Best PuppyGraph Alternatives in 2024
Find the top alternatives to PuppyGraph currently available. Compare ratings, reviews, pricing, and features of PuppyGraph alternatives in 2024. Slashdot lists the best PuppyGraph alternatives on the market that offer competing products that are similar to PuppyGraph. Sort through PuppyGraph alternatives below to make the best choice for your needs
-
1
JanusGraph
JanusGraph
JanusGraph is an optimized graph database that can store and query graphs with hundreds of billions of edges and vertices distributed across a multi-machine cluster. JanusGraph is a project of The Linux Foundation and includes participants from Expero and Google, GRAKN.AI., Hortonworks. IBM, and Amazon. Linear and elastic scaling for growing data and users. Data replication and data distribution for performance and fault tolerance. Hot backups and high availability for multi-datacenters All functionality is completely free. There is no need to purchase commercial licenses. JanusGraph is completely open source under the Apache 2 License. JanusGraph is an open source transactional database that can handle thousands of concurrent users performing complex graph traversals in real-time. ACID and eventual consistency support. JanusGraph offers online transactional processing (OLTP) and global graph analytics (OLAP), through its Apache Spark integration. -
2
Oracle Spatial and Graph
Oracle
Graph databases are part of Oracle's converged data platform. They eliminate the need for a separate database to store and move data. Analysts and developers are able to detect fraud in banking, locate connections and link data, and improve traceability and smart manufacturing traceability. All this while gaining enterprise-grade security and ease of data ingestion and strong support for data workloads. Oracle Autonomous Database also includes Graph Studio. It offers one-click provisioning, integrated tools, and security. Graph Studio automates graph data administration and simplifies analysis, modeling, and visualization throughout the graph analytics lifecycle. Oracle supports both RDF knowledge graphs and property graphs. It also simplifies the process for modeling relational data as graph structures. Interactive graph queries can be run directly on graph data, or in high-performance, in-memory graph servers. -
3
Cayley
Cayley
Cayley is an open source database for Linked Data. It was inspired by Google's Knowledge Graph graph database (formerly Freebase). Cayley is an open source graph database that allows you to store complex data and makes it easy to use. Built-in query editor, visualizer, and REPL. Cayley supports multiple query languages, including Gizmo, a query engine inspired by Gremlin and GraphQL-inspired query languages, MQL, a simplified version for Freebase lovers, and MQL. Cayley is modular and easy to connect with your favorite programming languages. It can also be used by back-end stores. Cayley has been well tested and used by many companies for their production workloads. It is also fast and optimized for use in applications. Rough performance testing has shown that on 2014 consumer hardware, 134m quads of LevelDB are not a problem, and a multi-hop intersection query - films starring X or Y - takes 150ms. Cayley is set up to run in memory by default (that's what backendmemstore means). -
4
GraphDB
Ontotext
*GraphDB allows the creation of large knowledge graphs by linking diverse data and indexing it for semantic search. * GraphDB is a robust and efficient graph database that supports RDF and SPARQL. The GraphDB database supports a highly accessible replication cluster. This has been demonstrated in a variety of enterprise use cases that required resilience for data loading and query answering. Visit the GraphDB product page for a quick overview and a link to download the latest releases. GraphDB uses RDF4J to store and query data. It also supports a wide range of query languages (e.g. SPARQL and SeRQL), and RDF syntaxes such as RDF/XML and Turtle. -
5
Nebula Graph
vesoft
The graph database is designed for graphs up to super large scale with very low latency. We continue to work with the community to promote, popularize, and prepare the graph database. Nebula Graph allows only authenticated access through role-based access control. Nebula Graph can support multiple storage engines and the query language is extensible to support new algorithms. Nebula Graph offers low latency read/write while maintaining high throughput to simplify complex data sets. Nebula Graph's distributed, shared-nothing architecture allows for linear scaling. Nebula Graph's SQL query language is similar to SQL and can be used to address complex business requirements. Nebula Graph's horizontal scalability, snapshot feature and high availability guarantee that there will be no downtime. Nebula Graph has been used in production environments by large Internet companies such as JD, Meituan and Xiaohongshu. -
6
AnzoGraph DB
Cambridge Semantics
AnzoGraph DB offers a wide range of analytical features that can be used to enhance your analytical framework. This video will show you how AnzoGraph DB, a native graph database for massively parallel processing (MPP), is designed for data harmonization. Horizontally scalable graph database designed for online analytics and harmonization. AnzoGraphDB, a market-leading graph database, can help you tackle linked data problems and data harmonization. AnzoGraph DB offers industrialized online performance for enterprise-scale graph apps. AnzoGraph DB supports Labeled Property Graphs (LPGs) and familiar SPARQL*/OWL semantic graphs. You have access to many data science, machine learning, and analytical capabilities that will help you gain new insights at an unparalleled speed and scale. Your analysis will be more effective if you consider the context and relationships of data. Data loading and queries ultra-fast -
7
HugeGraph
HugeGraph
HugeGraph is a high-speed, highly-scalable graph database. HugeGraph's excellent OLTP capability allows for the storage and querying of billions of edges and vertices. Gremlin, a powerful graph traversal and query language, can handle complex graph queries in compliance with Apache TinkerPop 3. It supports Gremlin and is compliant to Apache TinkerPop 3. Schema Metadata Management includes VertexLabel EdgeLabel PropertyKey and IndexLabel. Multi-type Indexes that support complex combination queries, range query, and exact query. Plug-in Backend Store Driver Framework. Supports RocksDB, Cassandra and ScyllaDB. It is easy to add another backend store driver if necessary. Integration with Hadoop/Spark. HugeGraph is built on the TinkerPop framework. We refer to the storage structure and schema definition of DataStax. -
8
Titan
DataStax
Titan is a graph database that can store and query graphs with hundreds of billions of edges and vertices distributed across a multi-machine cluster. Titan is a transactional database which can handle thousands of concurrent users performing complex graph traversals in real-time. For a growing user and data base, you can use linear and elastic scaling. Data replication and data distribution for performance and fault tolerance. Hot backups and high availability for multi-datacenters Support for ACID, eventual consistency and other storage backends. Support for Apache Cassandra and Apache HBase storage backends, as well as Oracle BerkeleyDB. Integration with big data platforms such as Apache Spark, Apache Giraph, and Apache Hadoop allows for global graph data analytics, reporting and ETL. Native integration with TinkerPop graph stack to support Gremlin's graph query language, Gremlin's graph server, and Gremlin apps. -
9
InfiniteGraph
Objectivity
InfiniteGraph is a massively scalable graph database specifically designed to excel at high-speed ingest of massive volumes of data (billions of nodes and edges per hour) while supporting complex queries. InfiniteGraph can seamlessly distribute connected graph data across a global enterprise. InfiniteGraph is a schema-based graph database that supports highly complex data models. It also has an advanced schema evolution capability that allows you to modify and evolve the schema of an existing database. InfiniteGraph’s Placement Management Capability allows you to optimize the placement of data items resulting in tremendous performance improvements in both query and ingest. InfiniteGraph has client-side caching which caches frequently used node and edges. This can allow InfiniteGraph to perform like an in-memory graph database. InfiniteGraph's DO query language enables complex "beyond graph" queries not supported by other graph databases. -
10
ArangoDB
ArangoDB
Natively store data for graphs, documents and search needs. One query language allows for feature-rich access. You can map data directly to the database and access it using the best patterns for the job: traversals, joins search, ranking geospatial, aggregateions - you name them. Polyglot persistence without the cost. You can easily design, scale, and adapt your architectures to meet changing needs with less effort. Combine the flexibility and power of JSON with graph technology to extract next-generation features even from large datasets. -
11
Grakn
Grakn Labs
The database is the foundation of intelligent systems. Grakn is an intelligent database, a knowledge graph. A data schema that is intuitive and expressive. It can be used to create rich knowledge models by defining hierarchies, hyperentities, hyperrelations, rules, and constructs. Intelligent language that infers data types, relationships and attributes, as well as complex patterns, at runtime and with persistent and distributed data. Accessible through simple queries, out-of-the box distributed analytics (Pregel & MapReduce), are available through the language. Strong abstraction allows for simpler expressions of complex constructs while the system determines the best query execution. Grakn KGMS & Workbase allow you to scale your enterprise Knowledge Graph. A distributed database that can scale across a network of computers by partitioning and replicating. -
12
Dgraph
Hypermode
Dgraph is an open-source, low-latency, high throughput native and distributed graph database. DGraph is designed to scale easily to meet the needs for small startups and large companies with huge amounts of data. It can handle terabytes structured data on commodity hardware with low latency to respond to user queries. It addresses business needs and can be used in cases that involve diverse social and knowledge networks, real-time recommendation engines and semantic search, pattern matching, fraud detection, serving relationship information, and serving web applications. -
13
TigerGraph
TigerGraph
1 RatingThe TigerGraph™, a graph platform based on its Native Parallel Graph™, technology, represents the next evolution in graph database evolution. It is a complete, distributed parallel graph computing platform that supports web-scale data analytics in real time. Combining the best ideas (MapReduce, Massively Parallel Processing, and fast data compression/decompression) with fresh development, TigerGraph delivers what you've been waiting for: the speed, scalability, and deep exploration/querying capability to extract more business value from your data. -
14
VeloDB
VeloDB
VeloDB, powered by Apache Doris is a modern database for real-time analytics at scale. In seconds, micro-batch data can be ingested using a push-based system. Storage engine with upserts, appends and pre-aggregations in real-time. Unmatched performance in real-time data service and interactive ad hoc queries. Not only structured data, but also semi-structured. Not only real-time analytics, but also batch processing. Not only run queries against internal data, but also work as an federated query engine to access external databases and data lakes. Distributed design to support linear scalability. Resource usage can be adjusted flexibly to meet workload requirements, whether on-premise or cloud deployment, separation or integration. Apache Doris is fully compatible and built on this open source software. Support MySQL functions, protocol, and SQL to allow easy integration with other tools. -
15
KgBase
KgBase
$19 per monthKgBase (or Knowledge Graph Base) is a robust, collaborative database that allows for versioning, analytics, visualizations, and visualizations. KgBase allows anyone to create knowledge graphs and gain insights about their data. You can import your CSVs or spreadsheets or use our API to collaborate on data. KgBase allows you to create no-code knowledge graphs. Our easy-to-use UI lets users navigate the graph and display the results in tables and charts. You can play with your graph data. You can build your query and watch the results change in real-time. It's similar to writing query code in Cypher and Gremlin, but much easier. It's also fast. You can view your graph as a table. This allows you to view all results, regardless of their size. KgBase is great for large graphs (millions) as well as simple projects. You can either use the cloud or self-hosted and have extensive database support. You can introduce graphs to your organization by seeding graphs from a template. Any query results can be easily converted into a chart visualization. -
16
Presto
Presto Foundation
Presto is an open-source distributed SQL query engine that allows interactive analytic queries against any data source, from gigabytes up to petabytes. -
17
Graphlytic
Demtec
19 EUR/month Graphlytic is a web-based BI platform that allows knowledge graph visualization and analysis. Interactively explore the graph and look for patterns using the Cypher query language or query templates for non-technical users. Users can also use filters to find answers to any graph question. The graph visualization provides deep insights into industries such as scientific research and anti-fraud investigation. Even users with little knowledge of graph theory can quickly explore the data. Cytoscape.js allows graph rendering. It can render tens to thousands of nodes and hundreds upon thousands of relationships. The application is available in three formats: Desktop, Cloud, or Server. Graphlytic Desktop is a Neo4j Desktop app that can be installed in just a few mouse clicks. Cloud instances are great for small teams who don't want or need to worry about installing and need to be up and running quickly. -
18
Apache TinkerPop
Apache Software Foundation
FreeApache TinkerPop™, a graph computing framework, is available for graph databases (OLTP), and graph analytic system (OLAP). Apache TinkerPop's graph traversal language is Gremlin. Gremlin allows users to express complex traversals (or queries) on their application's property diagram in a concise, data-flow language. Each Gremlin traversal consists of a sequence (potentially nested). A graph is a structure that is composed of vertices or edges. Each edge and vertices can have an unlimited number of key/value pairs, called properties. Vertices can be used to denote discrete objects, such as a person or a place or an event. Edges denote relationships between vertices. A person might know another person, be involved in an event, or have been to a specific place recently. If a domain contains a heterogeneous set objects (vertices), that can be linked to one another in many ways (edges), it is called a domain. -
19
Fluree
Fluree
Fluree is an immutable RDF graph database written in Clojure and adhering to W3C standards, supporting JSON and JSON-LD while accommodating various RDF ontologies. It operates with an immutable ledger that secures transactions with cryptographic integrity, alongside a rich RDF graph database capable of various queries. It employs SmartFunctions for enforcing data management rules, including identity and access management and data quality. Additionally, It boasts a scalable, cloud-native architecture utilizing a lightweight Java runtime, with individually scalable ledger and graph database components, embodying a "Data-Centric" ideology that treats data as a reusable asset independent of singular applications. -
20
Memgraph
Memgraph
Memgraph offers a light and powerful graph platform comprising the Memgraph Graph Database, MAGE Library, and Memgraph Lab Visualization. Memgraph is a dynamic, lightweight graph database optimized for analyzing data, relationships, and dependencies quickly and efficiently. It comes with a rich suite of pre-built deep path traversal algorithms and a library of traditional, dynamic, and ML algorithms tailored for advanced graph analysis, making Memgraph an excellent choice in critical decision-making scenarios such as risk assessment (fraud detection, cybersecurity threat analysis, and criminal risk assessment), 360-degree data and network exploration (Identity and Access Management (IAM), Master Data Management (MDM), Bill of Materials (BOM)), and logistics and network optimization. Memgraph's vibrant open-source community brings together over 150,000 developers in more than 100 countries to exchange ideas and optimize the next generation of in-memory data-driven applications across GenAI/ LLMs and real-time analytics performed with streaming data. -
21
LlamaIndex
LlamaIndex
LlamaIndex, a "dataframework", is designed to help you create LLM apps. Connect semi-structured API data like Slack or Salesforce. LlamaIndex provides a flexible and simple data framework to connect custom data sources with large language models. LlamaIndex is a powerful tool to enhance your LLM applications. Connect your existing data formats and sources (APIs, PDFs, documents, SQL etc.). Use with a large-scale language model application. Store and index data for different uses. Integrate downstream vector stores and database providers. LlamaIndex is a query interface which accepts any input prompts over your data, and returns a knowledge augmented response. Connect unstructured data sources, such as PDFs, raw text files and images. Integrate structured data sources such as Excel, SQL etc. It provides ways to structure data (indices, charts) so that it can be used with LLMs. -
22
TIBCO Graph Database
TIBCO
Understanding the relationships between data is key to unlocking the true value of continuously changing business data. A graph database, unlike other databases, puts relationships first. It uses Linear Algebra and graph theory to explore and show how complex data webs, sources, and points relate. TIBCO®, Graph Database allows users to store, transform, and interpret complex dynamic data into meaningful insights. Users can quickly build data and computational models that create dynamic relationships between organizational silos. These knowledge graphs provide value by connecting the vast array of data in your organization and revealing relationships that allow you to optimize assets and processes. OLTP and OLAP features combined in a single enterprise-grade data base. Optimistic ACID-level transaction properties with native storage access. -
23
RelationalAI
RelationalAI
RelationalAI is a next generation database system that allows intelligent data applications to be built on relational knowledge graphs. Data-centric application design combines logic and data into reusable models. Intelligent data applications can understand and make use each relation in a model. Relational provides a knowledge graph system that allows knowledge to be expressed as executable models. These models can easily be extended using declarative, human-readable software. RelationalAI's expressive and declarative language results in a 10-100x decrease in code. By involving non-technical domain specialists in the creation process, and automating complex programming tasks, applications are created faster and with better quality. The extensible graph data model is a foundation for data-centric architecture. Integrate models to uncover new relationships and reduce barriers between applications. -
24
Graph Story
Graph Story
$299 per monthCompanies who choose a DIY approach to their graph database can expect a wait of 2 to 3 months before production-ready implementation. Your production-ready database will be available within minutes with Graph Story's managed services. Learn more about graph use cases and compare self-hosting to managed services. We can deploy your servers where they are already located: AWS, Azure or Google Compute Engine in any region. Do you need VPC peering? Let us know. We are flexible like that. How do you build a proof-of-concept? In just a few clicks, you can fire up one enterprise graph instance. Do you need to move to a cluster that is high-availability and production-ready on-demand? We've got you covered! We created graph db management tools to make it easy for you! You can see CPU, Memory, and Disk utilization in one glance. Access configs, logs and backups of your database. -
25
Stardog
Stardog Union
$0Data engineers and scientists can be 95% better at their jobs with ready access to the most flexible semantic layer, explainable AI and reusable data modelling. They can create and expand semantic models, understand data interrelationships, and run federated query to speed up time to insight. Stardog's graph data virtualization and high performance graph database are the best available -- at a price that is up to 57x less than competitors -- to connect any data source, warehouse, or enterprise data lakehouse without copying or moving data. Scale users and use cases at a lower infrastructure cost. Stardog's intelligent inference engine applies expert knowledge dynamically at query times to uncover hidden patterns and unexpected insights in relationships that lead to better data-informed business decisions and outcomes. -
26
Apache Cassandra
Apache Software Foundation
1 RatingThe Apache Cassandra database provides high availability and scalability without compromising performance. It is the ideal platform for mission-critical data because it offers linear scalability and demonstrated fault-tolerance with commodity hardware and cloud infrastructure. Cassandra's ability to replicate across multiple datacenters is first-in-class. This provides lower latency for your users, and the peace-of-mind that you can withstand regional outages. -
27
Sparksee
Sparsity Technologies
Sparksee, formerly known as DEX, is space- and performance-friendly. It has a small footprint and can quickly analyze large networks. It is natively compatible with.Net, C++ and Python and Objective-C. The graph is represented using bitmap data structures, which allow for high compression rates. Each bitmap is divided into chunks that can be placed on disk pages to increase I/O location. Bitmaps allow operations to be computed using binary logic instructions, which simplify execution in pipelined processors. Full native indexing allows for extremely fast access to all graph data structures. Bitmaps are used to represent node adjacencies in order to reduce their footprint. Advanced I/O policies reduce the number of times each page is brought into memory. Each value in the database can only be represented once, which prevents unnecessary replication. -
28
Trino
Trino
FreeTrino is an engine that runs at incredible speeds. Fast-distributed SQL engine for big data analytics. Helps you explore the data universe. Trino is an extremely parallel and distributed query-engine, which is built from scratch for efficient, low latency analytics. Trino is used by the largest organizations to query data lakes with exabytes of data and massive data warehouses. Supports a wide range of use cases including interactive ad-hoc analysis, large batch queries that take hours to complete, and high volume apps that execute sub-second queries. Trino is a ANSI SQL query engine that works with BI Tools such as R Tableau Power BI Superset and many others. You can natively search data in Hadoop S3, Cassandra MySQL and many other systems without having to use complex, slow and error-prone copying processes. Access data from multiple systems in a single query. -
29
GraphBase
FactNexus
GraphBase (Graph Database Management System, Graph DBMS), is a Graph Database Management System designed to simplify the creation and maintenance complex data graphs. The Relational Database Management System is challenged by complex and interconnected structures. A graph database offers better modeling utility, performance, and scalability. The triplestores and property diagrams are the most recent graph database products. They have been around for almost two decades. Although they are powerful tools with many uses, they are not well-suited for managing complex data structures. GraphBase was created to make complex data management easier. It could be Knowledge. This was possible by redefining the way graph data should be managed. GraphBase makes the graph a first-class citizen. A graph equivalent to the "rows & tables" paradigm makes it so easy to use a Relational Database. -
30
ClickHouse
ClickHouse
1 RatingClickHouse is an open-source OLAP database management software that is fast and easy to use. It is column-oriented, and can generate real-time analytical reports by using SQL queries. ClickHouse's performance is superior to comparable column-oriented database management software currently on the market. It processes hundreds of millions of rows to more than a million and tens if not thousands of gigabytes per second. ClickHouse makes use of all hardware available to process every query as quickly as possible. Peak processing speed for a single query is more than 2 Terabytes per Second (after decompression, only utilized columns). To reduce latency, reads in distributed setups are automatically balanced between healthy replicas. ClickHouse supports multimaster asynchronous replication, and can be deployed across multiple datacenters. Each node is equal, which prevents single points of failure. -
31
SSuite MonoBase Database
SSuite Office Software
FreeYou can create flat or relational databases with unlimited fields, tables, and rows. A custom report builder is included. Create custom reports by connecting to compatible ODBC databases. You can create your own databases. Here are some highlights: Filter tables instantly - Ultra simple graphical-user-interface - One-click table and data form creation - You can open up to 5 databases simultaneously Export your data to comma-separated files - Create custom reports to all your databases - A complete helpfile for creating database reports - You can print tables and queries directly from your data grid - Supports any SQL standard your ODBC compatible databases require For best performance and user experience, please install and run this database app with full administrator rights. Requirements: . 1024x768 Display Size . Windows 98 / XP / Windows 8 / Windows 10 - 32bit or 64bit No Java or DotNet are required. Green Energy Software. One step at a time, saving the planet -
32
Graph Engine
Microsoft
Graph Engine (GE), a distributed in-memory processing engine, is supported by a strongly-typed RAM storage and a general distributed computing engine. The distributed RAM store is a global addressable, high-performance key-value storage that can be accessed by a cluster of computers. GE's RAM store allows fast random data access over a large data set. GE is a natural platform for large graph processing due to its ability to speed data exploration and distribute parallel computing. GE supports both low latency online query processing as well as high-throughput offline analysis on billion-node large Graphs. Schema is important when data processing must be efficient. For data storage that is compact, quick and clear, strong data modeling is essential. GE has the ability to manage billions of runtime objects of different sizes. As the number of objects increases, each byte counts. GE offers fast memory reallocation and allocation with high memory ratios. -
33
Amazon Timestream
Amazon
Amazon Timestream is a fast, scalable and serverless time series data service for IoT/operational applications. It makes it possible to store and analyze trillions per day up to 1000 times faster than traditional relational databases and at as low as 1/10th of the cost. Amazon Timestream helps you save time and money when managing the lifecycles of time series data. It stores recent data in memory and moves historical data to a cost-optimized storage tier according to user defined policies. Amazon Timestream's purpose-built query tool allows you to access and analyze both recent and historic data simultaneously, without having to specify in the query whether the data is in the in-memory tier or the cost-optimized. Amazon Timestream's built-in time series analytics functions allow you to identify trends and patterns within your data in real-time. -
34
Apache Hive
Apache Software Foundation
1 RatingApache Hive™, a data warehouse software, facilitates the reading, writing and management of large datasets that are stored in distributed storage using SQL. Structure can be projected onto existing data. Hive provides a command line tool and a JDBC driver to allow users to connect to it. Apache Hive is an Apache Software Foundation open-source project. It was previously a subproject to Apache® Hadoop®, but it has now become a top-level project. We encourage you to read about the project and share your knowledge. To execute traditional SQL queries, you must use the MapReduce Java API. Hive provides the SQL abstraction needed to integrate SQL-like query (HiveQL), into the underlying Java. This is in addition to the Java API that implements queries. -
35
Backtrace
Backtrace
Don't let game, app, or device crashes stop you from having a great experience. Backtrace automates cross-platform exception management and cross-platform crash management so that you can focus on shipping. Cross-platform callstack, event aggregation, and monitoring. A single system can process errors from panics and core dumps, minidumps, as well as during runtime across your stack. Backtrace generates searchable, structured error reports from your data. Automated analysis reduces time to resolution by surfacing important signals which lead engineers to the crash root cause. Rich integrations into dashboards and notification systems mean that you don't have to worry about missing a detail. Backtrace's rich queries engine will help you answer the questions that are most important to you. A high-level overview of errors, prioritization and trends across all projects can be viewed. You can search through key data points as well as your own custom data for all errors. -
36
TerminusDB
TerminusDB
Data collaboration made easy. We make collaboration easy for developers looking to innovate and data people looking for version control. TerminusDB is an open source knowledge graph database that allows for reliable, private and efficient revision control and collaboration. Nothing will make it easier to collaborate with others or create data-intensive apps. TerminusDB offers a full range of revision control features. TerminusHub allows users access to databases and to collaborate on shared resources. Flexible data storage, versioning, and sharing capabilities. Integration into your app or team collaboration. You can work locally and sync your changes when you push them. Easy querying, cleaning, visualization. You can integrate powerful version control and collaboration to your enterprise and individual customers. Remote data teams can collaborate on data projects easily. -
37
Amazon Neptune
Amazon
Amazon Neptune is a fully managed graph database service that allows you to quickly and reliably build applications that can work with highly connected data sets. Amazon Neptune's core is a purpose-built graph database engine that can store billions of relationships and query the graph with only milliseconds latency. Amazon Neptune supports the popular graph models Property Graph, W3C's RDF, as well as their respective query languages Apache TinkerPop Gremlin, SPARQL. This allows you to quickly build queries that efficiently navigate large datasets. Neptune supports graph use cases like recommendation engines, fraud detection and knowledge graphs. It also powers network security and drug discovery. -
38
Fauna
Fauna
FreeFauna is a data API that supports rich clients with serverless backends. It provides a web-native interface that supports GraphQL, custom business logic, frictionless integration to the serverless ecosystem, and a multi-cloud architecture that you can trust and grow with. -
39
ArcadeDB
ArcadeDB
FreeArcadeDB allows you to manage complex models without any compromises. Polyglot Persistence is gone. There is no need to have multiple databases. ArcadeDB Multi-Model databases can store graphs and documents, key values, time series, and key values. Each model is native to the database engine so you don't need to worry about translations slowing down your computer. ArcadeDB's engine was developed with Alien Technology. It can crunch millions upon millions of records per second. ArcadeDB's traversing speed does not depend on the size of the database. It doesn't matter if your database contains a few records or a billion. ArcadeDB can be used as an embedded database on a single server. It can scale up by using Kubernetes to connect multiple servers. It is flexible enough to run on any platform that has a small footprint. Your data is protected. Our unbreakable fully transactional engine ensures durability for mission-critical production database databases. ArcadeDB uses the Raft Consensus Algorithm in order to maintain consistency across multiple servers. -
40
ksqlDB
Confluent
Now that your data has been in motion, it is time to make sense. Stream processing allows you to extract instant insights from your data streams but it can be difficult to set up the infrastructure. Confluent created ksqlDB to support stream processing applications. Continuously processing streams of data from your business will make your data actionable. The intuitive syntax of ksqlDB allows you to quickly access and augment Kafka data, allowing development teams to create innovative customer experiences and meet data-driven operational requirements. ksqlDB is a single solution that allows you to collect streams of data, enrich them and then serve queries on new derived streams or tables. This means that there is less infrastructure to manage, scale, secure, and deploy. You can now focus on the important things -- innovation -- with fewer moving parts in your data architecture. -
41
GUN
amark
Realtime, realtime, offline-first, graph database engine. You can store, load, and share the data you need in your app without worrying too much about servers, network calls, database access, or tracking offline changes. GUN is a simple, fast, and easy-to-use data sync and storage tool that runs wherever JavaScript does. GUN's goal is to let you concentrate on the data that must be stored, loaded, shared, and shared in your app. It doesn't need to worry about servers, database calls, tracking offline changes, concurrency conflicts, or monitoring network calls. This allows you to quickly build cool apps. GUN gives you the most powerful tools of the internet, decentralization and privacy. This allows you to reclaim the web and make the internet truly open and free. GUN is a database engine which runs on all JavaScript devices, including mobile devices and servers. It allows you to create the data system that you want. -
42
ApertureDB
ApertureDB
$0.33 per hourVector search can give you a competitive edge. Streamline your AI/ML workflows, reduce costs and stay ahead with up to a 10x faster time-to market. ApertureDB’s unified multimodal management of data will free your AI teams from data silos and allow them to innovate. Setup and scale complex multimodal infrastructure for billions objects across your enterprise in days instead of months. Unifying multimodal data with advanced vector search and innovative knowledge graph, combined with a powerful querying engine, allows you to build AI applications at enterprise scale faster. ApertureDB will increase the productivity of your AI/ML team and accelerate returns on AI investment by using all your data. You can try it for free, or schedule a demonstration to see it in action. Find relevant images using labels, geolocation and regions of interest. Prepare large-scale, multi-modal medical scanning for ML and Clinical studies. -
43
Aster SQL-GR
Teradata
Powerful graph analytics made easy. Aster SQL-GR™, a native graph processing engine for graph analysis, makes it easy to solve complex business issues such as social network/influencer analysis. It also helps with fraud detection, supply chain management and network analysis. These problems are more impactful than simple graph navigation analysis. SQL-GR is based upon the Bulk Synchronous Process (BSP) model. It uses massively iterative and parallel processing to solve complex graph problems. SQL-GR is extremely scalable because it is based upon the BSP iterative process model. It also takes advantage of Teradata Aster’s massively scalable parallel processor (MPP) architecture to distribute graph processing across multiple servers/nodes. SQL-GR does not have memory limits and is not limited to one server/node. SQL-GR can easily perform complex graph analysis on large data sets with unmatched speed and power. -
44
RecallGraph
RecallGraph
RecallGraph is a versioned graph data store. It retains all changes its data (vertices, edges) have undergone to get to their current state. It supports point-in time graph traversals that allow the user to query any past state of a graph as well as the present. RecallGraph can be used in situations where data is best represented using a network of edges and vertices (i.e., as a graph). 1. Both edges and vertices can contain properties in the form attribute/value pairs (equivalent of JSON objects). 2. Documents (vertices/edges), can change throughout their lives (both in their individual attributes/values as well as in their relationships to each other). 3. Documents from the past are just as important as their current states, so it is essential to retain and queryable their change history. Also see this blog post for an intro - https://blog.recallgraph.tech/never-lose-your-old-data-again. -
45
VelocityDB
VelocityDB
$200 per 6 mothsVelocityDB is a database platform unlike any other. It stores data faster and more efficiently than other databases engines at a fraction the cost. It stores.NET objects in their original form without any mapping to tables, JSON, or XML. VelocityGraph, an open-source property graph database, can be used in conjunction the VelocityDB object data base. Object and graph database engine VelocityDB, a C#.NET NoSQL object database, can be extended to VelocityGraph. World's fastest most scalable & flexible database. A bug reported with a reproducible case is usually fixed within one week. This database system offers the greatest benefit, flexibility. You can fine-tune your application like no other database system. You can choose the most suitable data structure for your application with VelocityDB. You can choose where and how the data is indexed and accessed. -
46
Neo4j
Neo4j
Neo4j's graph platform is designed to help you leverage data and data relationships. Developers can create intelligent applications that use Neo4j to traverse today's interconnected, large datasets in real-time. Neo4j's graph database is powered by a native graph storage engine and processing engine. It provides unique, actionable insights through an intuitive, flexible, and secure database. -
47
HyperGraphDB
Kobrix Software
HyperGraphDB is an open-source, general-purpose data storage system that uses a powerful knowledge management approach called directed hypergraphs. Although it is a persistent memory model, it can also serve as an embedded object-oriented data base for Java projects of any size. Or a graph database or a (non SQLL) relational database. HyperGraphDB is a storage system that uses generalized hypergraphs for its underlying data model. A tuple is a collection of 0 or more tuples. Each atom is a tuple of this type. The data model can be viewed as either relational, where higher-order, non-ary relationships are permitted, or graph-oriented where edges point to an arbitrary set nodes. Each atom is assigned a strongly-typed, arbitrary value. The hypergraph that manages these values is embedded in the type system and can be customized from the ground up. -
48
Apache Spark
Apache Software Foundation
Apache Spark™, a unified analytics engine that can handle large-scale data processing, is available. Apache Spark delivers high performance for streaming and batch data. It uses a state of the art DAG scheduler, query optimizer, as well as a physical execution engine. Spark has over 80 high-level operators, making it easy to create parallel apps. You can also use it interactively via the Scala, Python and R SQL shells. Spark powers a number of libraries, including SQL and DataFrames and MLlib for machine-learning, GraphX and Spark Streaming. These libraries can be combined seamlessly in one application. Spark can run on Hadoop, Apache Mesos and Kubernetes. It can also be used standalone or in the cloud. It can access a variety of data sources. Spark can be run in standalone cluster mode on EC2, Hadoop YARN and Mesos. Access data in HDFS and Alluxio. -
49
Dremio
Dremio
Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed. -
50
Locstat
Locstat
Locstat, a graph intelligence platform, is a graph-based AI platform that integrates analytics, event processing and graph-based AI. It allows organizations to scale up next-generation data-driven solutions quickly. Research shows that adopting innovative AI-supported digitalization strategy can result in significant benefits and gains. We have had great success in improving customer efficiency and delivering significant ROI, as measured by ourselves and confirmed by research firms. This shows the value of advanced analytics technologies to solve today's complex issues more cost-effectively compared to solutions based on relational databases.