Best Qwak Alternatives in 2025

Find the top alternatives to Qwak currently available. Compare ratings, reviews, pricing, and features of Qwak alternatives in 2025. Slashdot lists the best Qwak alternatives on the market that offer competing products that are similar to Qwak. Sort through Qwak alternatives below to make the best choice for your needs

  • 1
    AnalyticsCreator Reviews
    Top Pick See Software
    Learn More
    Compare Both
    Automate data modeling and code generation with AnalyticsCreator. Transform ETL automation, data warehouse optimization, and analytics pipeline development by automating the creation of dimensional models, data marts, and data vault architectures. Seamlessly integrate with platforms like MS Fabric, PowerBI, and Snowflake. Key features include automated documentation, lineage tracking, schema evolution, and data quality testing frameworks. AnalyticsCreator reduces development time by 80% by automating repetitive tasks. It supports modern data engineering workflows, including CI/CD and agile methodologies. Key differentiators are metadata management automation, intelligent schema handling, version control integration, and automated testing frameworks that ensure robust data quality and governance. AnalyticsCreator enables rapid development and deployment of analytics solutions while maintaining high standards of quality and efficiency. Its comprehensive approach to data pipeline automation makes it an essential tool for organizations aiming to streamline their analytics processes and achieve faster, more reliable results.
  • 2
    Lentiq Reviews
    Lentiq is a data lake that allows small teams to do big tasks. You can quickly run machine learning, data science, and data analysis at scale in any cloud. Lentiq allows your teams to ingest data instantly and then clean, process, and share it. Lentiq allows you to create, train, and share models within your organization. Lentiq allows data teams to collaborate and invent with no restrictions. Data lakes are storage and process environments that provide ML, ETL and schema-on-read querying capabilities. Are you working on data science magic? A data lake is a must. The big, centralized data lake of the Post-Hadoop era is gone. Lentiq uses data pools, which are interconnected, multi-cloud mini-data lakes. They all work together to provide a stable, secure, and fast data science environment.
  • 3
    ZenML Reviews
    Simplify your MLOps pipelines. ZenML allows you to manage, deploy and scale any infrastructure. ZenML is open-source and free. Two simple commands will show you the magic. ZenML can be set up in minutes and you can use all your existing tools. ZenML interfaces ensure your tools work seamlessly together. Scale up your MLOps stack gradually by changing components when your training or deployment needs change. Keep up to date with the latest developments in the MLOps industry and integrate them easily. Define simple, clear ML workflows and save time by avoiding boilerplate code or infrastructure tooling. Write portable ML codes and switch from experiments to production in seconds. ZenML's plug and play integrations allow you to manage all your favorite MLOps software in one place. Prevent vendor lock-in by writing extensible, tooling-agnostic, and infrastructure-agnostic code.
  • 4
    ClearML Reviews
    ClearML is an open-source MLOps platform that enables data scientists, ML engineers, and DevOps to easily create, orchestrate and automate ML processes at scale. Our frictionless and unified end-to-end MLOps Suite allows users and customers to concentrate on developing ML code and automating their workflows. ClearML is used to develop a highly reproducible process for end-to-end AI models lifecycles by more than 1,300 enterprises, from product feature discovery to model deployment and production monitoring. You can use all of our modules to create a complete ecosystem, or you can plug in your existing tools and start using them. ClearML is trusted worldwide by more than 150,000 Data Scientists, Data Engineers and ML Engineers at Fortune 500 companies, enterprises and innovative start-ups.
  • 5
    KitOps Reviews
    KitOps, a packaging, versioning and sharing system, is designed for AI/ML project. It uses open standards, so it can be used with your existing AI/ML, DevOps, and development tools. It can also be stored in the enterprise container registry. It is the preferred solution of AI/ML platform engineers for packaging and versioning assets. KitOps creates an AI/ML ModelKit that includes everything you need to replicate it locally or deploy it in production. You can unpack a ModelKit selectively so that different team members can save storage space and time by only taking what they need to complete a task. ModelKits are easy to track, control and audit because they're immutable, signed and reside in your existing container registry.
  • 6
    ELCA Smart Data Lake Builder Reviews
    The classic data lake is often reduced to simple but inexpensive raw data storage. This neglects important aspects like data quality, security, and transformation. These topics are left to data scientists who spend up to 80% of their time cleaning, understanding, and acquiring data before they can use their core competencies. Additionally, traditional Data Lakes are often implemented in different departments using different standards and tools. This makes it difficult to implement comprehensive analytical use cases. Smart Data Lakes address these issues by providing methodical and architectural guidelines as well as an efficient tool to create a strong, high-quality data foundation. Smart Data Lakes are the heart of any modern analytics platform. They integrate all the most popular Data Science tools and open-source technologies as well as AI/ML. Their storage is affordable and scalable, and can store both structured and unstructured data.
  • 7
    Hydrolix Reviews

    Hydrolix

    Hydrolix

    $2,237 per month
    Hydrolix is a streaming lake of data that combines decoupled archiving, indexed searching, and stream processing for real-time query performance on terabyte scale at a dramatically lower cost. CFOs love that data retention costs are 4x lower. Product teams appreciate having 4x more data at their disposal. Scale up resources when needed and down when not. Control costs by fine-tuning resource consumption and performance based on workload. Imagine what you could build if you didn't have budget constraints. Log data from Kafka, Kinesis and HTTP can be ingested, enhanced and transformed. No matter how large your data, you will only get the data that you need. Reduce latency, costs, and eliminate timeouts and brute-force queries. Storage is decoupled with ingest and queries, allowing them to scale independently to meet performance and cost targets. Hydrolix's HDX (high-density compress) reduces 1TB to 55GB.
  • 8
    FutureAnalytica Reviews
    Our platform is the only one that offers an end-to–end platform for AI-powered innovation. It can handle everything from data cleansing and structuring to creating and deploying advanced data-science models to infusing advanced analytics algorithms, to infusing Recommendation AI, to deducing outcomes with simple-to-deduce visualization dashboards as well as Explainable AI to track how the outcomes were calculated. Our platform provides a seamless, holistic data science experience. FutureAnalytica offers key features such as a robust Data Lakehouse and an AI Studio. There is also a comprehensive AI Marketplace. You can also get support from a world-class team of data-science experts (on a case-by-case basis). FutureAnalytica will help you save time, effort, and money on your data-science and AI journey. Start discussions with the leadership and then a quick technology assessment within 1-3 days. In 10-18 days, you can create ready-to-integrate AI solutions with FA's fully-automated data science & AI platform.
  • 9
    Qlik Data Integration Reviews
    Qlik Data Integration platform automates the process for providing reliable, accurate and trusted data sets for business analysis. Data engineers are able to quickly add new sources to ensure success at all stages of the data lake pipeline, from real-time data intake, refinement, provisioning and governance. This is a simple and universal solution to continuously ingest enterprise data into popular data lake in real-time. This model-driven approach allows you to quickly design, build, and manage data lakes in the cloud or on-premises. To securely share all your derived data sets, create a smart enterprise-scale database catalog.
  • 10
    NewEvol Reviews

    NewEvol

    Sattrix Software Solutions

    NewEvol is a technologically advanced product suite that uses advanced analytics and data science to identify anomalies in data. NewEvol is a powerful tool that can be used to compile data for small and large enterprises. It supports rule-based alerting, visualization, automation, and responses. NewEvol is a robust system that can handle challenging business requirements. NewEvol Expertise 1. Data Lake 2. SIEM 3. SOAR 4. Threat Intelligence 5. Analytics
  • 11
    Alibaba Cloud Data Lake Formation Reviews
    A data lake is a central repository for big data and AI computing. It allows you to store both structured and unstructured data at any size. Data Lake Formation (DLF), is a key component in the cloud-native database lake framework. DLF is a simple way to create a cloud-native database lake. It integrates seamlessly with a variety compute engines. You can manage metadata in data lakes in an centralized manner and control enterprise class permissions. It can systematically collect structured, semi-structured and unstructured data, and supports massive data storage. This architecture separates storage and computing. This allows you to plan resources on demand and at low costs. This increases data processing efficiency to meet rapidly changing business needs. DLF can automatically detect and collect metadata from multiple engines. It can also manage the metadata in a central manner to resolve data silo problems.
  • 12
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 13
    BryteFlow Reviews
    BryteFlow creates the most efficient and automated environments for analytics. It transforms Amazon S3 into a powerful analytics platform by intelligently leveraging AWS ecosystem to deliver data at lightning speed. It works in conjunction with AWS Lake Formation and automates Modern Data Architecture, ensuring performance and productivity.
  • 14
    Varada Reviews
    Varada's adaptive and dynamic big data indexing solution allows you to balance cost and performance with zero data-ops. Varada's big data indexing technology is a smart acceleration layer for your data lake. It remains the single source and truth and runs in the customer's cloud environment (VPC). Varada allows data teams to democratize data. It allows them to operationalize the entire data lake and ensures interactive performance without the need for data to be moved, modelled, or manually optimized. Our ability to dynamically and automatically index relevant data at the source structure and granularity is our secret sauce. Varada allows any query to meet constantly changing performance and concurrency requirements of users and analytics API calls. It also keeps costs predictable and under control. The platform automatically determines which queries to speed up and which data to index. Varada adjusts the cluster elastically to meet demand and optimize performance and cost.
  • 15
    Dremio Reviews
    Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed.
  • 16
    IBM Storage Scale Reviews
    IBM Storage Scale, a software-defined object and file storage, allows organizations to build global data platforms for artificial intelligence (AI), advanced analytics and high-performance computing. Unlike traditional applications that work with structured data, today's performance-intensive AI and analytics workloads operate on unstructured data, such as documents, audio, images, videos, and other objects. IBM Storage Scale provides global data abstractions services that seamlessly connect data sources in multiple locations, even non-IBM storage environments. It is based on a massively-parallel file system that can be deployed across multiple hardware platforms, including x86 and IBM Power mainframes as well as ARM-based POSIX clients, virtual machines and Kubernetes.
  • 17
    Sprinkle Reviews

    Sprinkle

    Sprinkle Data

    $499 per month
    Businesses must adapt quickly to meet changing customer preferences and requirements. Sprinkle is an agile analytics platform that helps you meet changing customer needs. Sprinkle was created with the goal of simplifying end-to-end data analytics for organisations. It allows them to integrate data from multiple sources, change schemas, and manage pipelines. We created a platform that allows everyone in the organization to search and dig deeper into data without having to have any technical knowledge. Our team has extensive experience with data and built analytics systems for companies such as Yahoo, Inmobi, Flipkart. These companies are able to succeed because they have dedicated teams of data scientists, business analysts, and engineers who produce reports and insights. We discovered that many organizations struggle to access simple self-service reporting and data exploration. We set out to create a solution that would allow all companies to leverage data.
  • 18
    Harbr Reviews
    Create data products in seconds from any source, without moving data. You can make them available to anyone while still maintaining total control. Deliver powerful experiences to unlock the value. Enhance your data mesh through seamless sharing, discovery, and governance of data across domains. Unified access to high-quality products will accelerate innovation and foster collaboration. Access AI models for all users. Control the way data interacts with AI in order to protect intellectual property. Automate AI workflows for rapid integration and iteration of new capabilities. Snowflake allows you to access and build data products without having to move any data. Enjoy the ease of getting even more out of your data. Allow anyone to easily analyze data, and eliminate the need for central provisioning of infrastructure and software. Data products are seamlessly integrated with tools to ensure governance and speed up outcomes.
  • 19
    Upsolver Reviews
    Upsolver makes it easy to create a governed data lake, manage, integrate, and prepare streaming data for analysis. Only use auto-generated schema on-read SQL to create pipelines. A visual IDE that makes it easy to build pipelines. Add Upserts to data lake tables. Mix streaming and large-scale batch data. Automated schema evolution and reprocessing of previous state. Automated orchestration of pipelines (no Dags). Fully-managed execution at scale Strong consistency guarantee over object storage Nearly zero maintenance overhead for analytics-ready information. Integral hygiene for data lake tables, including columnar formats, partitioning and compaction, as well as vacuuming. Low cost, 100,000 events per second (billions every day) Continuous lock-free compaction to eliminate the "small file" problem. Parquet-based tables are ideal for quick queries.
  • 20
    BigLake Reviews
    BigLake is a storage platform that unifies data warehouses, lakes and allows BigQuery and open-source frameworks such as Spark to access data with fine-grained control. BigLake offers accelerated query performance across multicloud storage and open formats like Apache Iceberg. You can store one copy of your data across all data warehouses and lakes. Multi-cloud governance and fine-grained access control for distributed data. Integration with open-source analytics tools, and open data formats is seamless. You can unlock analytics on distributed data no matter where it is stored. While choosing the best open-source or cloud-native analytics tools over a single copy, you can also access analytics on distributed data. Fine-grained access control for open source engines such as Apache Spark, Presto and Trino and open formats like Parquet. BigQuery supports performant queries on data lakes. Integrates with Dataplex for management at scale, including logical organization.
  • 21
    Scalytics Connect Reviews
    Scalytics Connect combines data mesh and in-situ data processing with polystore technology, resulting in increased data scalability, increased data processing speed, and multiplying data analytics capabilities without losing privacy or security. You take advantage of all your data without wasting time with data copy or movement, enable innovation with enhanced data analytics, generative AI and federated learning (FL) developments. Scalytics Connect enables any organization to directly apply data analytics, train machine learning (ML) or generative AI (LLM) models on their installed data architecture.
  • 22
    IBM watsonx.data Reviews
    Open, hybrid data lakes for AI and analytics can be used to put your data to use, wherever it is located. Connect your data in any format and from anywhere. Access it through a shared metadata layer. By matching the right workloads to the right query engines, you can optimize workloads in terms of price and performance. Integrate natural-language semantic searching without the need for SQL to unlock AI insights faster. Manage and prepare trusted datasets to improve the accuracy and relevance of your AI applications. Use all of your data everywhere. Watsonx.data offers the speed and flexibility of a warehouse, along with special features that support AI. This allows you to scale AI and analytics throughout your business. Choose the right engines to suit your workloads. You can manage your cost, performance and capability by choosing from a variety of open engines, including Presto C++ and Spark Milvus.
  • 23
    Archon Data Store Reviews
    Archon Data Store™ is an open-source archive lakehouse platform that allows you to store, manage and gain insights from large volumes of data. Its minimal footprint and compliance features enable large-scale processing and analysis of structured and unstructured data within your organization. Archon Data Store combines data warehouses, data lakes and other features into a single platform. This unified approach eliminates silos of data, streamlining workflows in data engineering, analytics and data science. Archon Data Store ensures data integrity through metadata centralization, optimized storage, and distributed computing. Its common approach to managing data, securing it, and governing it helps you innovate faster and operate more efficiently. Archon Data Store is a single platform that archives and analyzes all of your organization's data, while providing operational efficiencies.
  • 24
    Onehouse Reviews
    The only fully-managed cloud data lakehouse that can ingest data from all of your sources in minutes, and support all of your query engines on a large scale. All for a fraction the cost. With the ease of fully managed pipelines, you can ingest data from databases and event streams in near-real-time. You can query your data using any engine and support all of your use cases, including BI, AI/ML, real-time analytics and AI/ML. Simple usage-based pricing allows you to cut your costs by up to 50% compared with cloud data warehouses and ETL software. With a fully-managed, highly optimized cloud service, you can deploy in minutes and without any engineering overhead. Unify all your data into a single source and eliminate the need for data to be copied between data lakes and warehouses. Apache Hudi, Apache Iceberg and Delta Lake all offer omnidirectional interoperability, allowing you to choose the best table format for your needs. Configure managed pipelines quickly for database CDC and stream ingestion.
  • 25
    Delta Lake Reviews
    Delta Lake is an open-source storage platform that allows ACID transactions to Apache Spark™, and other big data workloads. Data lakes often have multiple data pipelines that read and write data simultaneously. This makes it difficult for data engineers to ensure data integrity due to the absence of transactions. Your data lakes will benefit from ACID transactions with Delta Lake. It offers serializability, which is the highest level of isolation. Learn more at Diving into Delta Lake - Unpacking the Transaction log. Even metadata can be considered "big data" in big data. Delta Lake treats metadata the same as data and uses Spark's distributed processing power for all its metadata. Delta Lake is able to handle large tables with billions upon billions of files and partitions at a petabyte scale. Delta Lake allows developers to access snapshots of data, allowing them to revert to earlier versions for audits, rollbacks, or to reproduce experiments.
  • 26
    Tencent Cloud TI Platform Reviews
    Tencent Cloud TI Platform, a machine learning platform for AI engineers, is a one stop shop. It supports AI development at every stage, from data preprocessing, to model building, to model training, to model evaluation, as well as model service. It is preconfigured with diverse algorithms components and supports multiple algorithm frameworks for adapting to different AI use-cases. Tencent Cloud TI Platform offers a machine learning experience in a single-stop shop. It covers a closed-loop workflow, from data preprocessing, to model building, training and evaluation. Tencent Cloud TI Platform allows even AI beginners to have their models automatically constructed, making the entire training process much easier. Tencent Cloud TI Platform’s auto-tuning feature can also improve the efficiency of parameter optimization. Tencent Cloud TI Platform enables CPU/GPU resources that can elastically respond with flexible billing methods to different computing power requirements.
  • 27
    Hadoop Reviews

    Hadoop

    Apache Software Foundation

    Apache Hadoop is a software library that allows distributed processing of large data sets across multiple computers. It uses simple programming models. It can scale from one server to thousands of machines and offer local computations and storage. Instead of relying on hardware to provide high-availability, it is designed to detect and manage failures at the application layer. This allows for highly-available services on top of a cluster computers that may be susceptible to failures.
  • 28
    Opsani Reviews

    Opsani

    Opsani

    $500 per month
    We are the only company that can autonomously tune applications across multiple applications. Opsani rightsizes an application automatically so that your cloud application runs faster and is more efficient. Opsani COaaS optimizes cloud workload performance using the latest AI and Machine Learning. It continuously reconfigures and tunes with every code release and load profile change. This is done while seamlessly integrating with one app or across your service delivery platform, while also scaling autonomously across thousands of services. Opsani makes it possible to solve all three problems autonomously and without compromise. Opsani's AI algorithms can help you reduce costs by up to 71% Opsani optimization continually evaluates trillions upon trillions of configuration possibilities and pinpoints the most effective combinations of resources, parameter settings, and other parameters.
  • 29
    Prevision Reviews
    It can take weeks, months or even years to build a model. Reproducing model results, maintaining version control and auditing past work can be complex. Model building is an iterative task. It is important to record each step and how you got there. A model should not be a file that is hidden somewhere. It should be a tangible object that can be tracked and analyzed by all parties. Prevision.io allows users to track each experiment as they train it. You can also view its characteristics, automated analyses, versions, and version history as your project progresses, regardless of whether you used our AutoML or other tools. To build highly performant models, you can automatically experiment with dozens upon dozens of feature engineering strategies. The engine automatically tests different feature engineering strategies for each type of data in a single command. Tabular, text, and images are all options to maximize the information in your data.
  • 30
    Arthur AI Reviews
    To detect and respond to data drift, track model performance for better business outcomes. Arthur's transparency and explainability APIs help to build trust and ensure compliance. Monitor for bias and track model outcomes against custom bias metrics to improve the fairness of your models. {See how each model treats different population groups, proactively identify bias, and use Arthur's proprietary bias mitigation techniques.|Arthur's proprietary techniques for reducing bias can be used to identify bias in models and help you to see how they treat different populations.} {Arthur scales up and down to ingest up to 1MM transactions per second and deliver insights quickly.|Arthur can scale up and down to ingest as many transactions per second as possible and delivers insights quickly.} Only authorized users can perform actions. Each team/department can have their own environments with different access controls. Once data is ingested, it cannot be modified. This prevents manipulation of metrics/insights.
  • 31
    Zepl Reviews
    All work can be synced, searched and managed across your data science team. Zepl's powerful search allows you to discover and reuse models, code, and other data. Zepl's enterprise collaboration platform allows you to query data from Snowflake or Athena and then build your models in Python. For enhanced interactions with your data, use dynamic forms and pivoting. Zepl creates new containers every time you open your notebook. This ensures that you have the same image each time your models are run. You can invite your team members to join you in a shared space, and they will be able to work together in real-time. Or they can simply leave comments on a notebook. You can share your work with fine-grained access controls. You can allow others to read, edit, run, and share your work. This will facilitate collaboration and distribution. All notebooks can be saved and versioned automatically. An easy-to-use interface allows you to name, manage, roll back, and roll back all versions. You can also export seamlessly into Github.
  • 32
    Vaex Reviews
    Vaex.io aims to democratize the use of big data by making it available to everyone, on any device, at any scale. Your prototype is the solution to reducing development time by 80%. Create automatic pipelines for every model. Empower your data scientists. Turn any laptop into an enormous data processing powerhouse. No clusters or engineers required. We offer reliable and fast data-driven solutions. Our state-of-the art technology allows us to build and deploy machine-learning models faster than anyone else on the market. Transform your data scientists into big data engineers. We offer comprehensive training for your employees to enable you to fully utilize our technology. Memory mapping, a sophisticated Expression System, and fast Out-of-Core algorithms are combined. Visualize and explore large datasets and build machine-learning models on a single computer.
  • 33
    cnvrg.io Reviews
    An end-to-end solution gives you all the tools your data science team needs to scale your machine learning development, from research to production. cnvrg.io, the world's leading data science platform for MLOps (model management) is a leader in creating cutting-edge machine-learning development solutions that allow you to build high-impact models in half the time. In a collaborative and clear machine learning management environment, bridge science and engineering teams. Use interactive workspaces, dashboards and model repositories to communicate and reproduce results. You should be less concerned about technical complexity and more focused on creating high-impact ML models. The Cnvrg.io container based infrastructure simplifies engineering heavy tasks such as tracking, monitoring and configuration, compute resource management, server infrastructure, feature extraction, model deployment, and serving infrastructure.
  • 34
    Graviti Reviews
    Unstructured data is the future for AI. This future is now possible. Build an ML/AI pipeline to scale all your unstructured data from one place. Graviti allows you to use better data to create better models. Learn about Graviti, the data platform that allows AI developers to manage, query and version control unstructured data. Quality data is no longer an expensive dream. All your metadata, annotations, and predictions can be managed in one place. You can customize filters and see the results of filtering to find the data that meets your needs. Use a Git-like system to manage data versions and collaborate. Role-based access control allows for safe and flexible team collaboration. Graviti's built in marketplace and workflow creator makes it easy to automate your data pipeline. No more grinding, you can quickly scale up to rapid model iterations.
  • 35
    Cloudera Reviews
    Secure and manage the data lifecycle, from Edge to AI in any cloud or data centre. Operates on all major public clouds as well as the private cloud with a public experience everywhere. Integrates data management and analytics experiences across the entire data lifecycle. All environments are covered by security, compliance, migration, metadata management. Open source, extensible, and open to multiple data stores. Self-service analytics that is faster, safer, and easier to use. Self-service access to multi-function, integrated analytics on centrally managed business data. This allows for consistent experiences anywhere, whether it is in the cloud or hybrid. You can enjoy consistent data security, governance and lineage as well as deploying the cloud analytics services that business users need. This eliminates the need for shadow IT solutions.
  • 36
    Huawei Cloud Data Lake Governance Center Reviews
    Data Lake Governance Center (DGC) is a one-stop platform for managing data design, development and integration. It simplifies big data operations and builds intelligent knowledge libraries. A simple visual interface allows you to build an enterprise-class platform for data lake governance. Streamline your data lifecycle, use metrics and analytics, and ensure good corporate governance. Get real-time alerts and help to define and monitor data standards. To create data lakes faster, you can easily set up data models, data integrations, and cleaning rules to facilitate the discovery of reliable data sources. Maximize data's business value. DGC can be used to create end-to-end data operations solutions for smart government, smart taxation and smart campus. Gain new insights into sensitive data across your entire organization. DGC allows companies to define business categories, classifications, terms.
  • 37
    Amazon SageMaker Pipelines Reviews
    Amazon SageMaker Pipelines allows you to create ML workflows using a simple Python SDK. Then visualize and manage your workflow with Amazon SageMaker Studio. SageMaker Pipelines allows you to be more efficient and scale faster. You can store and reuse the workflow steps that you create. Built-in templates make it easy to quickly get started in CI/CD in your machine learning environment. Many customers have hundreds upon hundreds of workflows that each use a different version. SageMaker Pipelines model registry allows you to track all versions of the model in one central repository. This makes it easy to choose the right model to deploy based on your business needs. SageMaker Studio can be used to browse and discover models. Or, you can access them via the SageMaker Python SDK.
  • 38
    Utilihive Reviews

    Utilihive

    Greenbird Integration Technology

    Utilihive, a cloud-native big-data integration platform, is offered as a managed (SaaS) service. Utilihive, the most popular Enterprise-iPaaS (iPaaS), is specifically designed for utility and energy usage scenarios. Utilihive offers both the technical infrastructure platform (connectivity and integration, data ingestion and data lake management) and preconfigured integration content or accelerators. (connectors and data flows, orchestrations and utility data model, energy services, monitoring and reporting dashboards). This allows for faster delivery of data-driven services and simplifies operations.
  • 39
    Cortex Data Lake Reviews
    Palo Alto Networks solutions can be enabled by integrating security data from your enterprise. Rapidly simplify security operations by integrating, transforming, and collecting your enterprise's security information. Access to rich data at cloud native scale enables AI and machine learning. Using trillions of multi-source artifacts, you can significantly improve detection accuracy. Cortex XDR™, the industry's leading prevention, detection, response platform, runs on fully integrated network, endpoint, and cloud data. Prisma™, Access protects applications, remote networks, and mobile users in a consistent way, no matter where they are. All users can access all applications via a cloud-delivered architecture, regardless of whether they are at headquarters, branch offices, or on the road. Combining Panorama™, Cortex™, and Data Lake management creates an affordable, cloud-based log solution for Palo Alto Networks Next-Generation Firewalls. Cloud scale, zero hardware, available anywhere.
  • 40
    Google Cloud Datalab Reviews
    A simple-to-use interactive tool that allows data exploration, analysis, visualization and machine learning. Cloud Datalab is an interactive tool that allows you to analyze, transform, visualize, and create machine learning models on Google Cloud Platform. It runs on Compute Engine. It connects to multiple cloud services quickly so you can concentrate on data science tasks. Cloud Datalab is built using Jupyter (formerly IPython), a platform that boasts a rich ecosystem of modules and a solid knowledge base. Cloud Datalab allows you to analyze your data on BigQuery and AI Platform, Compute Engine and Cloud Storage using Python and SQL. JavaScript is also available (for BigQuery user defined functions). Cloud Datalab can handle megabytes and terabytes of data. Cloud Datalab allows you to query terabytes and run local analysis on samples of data, as well as run training jobs on terabytes in AI Platform.
  • 41
    Lyftrondata Reviews
    Lyftrondata can help you build a governed lake, data warehouse or migrate from your old database to a modern cloud-based data warehouse. Lyftrondata makes it easy to create and manage all your data workloads from one platform. This includes automatically building your warehouse and pipeline. It's easy to share the data with ANSI SQL, BI/ML and analyze it instantly. You can increase the productivity of your data professionals while reducing your time to value. All data sets can be defined, categorized, and found in one place. These data sets can be shared with experts without coding and used to drive data-driven insights. This data sharing capability is ideal for companies who want to store their data once and share it with others. You can define a dataset, apply SQL transformations, or simply migrate your SQL data processing logic into any cloud data warehouse.
  • 42
    Baseten Reviews
    It is a frustratingly slow process that requires development resources and know-how. Most models will never see the light of day. In minutes, you can ship full-stack applications. You can deploy models immediately, automatically generate API endpoints and quickly create UI using drag-and-drop components. To put models into production, you don't have to be a DevOps Engineer. Baseten allows you to instantly manage, monitor, and serve models using just a few lines Python. You can build business logic around your model, and sync data sources without any infrastructure headaches. Start with sensible defaults and scale infinitely with fine-grained controls as needed. You can read and write to your existing data sources or our built-in Postgres databases. Use headings, callouts and dividers to create engaging interfaces for business users.
  • 43
    Azure Data Lake Reviews
    Azure Data Lake offers all the capabilities needed to make it easy to store and analyze data across all platforms and languages. It eliminates the complexity of ingesting, storing, and streaming data, making it easier to get up-and-running with interactive, batch, and streaming analytics. Azure Data Lake integrates with existing IT investments to simplify data management and governance. It can also seamlessly integrate with existing IT investments such as data warehouses and operational stores, allowing you to extend your current data applications. We have the experience of working with enterprise customers, running large-scale processing and analytics for Microsoft businesses such as Office 365, Microsoft Windows, Bing, Azure, Windows, Windows, and Microsoft Windows. Azure Data Lake solves many productivity and scaling issues that prevent you from maximizing the potential of your data.
  • 44
    Oracle Cloud Infrastructure Data Lakehouse Reviews
    Data lakehouse is an open architecture that allows you to store, understand and analyze all of your data. It combines the power, richness, and flexibility of data warehouses with the breadth of open-source data technologies. A data lakehouse can easily be built on Oracle Cloud Infrastructure (OCI). It can also be used with pre-built AI services such as Oracle's language service and the latest AI frameworks. Data Flow, a serverless Spark service, allows our customers to concentrate on their Spark workloads using zero infrastructure concepts. Customers of Oracle want to build machine learning-based analytics on their Oracle SaaS data or any SaaS data. Our easy-to-use connectors for Oracle SaaS make it easy to create a lakehouse to analyze all of your SaaS data and reduce time to solve problems.
  • 45
    Zerve AI Reviews
    With a fully automated cloud infrastructure, experts can explore data and write stable codes at the same time. Zerve’s data science environment gives data scientists and ML teams a unified workspace to explore, collaborate and build data science & AI project like never before. Zerve provides true language interoperability. Users can use Python, R SQL or Markdown in the same canvas and connect these code blocks. Zerve offers unlimited parallelization, allowing for code blocks and containers to run in parallel at any stage of development. Analysis artifacts can be automatically serialized, stored and preserved. This allows you to change a step without having to rerun previous steps. Selecting compute resources and memory in a fine-grained manner for complex data transformation.
  • 46
    Apache PredictionIO Reviews
    Apache PredictionIO®, an open-source machine-learning server, is built on top a state of the art open-source stack that allows data scientists and developers to create predictive engines for any type of machine learning task. It allows you to quickly create and deploy an engine as web service on production using customizable templates. Once deployed as a web-service, it can respond to dynamic queries immediately, evaluate and tune multiple engine variations systematically, unify data from multiple platforms either in batch or real-time for comprehensive predictive analysis. Machine learning modeling can be speeded up with pre-built evaluation methods and systematic processes. These measures also support machine learning and data processing libraries like Spark MLLib or OpenNLP. You can create your own machine learning models and integrate them seamlessly into your engine. Data infrastructure management simplified. Apache PredictionIO®, a complete machine learning stack, can be installed together with Apache Spark, MLlib and HBase.
  • 47
    Azure Data Lake Storage Reviews
    A single storage platform can eliminate data silos. Tiered storage and policy management can help you reduce costs. Azure Active Directory (Azure AD), and role-based access control(RBAC) can authenticate data. You can also help protect your data with advanced threat protection and encryption at rest. Flexible mechanisms provide protection for data access, encryption, network-level control, and more. Highly secure. A single storage platform that supports all the most popular analytics frameworks. Cost optimization through independent scaling of storage, compute, lifecycle management and object-level Tiering. With the Azure global infrastructure, you can meet any capacity requirement and manage data with ease. Large-scale analytics queries run at high performance.
  • 48
    SensiML Analytics Studio Reviews
    Sensiml analytics toolkit. Create smart iot sensor devices rapidly reduce data science complexity. Compact algorithms can be created that run on small IoT devices and not in the cloud. Collect precise, traceable, and version-controlled datasets. Advanced AutoML code-gen is used to quickly create autonomous working device code. You can choose your interface and level of AI expertise. All aspects of your algorithm will remain accessible to you. Edge tuning models can be built that adapt to the data they receive. SensiML Analytics Toolkit suite automates every step of the process to create optimized AI IoT sensor recognition codes. The workflow employs a growing number of advanced ML algorithms and AI algorithms to generate code that can learn new data, either in the development phase or once it is deployed. The key tools for healthcare decision support are non-invasive, rapid screening applications that use intelligent classification of one or several bio-sensing inputs.
  • 49
    Ludwig Reviews
    Ludwig is a low code framework for building custom AI networks like LLMs or other deep neural network models. Create custom models easily: a declarative YAML file is all that you need to train a modern LLM using your data. Support for multitasking and multimodality learning. Comprehensive configuration validation detects invalid parameters and prevents runtime errors. Optimized for efficiency and scale: automatic batch size selection (DDP, QLoRA), distributed training (DDP), parameter-efficient fine-tuning, 4-bit quantization, and larger-than memory datasets. Expert level control: Retain full control over your models, down to the activation function. Support for hyperparameter optimizing, explainability and rich metric visualisations. Modular and extensible - experiment with different models, tasks, features and modalities by changing just a few parameters in the configuration. Think of building blocks for deep-learning.
  • 50
    Amazon DevOps Guru Reviews

    Amazon DevOps Guru

    Amazon

    $0.0028 per resource per hour
    Amazon DevOps Guru, powered by machine learning (ML), is a service that makes it easy to improve operational performance and availability of applications. DevOps Guru detects abnormal operating patterns and helps you to identify them before they impact your customers. To identify abnormal application behavior, such as increased latency, error rates or resource limitations, DevOps Guru employs ML models that are based on data collected over years by Amazon.com Operational Excellence and Amazon.com. It helps to detect critical errors that could cause service interruptions. The DevOps Guru automatically alerts you when it detects a critical issue. It provides context and details about the root cause and the possible consequences.