minutes.
  • 16
    JetBrains DataSpell Reviews
    Easily switch between command and editor modes using just one keystroke while navigating through cells with arrow keys. Take advantage of all standard Jupyter shortcuts for a smoother experience. Experience fully interactive outputs positioned directly beneath the cell for enhanced visibility. When working within code cells, benefit from intelligent code suggestions, real-time error detection, quick-fix options, streamlined navigation, and many additional features. You can operate with local Jupyter notebooks or effortlessly connect to remote Jupyter, JupyterHub, or JupyterLab servers directly within the IDE. Execute Python scripts or any expressions interactively in a Python Console, observing outputs and variable states as they happen. Split your Python scripts into code cells using the #%% separator, allowing you to execute them one at a time like in a Jupyter notebook. Additionally, explore DataFrames and visual representations in situ through interactive controls, all while enjoying support for a wide range of popular Python scientific libraries, including Plotly, Bokeh, Altair, ipywidgets, and many others, for a comprehensive data analysis experience. This integration allows for a more efficient workflow and enhances productivity while coding.
  • 17
    JupyterLab Reviews
    Project Jupyter is dedicated to the creation of open-source tools, standards, and services that facilitate interactive computing in numerous programming languages. At the heart of this initiative is JupyterLab, a web-based interactive development environment designed for Jupyter notebooks, coding, and data manipulation. JupyterLab offers remarkable flexibility, allowing users to customize and organize the interface to cater to various workflows in fields such as data science, scientific research, and machine learning. Its extensibility and modular nature enable developers to create plugins that introduce new features and seamlessly integrate with existing components. The Jupyter Notebook serves as an open-source web application enabling users to produce and share documents that incorporate live code, mathematical equations, visualizations, and descriptive text. Common applications of Jupyter include data cleaning and transformation, numerical simulations, statistical analysis, data visualization, and machine learning, among others. Supporting over 40 programming languages—including popular ones like Python, R, Julia, and Scala—Jupyter continues to be a valuable resource for researchers and developers alike, fostering collaborative and innovative approaches to computing challenges.
  • 18
    IBM Analytics for Apache Spark Reviews
    IBM Analytics for Apache Spark offers a versatile and cohesive Spark service that enables data scientists to tackle ambitious and complex inquiries while accelerating the achievement of business outcomes. This user-friendly, continually available managed service comes without long-term commitments or risks, allowing for immediate exploration. Enjoy the advantages of Apache Spark without vendor lock-in, supported by IBM's dedication to open-source technologies and extensive enterprise experience. With integrated Notebooks serving as a connector, the process of coding and analytics becomes more efficient, enabling you to focus more on delivering results and fostering innovation. Additionally, this managed Apache Spark service provides straightforward access to powerful machine learning libraries, alleviating the challenges, time investment, and risks traditionally associated with independently managing a Spark cluster. As a result, teams can prioritize their analytical goals and enhance their productivity significantly.
  • 19
    KNIME Analytics Platform Reviews
    Two complementary tools, one enterprise-grade platform. Open source KNIME Analytics Platform to create data science. Commercial KNIME Server to produce data science. KNIME Analytics Platform is an open-source software that creates data science. KNIME is intuitive, open, and constantly integrating new developments. It makes data science and designing data science workflows as easy as possible. KNIME Server Enterprise Software is used to facilitate team-based collaboration, automation, and management of data science workflows, as well as the deployment and management of analytical applications and services. Non-experts have access to KNIME WebPortal and REST APIs. Extensions for KNIME Analytics Platform allow you to do more with your data. Some are created and maintained by KNIME, while others are contributed by the community or our trusted partners. Integrations are also available with many open-source projects.
  • 20
    Quadratic Reviews
    Quadratic empowers your team to collaborate on data analysis, resulting in quicker outcomes. While you may already be familiar with spreadsheet usage, the capabilities offered by Quadratic are unprecedented. It fluently integrates Formulas and Python, with SQL and JavaScript support on the horizon. Utilize the programming languages that you and your colleagues are comfortable with. Unlike single-line formulas that can be difficult to decipher, Quadratic allows you to elaborate your formulas across multiple lines for clarity. The platform conveniently includes support for Python libraries, enabling you to incorporate the latest open-source tools seamlessly into your spreadsheets. The last executed code is automatically returned to the spreadsheet, and it accommodates raw values, 1/2D arrays, and Pandas DataFrames as standard. You can effortlessly retrieve data from an external API, with automatic updates reflected in Quadratic's cells. The interface allows for smooth navigation, permitting you to zoom out for an overview or zoom in to examine specifics. You can organize and traverse your data in a manner that aligns with your thought process, rather than conforming to the constraints imposed by traditional tools. This flexibility enhances not only productivity but also fosters a more intuitive approach to data management.
  • 21
    Flojoy Reviews

    Flojoy

    Flojoy

    $150 per month
    You can build and run powerful AI and engineering apps in just 5 minutes after downloading Flojoy Studio. No coding skills are required. Engineers use Flojoy Studio for streaming measurements from robotics and microcontrollers to Flojoy Cloud. Once in Flojoy Cloud this research data can then be analyzed, archived and downloaded by team members. Flojoy is a de facto resource for open source instrument control in Python. Flojoy's mission is to provide first-class Python support for every major motion platform, including robotic arms, steppermotors, servos and linear actuators.
  • 22
    Google Colab Reviews
    Google Colab is a complimentary, cloud-based Jupyter Notebook platform that facilitates environments for machine learning, data analysis, and educational initiatives. It provides users with immediate access to powerful computational resources, including GPUs and TPUs, without the need for complex setup, making it particularly suitable for those engaged in data-heavy projects. Users can execute Python code in an interactive notebook format, collaborate seamlessly on various projects, and utilize a wide range of pre-built tools to enhance their experimentation and learning experience. Additionally, Colab has introduced a Data Science Agent that streamlines the analytical process by automating tasks from data comprehension to providing insights within a functional Colab notebook, although it is important to note that the agent may produce errors. This innovative feature further supports users in efficiently navigating the complexities of data science workflows.
  • 23
    MATLAB Reviews
    Top Pick
    MATLAB® offers a desktop environment specifically optimized for iterative design and analysis, paired with a programming language that allows for straightforward expression of matrix and array mathematics. It features the Live Editor, which enables users to create scripts that merge code, output, and formatted text within an interactive notebook. The toolboxes provided by MATLAB are meticulously developed, thoroughly tested, and comprehensively documented. Additionally, MATLAB applications allow users to visualize how various algorithms interact with their data. You can refine your results through repeated iterations and then easily generate a MATLAB program to replicate or automate your processes. The platform also allows for scaling analyses across clusters, GPUs, and cloud environments with minimal modifications to your existing code. There is no need to overhaul your programming practices or master complex big data techniques. You can automatically convert MATLAB algorithms into C/C++, HDL, and CUDA code, enabling execution on embedded processors or FPGA/ASIC systems. Furthermore, when used in conjunction with Simulink, MATLAB enhances the support for Model-Based Design methodologies, making it a versatile tool for engineers and researchers alike. This adaptability makes MATLAB an essential resource for tackling a wide range of computational challenges.
  • 24
    Domino Enterprise MLOps Platform Reviews
    The Domino Enterprise MLOps Platform helps data science teams improve the speed, quality, and impact of data science at scale. Domino is open and flexible, empowering professional data scientists to use their preferred tools and infrastructure. Data science models get into production fast and are kept operating at peak performance with integrated workflows. Domino also delivers the security, governance and compliance that enterprises expect. The Self-Service Infrastructure Portal makes data science teams become more productive with easy access to their preferred tools, scalable compute, and diverse data sets. By automating time-consuming and tedious DevOps tasks, data scientists can focus on the tasks at hand. The Integrated Model Factory includes a workbench, model and app deployment, and integrated monitoring to rapidly experiment, deploy the best models in production, ensure optimal performance, and collaborate across the end-to-end data science lifecycle. The System of Record has a powerful reproducibility engine, search and knowledge management, and integrated project management. Teams can easily find, reuse, reproduce, and build on any data science work to amplify innovation.
  • 25
    Appsilon Reviews
    Appsilon specializes in cutting-edge data analytics, machine learning, and managed service solutions tailored for Fortune 500 companies, non-governmental organizations, and non-profits. We excel in creating the most sophisticated R Shiny applications, enabling us to efficiently develop and expand enterprise-level Shiny dashboards. Our custom machine learning frameworks empower us to deliver prototypes for Computer Vision, Natural Language Processing, and fraud detection in just a week. Above all, our mission is to make a meaningful difference in the world. Through our AI For Good Initiative, we actively apply our expertise to initiatives that enhance human safety and support the conservation of wildlife across the globe. Recently, our efforts have included using computer vision to combat poaching in Africa, conducting satellite image analyses to evaluate damage from natural disasters, and developing tools for assessing COVID-19 risks. Additionally, Appsilon takes pride in being at the forefront of open-source innovation, fostering collaboration and transparency in technology development. Our commitment to these values positions us as leaders in both ethical practices and technological advancements.
  • 26
    Alteryx Reviews
    Embrace a groundbreaking age of analytics through the Alteryx AI Platform. Equip your organization with streamlined data preparation, analytics powered by artificial intelligence, and accessible machine learning, all while ensuring governance and security are built in. This marks the dawn of a new era for data-driven decision-making accessible to every user and team at all levels. Enhance your teams' capabilities with a straightforward, user-friendly interface that enables everyone to develop analytical solutions that boost productivity, efficiency, and profitability. Foster a robust analytics culture by utilizing a comprehensive cloud analytics platform that allows you to convert data into meaningful insights via self-service data preparation, machine learning, and AI-generated findings. Minimize risks and safeguard your data with cutting-edge security protocols and certifications. Additionally, seamlessly connect to your data and applications through open API standards, facilitating a more integrated and efficient analytical environment. By adopting these innovations, your organization can thrive in an increasingly data-centric world.
  • 27
    Vectice Reviews
    Empowering all AI and machine learning initiatives within enterprises to yield reliable and beneficial outcomes is crucial. Data scientists require a platform that guarantees reproducibility for their experiments, ensures discoverability of every asset, and streamlines the transfer of knowledge. Meanwhile, managers need a specialized data science solution to safeguard knowledge, automate reporting tasks, and simplify review processes. Vectice aims to transform the operational dynamics of data science teams and enhance their collaboration. The ultimate objective is to foster a consistent and advantageous impact of AI and ML across various organizations. Vectice is introducing the first automated knowledge solution that is not only cognizant of data science but also actionable and seamlessly integrates with the tools utilized by data scientists. The platform automatically captures all assets generated by AI and ML teams, including datasets, code, notebooks, models, and runs, while also creating comprehensive documentation that spans from business requirements to production deployments, ensuring that every aspect of the workflow is covered efficiently. This innovative approach allows organizations to maximize their data science potential and drive meaningful results.
  • 28
    Anaconda Reviews
    Top Pick
    Empowering businesses to engage in genuine data science quickly and effectively through a comprehensive machine learning platform is crucial. By minimizing the time spent managing tools and infrastructure, organizations can concentrate on developing machine learning applications that drive growth. Anaconda Enterprise alleviates the challenges associated with ML operations, grants access to open-source innovations, and lays the groundwork for robust data science and machine learning operations without confining users to specific models, templates, or workflows. Software developers and data scientists can seamlessly collaborate within AE to create, test, debug, and deploy models using their chosen programming languages and tools. Additionally, AE facilitates access to both notebooks and integrated development environments (IDEs), enhancing collaborative efficiency. Users can also select from a variety of example projects or utilize preconfigured projects tailored to their needs. Furthermore, AE automatically containerizes projects, ensuring they can be effortlessly transitioned between various environments as required. This flexibility ultimately empowers teams to innovate and adapt to changing business demands more readily.
  • 29
    Crucible Reviews

    Crucible

    Atlassian

    $10 one-time payment
    1 Rating
    Deliver high-quality code by systematically reviewing it, engaging in discussions about modifications, sharing insights, and detecting issues across various version control systems like SVN, Git, Mercurial, CVS, and Perforce. Establish structured, workflow-oriented, or rapid code reviews while designating reviewers from your team to enhance collaboration. Transform any code review into a dynamic conversation by commenting on particular lines of code, files, or entire changesets. Prioritize important actions with consolidated views of your coding activities, including commits, reviews, and comments. Utilize data to elevate code quality by identifying sections of your codebase that may lack adequate review. Obtain a snapshot of the review status to track potential delays caused by pending reviews. Maintain a thorough audit trail that encapsulates all details of code reviews, including the historical context of each review. Tailor your Jira Software workflow to ensure it halts if any reviews are still in progress. Enhance your development processes by integrating Jira Software with Bitbucket Server, Bamboo, and a multitude of additional developer tools, thus streamlining the entire code management lifecycle. This integration facilitates more efficient collaboration and fosters a culture of continuous improvement within your development team.
  • 30
    SonarQube Cloud Reviews

    SonarQube Cloud

    SonarSource

    €10 per month
    Enhance your productivity by ensuring only high-quality code is released, as SonarQube Cloud (previously known as SonarCloud) seamlessly evaluates branches and enriches pull requests with insights. Identify subtle bugs to avoid unpredictable behavior that could affect users and address security vulnerabilities that threaten your application while gaining knowledge of application security through the Security Hotspots feature. Within moments, you can begin using the platform right where your code resides, benefiting from immediate access to the most current features and updates. Project dashboards provide vital information on code quality and readiness for release, keeping both teams and stakeholders in the loop. Showcase project badges to demonstrate your commitment to excellence within your communities. Code quality and security are essential across your entire technology stack, encompassing both front-end and back-end development. That’s why we support a wide range of 24 programming languages, including Python, Java, C++, and many more. The demand for transparency in coding practices is on the rise, and we invite you to be a part of this movement; it's completely free for open-source projects, making it an accessible opportunity for all developers! Plus, by participating, you contribute to a larger community dedicated to improving software quality.
  • 31
    SAS Visual Data Science Reviews
    Access, analyze, and manipulate data to uncover emerging trends and patterns effectively. SAS Visual Data Science provides a unified, self-service platform that enables the creation and sharing of intelligent visualizations alongside interactive reports. Leveraging machine learning, text analytics, and econometric techniques enhances forecasting and optimization capabilities, while also allowing for the management and registration of both SAS and open-source models, whether within projects or as independent entities. Utilize this tool to visualize and identify pertinent relationships within your data. Generate and disseminate interactive reports and dashboards, employing self-service analytics to promptly evaluate potential outcomes for more informed, data-driven decisions. Dive into data exploration and construct or modify predictive analytical models using this solution integrated with SAS® Viya®. By fostering collaboration among data scientists, statisticians, and analysts, teams can iteratively refine models tailored to specific segments or groups, thereby empowering decisions rooted in precise insights. This collaborative approach not only enhances model accuracy but also accelerates the decision-making process significantly.
  • 32
    Codecov Reviews

    Codecov

    Codecov

    $10 per user per month
    Enhance the quality of your code by adopting healthier coding practices and refining your code review process. Codecov offers a suite of integrated tools designed to organize, merge, archive, and compare coverage reports seamlessly. This service is free for open-source projects, with paid plans beginning at just $10 per user each month. It supports multiple programming languages, including Ruby, Python, C++, and JavaScript, and can be effortlessly integrated into any continuous integration (CI) workflow without the need for extensive setup. The platform features automatic merging of reports across all CI systems and languages into a unified document. Users can receive tailored status updates on various coverage metrics and review reports organized by project, folder, and test type, such as unit or integration tests. Additionally, detailed comments on the coverage reports are directly included in your pull requests. Committed to safeguarding your data and systems, Codecov holds SOC 2 Type II certification, which verifies that an independent third party has evaluated and confirmed their security practices. By utilizing these tools, teams can significantly increase code quality and streamline their development processes.
  • 33
    Launchpad Reviews
    It fosters a sense of community by facilitating the sharing of code, bug reports, translations, and ideas across various projects, regardless of the tools used. Launchpad enables users to exchange bug reports, updates, patches, and comments seamlessly across different project lines. Additionally, it allows for the sharing of bug data with other tracking systems like Bugzilla and Trac. It includes all essential features of a bug tracker, such as web, email, and API interfaces, connections between bugs and their respective fixes, and team-based delegation capabilities. Once users are prepared, they can upload their code branches to Launchpad and propose merging them back into the main codebase. The code review process, accessible through both web and email, provides a public space for discussing and deciding on the acceptance or rejection of merges. Moreover, Launchpad simplifies the translation process for everyone involved, offering translators a user-friendly web interface that provides automatic suggestions from an extensive library of over 16 million strings. This combination of features not only enhances collaboration but also ensures that all contributors, regardless of their background, can participate effectively in the development process.
  • 34
    BluBracket Code Security Suite Reviews
    Introducing the first all-encompassing security solution tailored for enterprise code. As software becomes increasingly valuable, it simultaneously grows more collaborative, open, and intricate, thus posing significant risks to corporate security. BluBracket empowers organizations by providing insight into how source code might compromise security, while also ensuring that their code remains fully protected without disrupting developer workflows or diminishing productivity. Since you cannot safeguard what remains unseen, the rise of collaborative coding tools leads to a surge in code proliferation that leaves companies in the dark regarding their assets. BluBracket offers a comprehensive BluPrint of code environments, enabling organizations to track their code's location and who has access to it, whether it's within the business or external partners. Furthermore, with a single click, users can categorize critical code, ensuring a clear chain of custody is available for any auditing or compliance requirements, thereby enhancing overall security governance. This innovative approach not only mitigates risks but also fosters a culture of security awareness across development teams.
  • 35
    Visual Studio Code Reviews
    Top Pick
    VSCode: A revolutionary approach to code editing. It's completely free, open-source, and compatible with all platforms. Experience more than just basic syntax highlighting and autocomplete; with IntelliSense, you gain intelligent suggestions that are based on the types of variables, definitions of functions, and imported modules. You can also debug your code directly within the editor, allowing you to launch or connect to your active applications while utilizing breakpoints, call stacks, and an interactive console for deeper insights. Collaborating with Git and other source control management (SCM) systems is simpler than ever; you can review differences, stage files, and commit changes right from within the editor itself. Easily push and pull changes from any hosted SCM service without hassle. Looking for additional capabilities? You can enhance your experience by installing extensions that introduce new languages, themes, debuggers, and connections to various services. These extensions operate in their own processes, ensuring they won't hinder your editor's performance. Discover the endless possibilities with extensions. Furthermore, with Microsoft Azure, you can efficiently deploy and host a variety of sites built with React, Angular, Vue, Node, Python, and more, while also being able to store and query both relational and document-based data, and scale effortlessly using serverless computing solutions. This powerful integration streamlines your development workflow and enhances productivity.
  • 36
    SAS Viya Reviews
    SAS® Viya® offers a robust and scalable analytics platform that is both efficient and easy to implement, allowing organizations to address a variety of business challenges. The insights generated automatically help in pinpointing the most frequently used variables across all models, highlighting key variables selected along with evaluation outcomes for each model. With the integration of natural language generation, project summaries are produced in straightforward language, which simplifies the interpretation of reports for users. Moreover, members of the analytics team can enhance the insights report with project notes, promoting better communication and teamwork. SAS further enables the integration of open source code within analyses, allowing users to utilize open source algorithms effortlessly in its platform. This flexibility encourages collaboration throughout your organization, as users are free to program in their preferred language. Additionally, you can leverage SAS Deep Learning with Python (DLPy), an open-source package available on GitHub, to expand your analytical capabilities even further. By using these tools, businesses can significantly enhance their data-driven decision-making processes.
  • 37
    esDynamic Reviews
    Elevate your security testing experience, from establishing your setup to examining your data processing outcomes, with esDynamic, which streamlines your efforts and saves you precious time while maximizing the effectiveness of your attack strategies. Explore this adaptable and all-encompassing Python-based platform, expertly designed to support every step of your security evaluations. Tailor your research environment to fit your specific needs by seamlessly incorporating new tools, integrating equipment, and adjusting data. Moreover, esDynamic offers a vast repository of resources on intricate subjects that would usually necessitate considerable research or the input of a specialized team, providing immediate access to expert knowledge. Move away from disorganized data and piecemeal information. Embrace a unified workspace that encourages your team to easily exchange data and insights, enhancing collaboration and speeding up the discovery process. Additionally, consolidate and fortify your work within JupyterLab notebooks for streamlined sharing among your team members, ensuring everyone is on the same page. This holistic approach can significantly transform your security testing workflow.
  • 38
    Zepl Reviews
    Coordinate, explore, and oversee all projects within your data science team efficiently. With Zepl's advanced search functionality, you can easily find and repurpose both models and code. The enterprise collaboration platform provided by Zepl allows you to query data from various sources like Snowflake, Athena, or Redshift while developing your models using Python. Enhance your data interaction with pivoting and dynamic forms that feature visualization tools such as heatmaps, radar, and Sankey charts. Each time you execute your notebook, Zepl generates a new container, ensuring a consistent environment for your model runs. Collaborate with teammates in a shared workspace in real time, or leave feedback on notebooks for asynchronous communication. Utilize precise access controls to manage how your work is shared, granting others read, edit, and execute permissions to facilitate teamwork and distribution. All notebooks benefit from automatic saving and version control, allowing you to easily name, oversee, and revert to previous versions through a user-friendly interface, along with smooth exporting capabilities to Github. Additionally, the platform supports integration with external tools, further streamlining your workflow and enhancing productivity.
  • 39
    Metaflow Reviews
    Data science projects achieve success when data scientists possess the ability to independently create, enhance, and manage comprehensive workflows while prioritizing their data science tasks over engineering concerns. By utilizing Metaflow alongside popular data science libraries like TensorFlow or SciKit Learn, you can write your models in straightforward Python syntax without needing to learn much that is new. Additionally, Metaflow supports the R programming language, broadening its usability. This tool aids in designing workflows, scaling them effectively, and deploying them into production environments. It automatically versions and tracks all experiments and data, facilitating easy inspection of results within notebooks. With tutorials included, newcomers can quickly familiarize themselves with the platform. You even have the option to duplicate all tutorials right into your current directory using the Metaflow command line interface, making it a seamless process to get started and explore further. As a result, Metaflow not only simplifies complex tasks but also empowers data scientists to focus on impactful analyses.
  • 40
    NVIDIA RAPIDS Reviews
    The RAPIDS software library suite, designed on CUDA-X AI, empowers users to run comprehensive data science and analytics workflows entirely on GPUs. It utilizes NVIDIA® CUDA® primitives for optimizing low-level computations while providing user-friendly Python interfaces that leverage GPU parallelism and high-speed memory access. Additionally, RAPIDS emphasizes essential data preparation processes tailored for analytics and data science, featuring a familiar DataFrame API that seamlessly integrates with various machine learning algorithms to enhance pipeline efficiency without incurring the usual serialization overhead. Moreover, it supports multi-node and multi-GPU setups, enabling significantly faster processing and training on considerably larger datasets. By incorporating RAPIDS, you can enhance your Python data science workflows with minimal code modifications and without the need to learn any new tools. This approach not only streamlines the model iteration process but also facilitates more frequent deployments, ultimately leading to improved machine learning model accuracy. As a result, RAPIDS significantly transforms the landscape of data science, making it more efficient and accessible.
  • 41
    Deepnote Reviews
    Deepnote is building the best data science notebook for teams. Connect your data, explore and analyze it within the notebook with real-time collaboration and versioning. Share links to your projects with other analysts and data scientists on your team, or present your polished, published notebooks to end users and stakeholders. All of this is done through a powerful, browser-based UI that runs in the cloud.
  • 42
    MLJAR Studio Reviews
    This desktop application integrates Jupyter Notebook and Python, allowing for a seamless one-click installation. It features engaging code snippets alongside an AI assistant that enhances coding efficiency, making it an ideal tool for data science endeavors. We have meticulously developed over 100 interactive code recipes tailored for your Data Science projects, which can identify available packages within your current environment. With a single click, you can install any required modules, streamlining your workflow significantly. Users can easily create and manipulate all variables present in their Python session, while these interactive recipes expedite the completion of tasks. The AI Assistant, equipped with knowledge of your active Python session, variables, and modules, is designed to address data challenges using the Python programming language. It offers support for various tasks, including plotting, data loading, data wrangling, and machine learning. If you encounter code issues, simply click the Fix button, and the AI assistant will analyze the problem and suggest a viable solution, making your coding experience smoother and more productive. Additionally, this innovative tool not only simplifies coding but also enhances your learning curve in data science.
  • 43
    IBM Watson Studio Reviews
    Create, execute, and oversee AI models while enhancing decision-making at scale across any cloud infrastructure. IBM Watson Studio enables you to implement AI seamlessly anywhere as part of the IBM Cloud Pak® for Data, which is the comprehensive data and AI platform from IBM. Collaborate across teams, streamline the management of the AI lifecycle, and hasten the realization of value with a versatile multicloud framework. You can automate the AI lifecycles using ModelOps pipelines and expedite data science development through AutoAI. Whether preparing or constructing models, you have the option to do so visually or programmatically. Deploying and operating models is made simple with one-click integration. Additionally, promote responsible AI governance by ensuring your models are fair and explainable to strengthen business strategies. Leverage open-source frameworks such as PyTorch, TensorFlow, and scikit-learn to enhance your projects. Consolidate development tools, including leading IDEs, Jupyter notebooks, JupyterLab, and command-line interfaces, along with programming languages like Python, R, and Scala. Through the automation of AI lifecycle management, IBM Watson Studio empowers you to build and scale AI solutions with an emphasis on trust and transparency, ultimately leading to improved organizational performance and innovation.
  • 44
    Streamlit Reviews
    Streamlit is the quickest way to create and distribute data applications. It allows you to transform your data scripts into shareable web applications within minutes, all using Python and at no cost, eliminating the need for any front-end development skills. The platform is built on three core principles: first, it encourages the use of Python scripting; second, it enables you to construct an application with just a few lines of code through an intuitively simple API, which automatically updates when the source file is saved; and third, it simplifies interaction by making the addition of widgets as straightforward as declaring a variable, without the necessity to write a backend, define routes, or manage HTTP requests. Additionally, you can deploy your applications immediately by utilizing Streamlit’s sharing platform, which facilitates easy sharing, management, and collaboration on your projects. This minimalistic framework empowers you to create robust applications, such as the Face-GAN explorer, which employs Shaobo Guan’s TL-GAN project along with TensorFlow and NVIDIA’s PG-GAN to generate attributes-based facial images. Another example is a real-time object detection app that serves as an image browser for the Udacity self-driving car dataset, showcasing advanced capabilities in processing and recognizing objects in real-time. Through these diverse applications, Streamlit proves to be an invaluable tool for developers and data enthusiasts alike.
  • 45
    Repositery Reviews

    Repositery

    Repositery

    $3 per month
    Repositery provides cloud hosting for SVN, Mercurial, and Git, along with Trac for project management, making it an essential tool for both startups and large corporations managing projects with multiple programmers. When it comes to version control, a reliable solution is crucial, and Repositery serves as a comprehensive platform for all your SVN, Mercurial, and Git repository needs. With a variety of features designed to simplify code and project management, Repositery ensures quick and dependable hosting for your repositories. Users can create and manage an unlimited number of repositories of any type per project, with Git being the most popular version control system, offering unlimited Git repositories at Repositery. Additionally, Repositery provides hosting for SVN, a choice favored by numerous organizations worldwide, while also supporting Mercurial, a distributed revision control tool tailored for software development. Furthermore, Trac enhances the experience by offering an open-source, web-based solution for project management and bug tracking, ultimately empowering teams to collaborate more effectively. Whether you're overseeing a small initiative or a large-scale operation, Repositery equips you with the necessary tools for seamless project execution and version control management.