Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
Google AI Studio
Google AI Studio is a user-friendly, web-based workspace that offers a streamlined environment for exploring and applying cutting-edge AI technology. It acts as a powerful launchpad for diving into the latest developments in AI, making complex processes more accessible to developers of all levels.
The platform provides seamless access to Google's advanced Gemini AI models, creating an ideal space for collaboration and experimentation in building next-gen applications. With tools designed for efficient prompt crafting and model interaction, developers can quickly iterate and incorporate complex AI capabilities into their projects. The flexibility of the platform allows developers to explore a wide range of use cases and AI solutions without being constrained by technical limitations.
Google AI Studio goes beyond basic testing by enabling a deeper understanding of model behavior, allowing users to fine-tune and enhance AI performance. This comprehensive platform unlocks the full potential of AI, facilitating innovation and improving efficiency in various fields by lowering the barriers to AI development. By removing complexities, it helps users focus on building impactful solutions faster.
Learn more
Instructor
Instructor serves as a powerful tool for developers who wish to derive structured data from natural language input by utilizing Large Language Models (LLMs). By integrating seamlessly with Python's Pydantic library, it enables users to specify the desired output structures through type hints, which not only streamlines schema validation but also enhances compatibility with various integrated development environments (IDEs). The platform is compatible with multiple LLM providers such as OpenAI, Anthropic, Litellm, and Cohere, thus offering a wide range of implementation options. Its customizable features allow users to define specific validators and tailor error messages, significantly improving the data validation workflow. Trusted by engineers from notable platforms like Langflow, Instructor demonstrates a high level of reliability and effectiveness in managing structured outputs driven by LLMs. Additionally, the reliance on Pydantic and type hints simplifies the process of schema validation and prompting, requiring less effort and code from developers while ensuring smooth integration with their IDEs. This adaptability makes Instructor an invaluable asset for developers looking to enhance their data extraction and validation processes.
Learn more
Mirascope
Mirascope is an innovative open-source library designed on Pydantic 2.0, aimed at providing a clean and highly extensible experience for prompt management and the development of applications utilizing LLMs. This robust library is both powerful and user-friendly, streamlining interactions with LLMs through a cohesive interface that is compatible with a range of providers such as OpenAI, Anthropic, Mistral, Gemini, Groq, Cohere, LiteLLM, Azure AI, Vertex AI, and Bedrock. Whether your focus is on generating text, extracting structured data, or building sophisticated AI-driven agent systems, Mirascope equips you with essential tools to enhance your development workflow and create impactful, resilient applications. Additionally, Mirascope features response models that enable you to effectively structure and validate output from LLMs, ensuring that the responses meet specific formatting requirements or include necessary fields. This capability not only enhances the reliability of the output but also contributes to the overall quality and precision of the application you are developing.
Learn more