What Integrates with Protegrity?
Find out what Protegrity integrations exist in 2025. Learn what software and services currently integrate with Protegrity, and sort them by reviews, cost, features, and more. Below is a list of products that Protegrity currently integrates with:
-
1
Google Cloud Dataflow
Google
Unified stream and batch data processing that is serverless, fast, cost-effective, and low-cost. Fully managed data processing service. Automated provisioning of and management of processing resource. Horizontal autoscaling worker resources to maximize resource use Apache Beam SDK is an open-source platform for community-driven innovation. Reliable, consistent processing that works exactly once. Streaming data analytics at lightning speed Dataflow allows for faster, simpler streaming data pipeline development and lower data latency. Dataflow's serverless approach eliminates the operational overhead associated with data engineering workloads. Dataflow allows teams to concentrate on programming and not managing server clusters. Dataflow's serverless approach eliminates operational overhead from data engineering workloads, allowing teams to concentrate on programming and not managing server clusters. Dataflow automates provisioning, management, and utilization of processing resources to minimize latency. -
2
Dremio
Dremio
Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed.