Best Presto Alternatives in 2025

Find the top alternatives to Presto currently available. Compare ratings, reviews, pricing, and features of Presto alternatives in 2025. Slashdot lists the best Presto alternatives on the market that offer competing products that are similar to Presto. Sort through Presto alternatives below to make the best choice for your needs

  • 1
    Google Cloud BigQuery Reviews
    See Software
    Learn More
    Compare Both
    BigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises. Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently.
  • 2
    StarTree Reviews
    See Software
    Learn More
    Compare Both
    StarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. StarTree Cloud includes StarTree Data Manager, which allows you to ingest data from both real-time sources such as Amazon Kinesis, Apache Kafka, Apache Pulsar, or Redpanda, as well as batch data sources such as data warehouses like Snowflake, Delta Lake or Google BigQuery, or object stores like Amazon S3, Apache Flink, Apache Hadoop, or Apache Spark. StarTree ThirdEye is an add-on anomaly detection system running on top of StarTree Cloud that observes your business-critical metrics, alerting you and allowing you to perform root-cause analysis — all in real-time.
  • 3
    Snowflake Reviews
    See Software
    Learn More
    Compare Both
    Snowflake is a cloud-native data platform that combines data warehousing, data lakes, and data sharing into a single solution. By offering elastic scalability and automatic scaling, Snowflake enables businesses to handle vast amounts of data while maintaining high performance at low cost. The platform's architecture allows users to separate storage and compute, offering flexibility in managing workloads. Snowflake supports real-time data sharing and integrates seamlessly with other analytics tools, enabling teams to collaborate and gain insights from their data more efficiently. Its secure, multi-cloud architecture makes it a strong choice for enterprises looking to leverage data at scale.
  • 4
    Apache Drill Reviews

    Apache Drill

    The Apache Software Foundation

    A SQL query engine that operates without a predefined schema, designed for use with Hadoop, NoSQL databases, and cloud storage solutions. This innovative tool allows for seamless data querying across various platforms, accommodating diverse data formats and structures.
  • 5
    Amazon Redshift Reviews
    Amazon Redshift is the preferred choice for cloud data warehousing among a vast array of customers, surpassing its competitors. It supports analytical tasks for a diverse range of businesses, from Fortune 500 giants to emerging startups, enabling their evolution into multi-billion dollar organizations, as seen with companies like Lyft. The platform excels in simplifying the process of extracting valuable insights from extensive data collections. Users can efficiently query enormous volumes of both structured and semi-structured data across their data warehouse, operational databases, and data lakes, all using standard SQL. Additionally, Redshift allows seamless saving of query results back to your S3 data lake in open formats such as Apache Parquet, facilitating further analysis with other analytics tools like Amazon EMR, Amazon Athena, and Amazon SageMaker. Recognized as the fastest cloud data warehouse globally, Redshift continues to enhance its speed and performance every year. For demanding workloads, the latest RA3 instances deliver performance that can be up to three times greater than any other cloud data warehouse currently available. This remarkable capability positions Redshift as a leading solution for organizations aiming to streamline their data processing and analytical efforts.
  • 6
    Apache Iceberg Reviews

    Apache Iceberg

    Apache Software Foundation

    Free
    Iceberg serves as a high-performance format designed for large-scale analytic tables. It combines the reliability and ease of use found in SQL tables with the capabilities required for big data, enabling various engines such as Spark, Trino, Flink, Presto, Hive, and Impala to concurrently access the same tables without issues. The system accommodates a range of SQL commands that allow users to merge fresh data, modify existing entries, and carry out selective deletions. Additionally, Iceberg can proactively rewrite data files to enhance read performance, or it can utilize delete deltas to facilitate quicker updates. By managing the complex and often error-prone generation of partition values for rows within a table, Iceberg automatically avoids unnecessary partitions and files, streamlining the query process. This results in the elimination of additional filters for quicker query responses, and the layout of the table can be adjusted dynamically as data or query requirements evolve, ensuring optimal performance and flexibility. Furthermore, Iceberg's design promotes efficient data handling practices that can adapt to changing workloads, making it an invaluable tool for data engineers and analysts alike.
  • 7
    Apache Druid Reviews
    Apache Druid is a powerful open-source distributed data storage solution that integrates principles from data warehousing, timeseries databases, and search technologies to deliver exceptional performance for real-time analytics across various applications. Its innovative design synthesizes essential features from these three types of systems, which is evident in its ingestion layer, storage format, query execution, and foundational architecture. By individually storing and compressing each column, Druid efficiently accesses only the necessary data for specific queries, enabling rapid scanning, sorting, and grouping operations. Additionally, Druid utilizes inverted indexes for string values to enhance search and filtering speeds. Equipped with ready-to-use connectors for platforms like Apache Kafka, HDFS, and AWS S3, Druid seamlessly integrates with existing data workflows. Its smart partitioning strategy greatly accelerates time-based queries compared to conventional databases, allowing for impressive performance. Users can easily scale their systems by adding or removing servers, with Druid automatically managing the rebalancing of data. Furthermore, its fault-tolerant design ensures that the system can effectively navigate around server failures, maintaining operational integrity. This resilience makes Druid an excellent choice for organizations seeking reliable analytics solutions.
  • 8
    Apache Pinot Reviews
    Pinot is engineered to efficiently handle OLAP queries with minimal latency on static datasets. It incorporates various pluggable indexing methods, including Sorted Index, Bitmap Index, and Inverted Index. While it currently does not support joins, this limitation can be addressed by utilizing Trino or PrestoDB for query execution. The system features an SQL-like language that accommodates selection, aggregation, filtering, grouping, ordering, and distinct queries on the dataset. It consists of both offline and real-time tables, with real-time tables utilized specifically to address segments lacking available offline data. Additionally, users can tailor the anomaly detection process and notification system to accurately identify relevant anomalies. This flexibility ensures that users can maintain high data integrity while effectively managing their analytical needs.
  • 9
    Apache Kylin Reviews

    Apache Kylin

    Apache Software Foundation

    Apache Kylin™ serves as an open-source, distributed Analytical Data Warehouse tailored for Big Data, specifically crafted to deliver OLAP (Online Analytical Processing) capabilities in the context of today's data landscape. By enhancing multi-dimensional cube architecture and leveraging precalculation techniques based on Hadoop and Spark, Kylin ensures a nearly constant query response time, even as data volumes continue to swell. This innovative approach reduces query delays from several minutes to mere milliseconds, thereby reintroducing efficient online analytics within the realm of big data. Capable of processing over 10 billion rows in under a second, Kylin eliminates the prolonged wait times traditionally associated with generating reports necessary for timely decision-making. With its ability to seamlessly connect Hadoop data to various BI tools, including Tableau, PowerBI/Excel, MSTR, QlikSense, Hue, and SuperSet, Kylin significantly accelerates Business Intelligence on Hadoop. As a robust Analytical Data Warehouse, it provides ANSI SQL compatibility on Hadoop/Spark and accommodates most ANSI SQL query functions. Additionally, Kylin's architecture is designed to manage thousands of simultaneous interactive queries efficiently, ensuring minimal resource consumption per query while maintaining high performance. This efficiency empowers organizations to leverage big data analytics more effectively than ever before.
  • 10
    AtScale Reviews
    AtScale streamlines and enhances business intelligence, leading to quicker insights, improved decision-making, and greater returns on your cloud analytics investments. By removing tedious data engineering tasks such as data curation and delivery for analysis, it allows teams to focus on strategic initiatives. Centralizing business definitions ensures that KPI reporting remains consistent across various BI platforms. This solution not only speeds up the process of gaining insights from data but also manages cloud computing expenses more effectively. You can utilize existing data security protocols for analytics regardless of the data's location. With AtScale’s Insights workbooks and models, users can conduct multidimensional Cloud OLAP analyses on datasets from diverse sources without the need for preparation or engineering of data. Our intuitive dimensions and measures are designed to facilitate quick insight generation that directly informs business strategies, ensuring that teams make informed decisions efficiently. Overall, AtScale empowers organizations to maximize their data's potential while minimizing the complexity associated with traditional analytics processes.
  • 11
    Amazon Athena Reviews
    Amazon Athena serves as an interactive query service that simplifies the process of analyzing data stored in Amazon S3 through the use of standard SQL. As a serverless service, it eliminates the need for infrastructure management, allowing users to pay solely for the queries they execute. The user-friendly interface enables you to simply point to your data in Amazon S3, establish the schema, and begin querying with standard SQL commands, with most results returning in mere seconds. Athena negates the requirement for intricate ETL processes to prepare data for analysis, making it accessible for anyone possessing SQL skills to swiftly examine large datasets. Additionally, Athena integrates seamlessly with AWS Glue Data Catalog, which facilitates the creation of a consolidated metadata repository across multiple services. This integration allows users to crawl data sources to identify schemas, update the Catalog with new and modified table and partition definitions, and manage schema versioning effectively. Not only does this streamline data management, but it also enhances the overall efficiency of data analysis within the AWS ecosystem.
  • 12
    Trino Reviews
    Trino is a remarkably fast query engine designed to operate at exceptional speeds. It serves as a high-performance, distributed SQL query engine tailored for big data analytics, enabling users to delve into their vast data environments. Constructed for optimal efficiency, Trino excels in low-latency analytics and is extensively utilized by some of the largest enterprises globally to perform queries on exabyte-scale data lakes and enormous data warehouses. It accommodates a variety of scenarios, including interactive ad-hoc analytics, extensive batch queries spanning several hours, and high-throughput applications that require rapid sub-second query responses. Trino adheres to ANSI SQL standards, making it compatible with popular business intelligence tools like R, Tableau, Power BI, and Superset. Moreover, it allows direct querying of data from various sources such as Hadoop, S3, Cassandra, and MySQL, eliminating the need for cumbersome, time-consuming, and error-prone data copying processes. This capability empowers users to access and analyze data from multiple systems seamlessly within a single query. Such versatility makes Trino a powerful asset in today's data-driven landscape.
  • 13
    VMware Tanzu Greenplum Reviews
    Liberate your applications and streamline your operations. Success in today's business landscape requires excellence in software development. What strategies can you employ to enhance the speed of feature delivery for the systems that drive your enterprise? Or how can you efficiently oversee and operate modernized workloads across any cloud platform? By leveraging VMware Tanzu together with VMware Pivotal Labs, you can revolutionize both your teams and applications, all while making operations more straightforward across a multi-cloud environment, whether it's on-premises, in the public cloud, or at the edge. This transformative approach not only boosts efficiency but also fosters innovation within your organization.
  • 14
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights.
  • 15
    Denodo Reviews
    The fundamental technology that powers contemporary solutions for data integration and management is designed to swiftly link various structured and unstructured data sources. It allows for the comprehensive cataloging of your entire data environment, ensuring that data remains within its original sources and is retrieved as needed, eliminating the requirement for duplicate copies. Users can construct data models tailored to their needs, even when drawing from multiple data sources, while also concealing the intricacies of back-end systems from end users. The virtual model can be securely accessed and utilized through standard SQL alongside other formats such as REST, SOAP, and OData, promoting easy access to diverse data types. It features complete data integration and modeling capabilities, along with an Active Data Catalog that enables self-service for data and metadata exploration and preparation. Furthermore, it incorporates robust data security and governance measures, ensures rapid and intelligent execution of data queries, and provides real-time data delivery in various formats. The system also supports the establishment of data marketplaces and effectively decouples business applications from data systems, paving the way for more informed, data-driven decision-making strategies. This innovative approach enhances the overall agility and responsiveness of organizations in managing their data assets.
  • 16
    SingleStore Reviews
    SingleStore, previously known as MemSQL, is a highly scalable and distributed SQL database that can operate in any environment. It is designed to provide exceptional performance for both transactional and analytical tasks while utilizing well-known relational models. This database supports continuous data ingestion, enabling operational analytics critical for frontline business activities. With the capacity to handle millions of events each second, SingleStore ensures ACID transactions and allows for the simultaneous analysis of vast amounts of data across various formats, including relational SQL, JSON, geospatial, and full-text search. It excels in data ingestion performance at scale and incorporates built-in batch loading alongside real-time data pipelines. Leveraging ANSI SQL, SingleStore offers rapid query responses for both current and historical data, facilitating ad hoc analysis through business intelligence tools. Additionally, it empowers users to execute machine learning algorithms for immediate scoring and conduct geoanalytic queries in real-time, thereby enhancing decision-making processes. Furthermore, its versatility makes it a strong choice for organizations looking to derive insights from diverse data types efficiently.
  • 17
    ClickHouse Reviews
    ClickHouse is an efficient, open-source OLAP database management system designed for high-speed data processing. Its column-oriented architecture facilitates the creation of analytical reports through real-time SQL queries. In terms of performance, ClickHouse outshines similar column-oriented database systems currently on the market. It has the capability to handle hundreds of millions to over a billion rows, as well as tens of gigabytes of data, on a single server per second. By maximizing the use of available hardware, ClickHouse ensures rapid query execution. The peak processing capacity for individual queries can exceed 2 terabytes per second, considering only the utilized columns after decompression. In a distributed environment, read operations are automatically optimized across available replicas to minimize latency. Additionally, ClickHouse features multi-master asynchronous replication, enabling deployment across various data centers. Each node operates equally, effectively eliminating potential single points of failure and enhancing overall reliability. This robust architecture allows organizations to maintain high availability and performance even under heavy workloads.
  • 18
    StarRocks Reviews
    Regardless of whether your project involves a single table or numerous tables, StarRocks guarantees an impressive performance improvement of at least 300% when compared to other widely used solutions. With its comprehensive array of connectors, you can seamlessly ingest streaming data and capture information in real time, ensuring that you always have access to the latest insights. The query engine is tailored to suit your specific use cases, allowing for adaptable analytics without the need to relocate data or modify SQL queries. This provides an effortless way to scale your analytics capabilities as required. StarRocks not only facilitates a swift transition from data to actionable insights, but also stands out with its unmatched performance, offering a holistic OLAP solution that addresses the most prevalent data analytics requirements. Its advanced memory-and-disk-based caching framework is purpose-built to reduce I/O overhead associated with retrieving data from external storage, significantly enhancing query performance while maintaining efficiency. This unique combination of features ensures that users can maximize their data's potential without unnecessary delays.
  • 19
    Infobright DB Reviews
    Infobright DB is an enterprise-grade database that utilizes a columnar storage architecture, enabling business analysts to efficiently analyze data and rapidly generate reports. This versatile database can be implemented both on-premise and in cloud environments. It is designed to store and analyze substantial amounts of big data, facilitating interactive business intelligence and handling complex queries with ease. By enhancing query performance and lowering storage costs, it significantly boosts overall efficiency in analytics and reporting processes. With capabilities to manage hundreds of terabytes of data, Infobright DB overcomes the limitations often faced by traditional databases. This solution supports big data applications while removing the need for indexing and partitioning, resulting in no administrative burden. In an era where machine data is growing exponentially, IgniteTech’s Infobright DB is purpose-built to deliver exceptional performance for large quantities of machine-generated information. Furthermore, it allows users to manage intricate ad hoc analytical environments without the heavy database administration demands seen in other solutions. This makes it an invaluable tool for organizations seeking to optimize their data handling and analysis.
  • 20
    SAP HANA Reviews
    SAP HANA is an in-memory database designed to handle both transactional and analytical workloads using a single copy of data, regardless of type. It effectively dissolves the barriers between transactional and analytical processes within organizations, facilitating rapid decision-making whether deployed on-premises or in the cloud. This innovative database management system empowers users to create intelligent, real-time solutions, enabling swift decision-making from a unified data source. By incorporating advanced analytics, it enhances the capabilities of next-generation transaction processing. Organizations can build data solutions that capitalize on cloud-native attributes such as scalability, speed, and performance. With SAP HANA Cloud, businesses can access reliable, actionable information from one cohesive platform while ensuring robust security, privacy, and data anonymization, reflecting proven enterprise standards. In today's fast-paced environment, an intelligent enterprise relies on timely insights derived from data, emphasizing the need for real-time delivery of such valuable information. As the demand for immediate access to insights grows, leveraging an efficient database like SAP HANA becomes increasingly critical for organizations aiming to stay competitive.
  • 21
    SSuite MonoBase Database Reviews
    You can create flat or relational databases with unlimited fields, tables, and rows. A custom report builder is included. Create custom reports by connecting to compatible ODBC databases. You can create your own databases. Here are some highlights: Filter tables instantly - Ultra simple graphical-user-interface - One-click table and data form creation - You can open up to 5 databases simultaneously Export your data to comma-separated files - Create custom reports to all your databases - A complete helpfile for creating database reports - You can print tables and queries directly from your data grid - Supports any SQL standard your ODBC compatible databases require For best performance and user experience, please install and run this database app with full administrator rights. Requirements: . 1024x768 Display Size . Windows 98 / XP / Windows 8 / Windows 10 - 32bit or 64bit No Java or DotNet are required. Green Energy Software. One step at a time, saving the planet
  • 22
    VeloDB Reviews
    VeloDB, which utilizes Apache Doris, represents a cutting-edge data warehouse designed for rapid analytics on large-scale real-time data. It features both push-based micro-batch and pull-based streaming data ingestion that occurs in mere seconds, alongside a storage engine capable of real-time upserts, appends, and pre-aggregations. The platform delivers exceptional performance for real-time data serving and allows for dynamic interactive ad-hoc queries. VeloDB accommodates not only structured data but also semi-structured formats, supporting both real-time analytics and batch processing capabilities. Moreover, it functions as a federated query engine, enabling seamless access to external data lakes and databases in addition to internal data. The system is designed for distribution, ensuring linear scalability. Users can deploy it on-premises or as a cloud service, allowing for adaptable resource allocation based on workload demands, whether through separation or integration of storage and compute resources. Leveraging the strengths of open-source Apache Doris, VeloDB supports the MySQL protocol and various functions, allowing for straightforward integration with a wide range of data tools, ensuring flexibility and compatibility across different environments.
  • 23
    Qubole Reviews
    Qubole stands out as a straightforward, accessible, and secure Data Lake Platform tailored for machine learning, streaming, and ad-hoc analysis. Our comprehensive platform streamlines the execution of Data pipelines, Streaming Analytics, and Machine Learning tasks across any cloud environment, significantly minimizing both time and effort. No other solution matches the openness and versatility in handling data workloads that Qubole provides, all while achieving a reduction in cloud data lake expenses by more than 50 percent. By enabling quicker access to extensive petabytes of secure, reliable, and trustworthy datasets, we empower users to work with both structured and unstructured data for Analytics and Machine Learning purposes. Users can efficiently perform ETL processes, analytics, and AI/ML tasks in a seamless workflow, utilizing top-tier open-source engines along with a variety of formats, libraries, and programming languages tailored to their data's volume, diversity, service level agreements (SLAs), and organizational regulations. This adaptability ensures that Qubole remains a preferred choice for organizations aiming to optimize their data management strategies while leveraging the latest technological advancements.
  • 24
    MonetDB Reviews
    Explore a diverse array of SQL features that allow you to build applications ranging from straightforward analytics to complex hybrid transactional and analytical processing. If you're eager to uncover insights from your data, striving for efficiency, or facing tight deadlines, MonetDB can deliver query results in just seconds or even faster. For those looking to leverage or modify their own code and requiring specialized functions, MonetDB provides hooks to integrate user-defined functions in SQL, Python, R, or C/C++. Become part of the vibrant MonetDB community that spans over 130 countries, including students, educators, researchers, startups, small businesses, and large corporations. Embrace the forefront of analytical database technology and ride the wave of innovation! Save time with MonetDB’s straightforward installation process, allowing you to quickly get your database management system operational. This accessibility ensures that users of all backgrounds can efficiently harness the power of data for their projects.
  • 25
    IBM Db2 Reviews
    IBM Db2 encompasses a suite of data management solutions, prominently featuring the Db2 relational database. These offerings incorporate AI-driven functionalities designed to streamline the management of both structured and unstructured data across various on-premises and multicloud settings. By simplifying data accessibility, the Db2 suite empowers businesses to leverage the advantages of AI effectively. Most components of the Db2 family are integrated within the IBM Cloud Pak® for Data platform, available either as additional features or as built-in data source services, ensuring that nearly all data is accessible across hybrid or multicloud frameworks to support AI-driven applications. You can easily unify your transactional data repositories and swiftly extract insights through intelligent, universal querying across diverse data sources. The multimodel functionality helps reduce expenses by removing the necessity for data replication and migration. Additionally, Db2 offers enhanced flexibility, allowing for deployment on any cloud service provider, which further optimizes operational agility and responsiveness. This versatility in deployment options ensures that businesses can adapt their data management strategies as their needs evolve.
  • 26
    IBM Cloud SQL Query Reviews
    Experience serverless and interactive data querying with IBM Cloud Object Storage, enabling you to analyze your data directly at its source without the need for ETL processes, databases, or infrastructure management. IBM Cloud SQL Query leverages Apache Spark, a high-performance, open-source data processing engine designed for quick and flexible analysis, allowing SQL queries without requiring ETL or schema definitions. You can easily perform data analysis on your IBM Cloud Object Storage via our intuitive query editor and REST API. With a pay-per-query pricing model, you only incur costs for the data that is scanned, providing a cost-effective solution that allows for unlimited queries. To enhance both savings and performance, consider compressing or partitioning your data. Furthermore, IBM Cloud SQL Query ensures high availability by executing queries across compute resources located in various facilities. Supporting multiple data formats, including CSV, JSON, and Parquet, it also accommodates standard ANSI SQL for your querying needs, making it a versatile tool for data analysis. This capability empowers organizations to make data-driven decisions more efficiently than ever before.
  • 27
    HEAVY.AI Reviews
    HEAVY.AI is a pioneer in accelerated analysis. The HEAVY.AI platform can be used by government and business to uncover insights in data that is beyond the reach of traditional analytics tools. The platform harnesses the huge parallelism of modern CPU/GPU hardware and is available both in the cloud or on-premise. HEAVY.AI was developed from research at Harvard and MIT Computer Science and Artificial Intelligence Laboratory. You can go beyond traditional BI and GIS and extract high-quality information from large datasets with no lag by leveraging modern GPU and CPU hardware. To get a complete picture of what, when and where, unify and explore large geospatial or time-series data sets. Combining interactive visual analytics, hardware accelerated SQL, advanced analytics & data sciences frameworks, you can find the opportunity and risk in your enterprise when it matters most.
  • 28
    Starburst Enterprise Reviews
    Starburst empowers organizations to enhance their decision-making capabilities by providing rapid access to all their data without the hassle of transferring or duplicating it. As companies accumulate vast amounts of data, their analysis teams often find themselves waiting for access to perform their evaluations. By facilitating direct access to data at its source, Starburst ensures that teams can quickly and accurately analyze larger datasets without the need for data movement. Starburst Enterprise offers a robust, enterprise-grade version of the open-source Trino (formerly known as Presto® SQL), which is fully supported and tested for production use. This solution not only boosts performance and security but also simplifies the deployment, connection, and management of a Trino environment. By enabling connections to any data source—be it on-premises, in the cloud, or within a hybrid cloud setup—Starburst allows teams to utilize their preferred analytics tools while seamlessly accessing data stored in various locations. This innovative approach significantly reduces the time taken for insights, helping businesses stay competitive in a data-driven world.
  • 29
    Databend Reviews
    Databend is an innovative, cloud-native data warehouse crafted to provide high-performance and cost-effective analytics for extensive data processing needs. Its architecture is elastic, allowing it to scale dynamically in response to varying workload demands, thus promoting efficient resource use and reducing operational expenses. Developed in Rust, Databend delivers outstanding performance through features such as vectorized query execution and columnar storage, which significantly enhance data retrieval and processing efficiency. The cloud-first architecture facilitates smooth integration with various cloud platforms while prioritizing reliability, data consistency, and fault tolerance. As an open-source solution, Databend presents a versatile and accessible option for data teams aiming to manage big data analytics effectively in cloud environments. Additionally, its continuous updates and community support ensure that users can take advantage of the latest advancements in data processing technology.
  • 30
    PySpark Reviews
    PySpark serves as the Python interface for Apache Spark, enabling the development of Spark applications through Python APIs and offering an interactive shell for data analysis in a distributed setting. In addition to facilitating Python-based development, PySpark encompasses a wide range of Spark functionalities, including Spark SQL, DataFrame support, Streaming capabilities, MLlib for machine learning, and the core features of Spark itself. Spark SQL, a dedicated module within Spark, specializes in structured data processing and introduces a programming abstraction known as DataFrame, functioning also as a distributed SQL query engine. Leveraging the capabilities of Spark, the streaming component allows for the execution of advanced interactive and analytical applications that can process both real-time and historical data, while maintaining the inherent advantages of Spark, such as user-friendliness and robust fault tolerance. Furthermore, PySpark's integration with these features empowers users to handle complex data operations efficiently across various datasets.
  • 31
    Archon Data Store Reviews
    Archon Data Store™ is an open-source archive lakehouse platform that allows you to store, manage and gain insights from large volumes of data. Its minimal footprint and compliance features enable large-scale processing and analysis of structured and unstructured data within your organization. Archon Data Store combines data warehouses, data lakes and other features into a single platform. This unified approach eliminates silos of data, streamlining workflows in data engineering, analytics and data science. Archon Data Store ensures data integrity through metadata centralization, optimized storage, and distributed computing. Its common approach to managing data, securing it, and governing it helps you innovate faster and operate more efficiently. Archon Data Store is a single platform that archives and analyzes all of your organization's data, while providing operational efficiencies.
  • 32
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™ serves as a comprehensive analytics engine designed for extensive data processing tasks. It delivers exceptional performance for both batch and streaming workloads, utilizing an advanced Directed Acyclic Graph (DAG) scheduler, a sophisticated query optimizer, and an efficient physical execution engine. With over 80 high-level operators available, Spark simplifies the development of parallel applications. Additionally, users can interact with it through various shells, such as Scala, Python, R, and SQL. Spark supports a robust ecosystem of libraries, including SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for real-time data processing, allowing for seamless integration of these libraries within a single application. The platform is versatile, capable of running on multiple environments like Hadoop, Apache Mesos, Kubernetes, standalone setups, or cloud services. Furthermore, it can connect to a wide array of data sources, enabling access to information stored in HDFS, Alluxio, Apache Cassandra, Apache HBase, Apache Hive, and hundreds of other systems, thus providing flexibility to meet various data processing needs. This extensive functionality makes Spark an essential tool for data engineers and analysts alike.
  • 33
    Apache Impala Reviews
    Impala delivers rapid response times and accommodates a high number of concurrent users for business intelligence and analytical queries within the Hadoop ecosystem, supporting frameworks like Iceberg, various open data formats, and numerous cloud storage solutions. It is designed to scale seamlessly, even in environments that host multiple tenants. Additionally, Impala integrates with native Hadoop security protocols and utilizes Kerberos for authentication, while the Ranger module allows for precise user and application authorization based on the data they need to access. This means you can leverage the same file formats, data structures, security measures, and resource management systems as your existing Hadoop setup, eliminating the need for redundant infrastructure or unnecessary data transformations. For those already using Apache Hive, Impala is compatible, sharing the same metadata and ODBC driver, which streamlines the transition. Just like Hive, Impala employs SQL, thereby alleviating the need to develop new implementations. With Impala, a greater number of users can engage with a wider array of data via a unified repository, ensuring that valuable insights are accessible from the source to analysis without compromising on efficiency. Ultimately, this makes Impala an essential tool for organizations looking to enhance their data interaction capabilities.
  • 34
    Greenplum Reviews
    Greenplum Database® stands out as a sophisticated, comprehensive, and open-source data warehouse solution. It excels in providing swift and robust analytics on data volumes that reach petabyte scales. Designed specifically for big data analytics, Greenplum Database is driven by a highly advanced cost-based query optimizer that ensures exceptional performance for analytical queries on extensive data sets. This project operates under the Apache 2 license, and we extend our gratitude to all current contributors while inviting new ones to join our efforts. In the Greenplum Database community, every contribution is valued, regardless of its size, and we actively encourage diverse forms of involvement. This platform serves as an open-source, massively parallel data environment tailored for analytics, machine learning, and artificial intelligence applications. Users can swiftly develop and implement models aimed at tackling complex challenges in fields such as cybersecurity, predictive maintenance, risk management, and fraud detection, among others. Dive into the experience of a fully integrated, feature-rich open-source analytics platform that empowers innovation.
  • 35
    LlamaIndex Reviews
    LlamaIndex serves as a versatile "data framework" designed to assist in the development of applications powered by large language models (LLMs). It enables the integration of semi-structured data from various APIs, including Slack, Salesforce, and Notion. This straightforward yet adaptable framework facilitates the connection of custom data sources to LLMs, enhancing the capabilities of your applications with essential data tools. By linking your existing data formats—such as APIs, PDFs, documents, and SQL databases—you can effectively utilize them within your LLM applications. Furthermore, you can store and index your data for various applications, ensuring seamless integration with downstream vector storage and database services. LlamaIndex also offers a query interface that allows users to input any prompt related to their data, yielding responses that are enriched with knowledge. It allows for the connection of unstructured data sources, including documents, raw text files, PDFs, videos, and images, while also making it simple to incorporate structured data from sources like Excel or SQL. Additionally, LlamaIndex provides methods for organizing your data through indices and graphs, making it more accessible for use with LLMs, thereby enhancing the overall user experience and expanding the potential applications.
  • 36
    Dremio Reviews
    Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed.
  • 37
    Cohesity Reviews
    Streamline your data protection strategies by removing outdated backup silos, enabling efficient safeguarding of virtual, physical, and cloud workloads alongside ensuring rapid recovery. By processing data where it resides and utilizing applications to extract insights, you can enhance your operational efficiency. Protect your organization from advanced ransomware threats through a comprehensive data security framework, as relying on numerous single-purpose tools for disparate silos increases vulnerability. Cohesity boosts cyber resilience and addresses extensive data fragmentation by centralizing information within a singular hyper-scale platform. Transform your data centers by unifying backups, archives, file shares, object stores, and data utilized in analytics and development/testing processes. Our innovative solution for these issues is Cohesity Helios, a unified next-generation data management platform that delivers a variety of services. With our next-gen approach, managing your data becomes simpler and more efficient, all while adapting to the continuous growth of your data landscape. This unification not only enhances operational efficiency but also fortifies your defenses against evolving cyber threats.
  • 38
    Hydra Reviews
    Hydra is an innovative, open-source solution that transforms Postgres into a column-oriented database, enabling instant queries over billions of rows without necessitating any alterations to your existing code. By employing advanced techniques such as parallelization and vectorization for aggregate functions like COUNT, SUM, and AVG, Hydra significantly enhances the speed and efficiency of data processing in Postgres. In just five minutes, you can set up Hydra without modifying your syntax, tools, data model, or extensions, ensuring a hassle-free integration. For those seeking a fully managed experience, Hydra Cloud offers seamless operations and optimal performance. Various industries can benefit from tailored analytics by leveraging powerful Postgres extensions and custom functions, allowing you to take charge of your data needs. Designed with user requirements in mind, Hydra stands out as the fastest Postgres solution available for analytical tasks, making it an essential tool for data-driven decision-making. With features like columnar storage, query parallelization, and vectorization, Hydra is poised to redefine the analytics landscape.
  • 39
    Imply Reviews
    Imply is a cutting-edge analytics platform that leverages Apache Druid to manage extensive, high-performance OLAP (Online Analytical Processing) tasks in real-time. It excels at ingesting data instantly, delivering rapid query results, and enabling intricate analytical inquiries across vast datasets while maintaining low latency. This platform is specifically designed for enterprises that require engaging analytics, real-time dashboards, and data-centric decision-making on a large scale. Users benefit from an intuitive interface for exploring data, enhanced by features like multi-tenancy, detailed access controls, and operational insights. Its distributed architecture and ability to scale make Imply particularly advantageous for applications in streaming data analysis, business intelligence, and real-time monitoring across various sectors. Furthermore, its capabilities ensure that organizations can efficiently adapt to increasing data demands and quickly derive actionable insights from their data.
  • 40
    Citus Reviews

    Citus

    Citus Data

    $0.27 per hour
    Citus enhances the beloved Postgres experience by integrating the capability of distributed tables, while remaining fully open source. It now supports both schema-based and row-based sharding, alongside compatibility with Postgres 16. You can scale Postgres effectively by distributing both data and queries, starting with a single Citus node and seamlessly adding more nodes and rebalancing shards as your needs expand. By utilizing parallelism, maintaining a larger dataset in memory, increasing I/O bandwidth, and employing columnar compression, you can significantly accelerate query performance by up to 300 times or even higher. As an extension rather than a fork, Citus works with the latest versions of Postgres, allowing you to utilize your existing SQL tools and build on your Postgres knowledge. Additionally, you can alleviate infrastructure challenges by managing both transactional and analytical tasks within a single database system. Citus is available for free download as open source, giving you the option to self-manage it while actively contributing to its development through GitHub. Shift your focus from database concerns to application development by running your applications on Citus within the Azure Cosmos DB for PostgreSQL environment, making your workflow more efficient.
  • 41
    CockroachDB Reviews
    CockroachDB: Cloud-native distributed SQL. Your cloud applications deserve a cloud-native database. Cloud-based apps and services need a database that can scale across clouds, reduces operational complexity, and improves reliability. CockroachDB provides resilient, distributed SQL with ACID transactions. Data partitioned by geography is also available. Combining CockroachDB and orchestration tools such as Mesosphere DC/OS and Kubernetes to automate mission-critical applications can speed up operations.
  • 42
    IBM Db2 Big SQL Reviews
    IBM Db2 Big SQL is a sophisticated hybrid SQL-on-Hadoop engine that facilitates secure and advanced data querying across a range of enterprise big data sources, such as Hadoop, object storage, and data warehouses. This enterprise-grade engine adheres to ANSI standards and provides massively parallel processing (MPP) capabilities, enhancing the efficiency of data queries. With Db2 Big SQL, users can execute a single database connection or query that spans diverse sources, including Hadoop HDFS, WebHDFS, relational databases, NoSQL databases, and object storage solutions. It offers numerous advantages, including low latency, high performance, robust data security, compatibility with SQL standards, and powerful federation features, enabling both ad hoc and complex queries. Currently, Db2 Big SQL is offered in two distinct variations: one that integrates seamlessly with Cloudera Data Platform and another as a cloud-native service on the IBM Cloud Pak® for Data platform. This versatility allows organizations to access and analyze data effectively, performing queries on both batch and real-time data across various sources, thus streamlining their data operations and decision-making processes. In essence, Db2 Big SQL provides a comprehensive solution for managing and querying extensive datasets in an increasingly complex data landscape.
  • 43
    Teradata Vantage Reviews
    Teradata presents VantageCloud, an all-encompassing cloud analytics solution aimed at speeding up innovation powered by data. By combining artificial intelligence, machine learning, and immediate data processing capabilities, VantageCloud empowers organizations to convert unrefined data into useful insights. The platform caters to various applications, such as sophisticated analytics, business intelligence, and transitioning to the cloud, while offering effortless deployment in public, hybrid, or on-site setups. With Teradata's powerful analytics capabilities, businesses can harness the full potential of their data, enhancing operational efficiency and discovering fresh avenues for growth in multiple sectors. This adaptability makes VantageCloud a vital asset for organizations looking to thrive in a data-driven landscape.
  • 44
    Ascend Reviews

    Ascend

    Ascend

    $0.98 per DFC
    Ascend offers data teams a streamlined and automated platform designed for the ingestion, transformation, and orchestration of their complete data engineering and analytics workloads, achieving speeds up to 10 times faster than previously possible. By facilitating gridlocked teams, Ascend enables them to overcome limitations and effectively build, manage, and optimize the ever-growing array of data workloads they face. With the support of DataAware intelligence, Ascend operates continuously behind the scenes to ensure data integrity while optimizing workloads, which can cut maintenance time by as much as 90%. Users can effortlessly create, refine, and execute data transformations through Ascend’s versatile flex-code interface, which supports SQL, Python, Java, and Scala interchangeably. Additionally, users can swiftly access critical insights, such as data lineage, profiles, job and user logs, system health, and essential workload metrics all in one place. Ascend also provides seamless connections to an expanding array of popular data sources through its Flex-Code data connectors, making integration smoother than ever. This comprehensive approach allows teams to leverage their data more effectively, fostering a culture of innovation and agility in their analytics processes.
  • 45
    Amazon Aurora Reviews
    Amazon Aurora is a cloud-based relational database that is compatible with both MySQL and PostgreSQL, merging the high performance and reliability of traditional enterprise databases with the ease and affordability of open-source solutions. Its performance surpasses that of standard MySQL databases by as much as five times and outpaces standard PostgreSQL databases by three times. Additionally, it offers the security, availability, and dependability synonymous with commercial databases, all at a fraction of the cost—specifically, one-tenth. Fully managed by the Amazon Relational Database Service (RDS), Aurora simplifies operations by automating essential tasks such as hardware provisioning, database configuration, applying patches, and conducting backups. The database boasts a self-healing, fault-tolerant storage system that automatically scales to accommodate up to 64TB for each database instance. Furthermore, Amazon Aurora ensures high performance and availability through features like the provision of up to 15 low-latency read replicas, point-in-time recovery options, continuous backups to Amazon S3, and data replication across three distinct Availability Zones, which enhances data resilience and accessibility. This combination of features makes Amazon Aurora an appealing choice for businesses looking to leverage the cloud for their database needs while maintaining robust performance and security.
  • 46
    Apache Hive Reviews
    Apache Hive is a data warehousing solution that enables users to read, write, and manage extensive datasets stored across distributed systems utilizing SQL. It allows for the imposition of structure on existing stored data. Users can connect with Hive through a command line interface and a JDBC driver. As an open-source initiative, Apache Hive is maintained by dedicated volunteers at the Apache Software Foundation. Initially, it was part of the Apache® Hadoop® ecosystem but has since evolved into a standalone top-level project. We invite those interested to explore the project further and share their skills. To run SQL applications and queries on distributed datasets, traditional SQL queries need to be executed via the MapReduce Java API. However, Hive simplifies this process by offering a SQL abstraction that allows users to execute SQL-like queries known as HiveQL, without requiring the implementation of low-level Java API queries. This makes working with large datasets more accessible and efficient for users familiar with SQL.
  • 47
    Motif Analytics Reviews
    Dynamic and engaging visualizations enable the discovery of trends within user and business processes, offering comprehensive insight into the foundational computations. A concise collection of sequential operations delivers extensive functionality and meticulous control, all achievable in fewer than ten lines of code. An adaptive query engine allows users to effortlessly balance the trade-offs between query accuracy, processing speed, and costs to suit their specific requirements. Currently, Motif employs a specialized domain-specific language known as Sequence Operations Language (SOL), which we find to be more intuitive than SQL while providing greater capabilities than a simple drag-and-drop interface. Additionally, we have developed a bespoke engine designed to enhance the efficiency of sequence queries, while strategically sacrificing unnecessary precision that does not contribute to decision-making, in favor of improving query performance. This approach not only streamlines the user experience but also maximizes the effectiveness of data analysis.
  • 48
    MariaDB Reviews
    MariaDB Platform is an enterprise-level open-source database solution. It supports transactional, analytical, and hybrid workloads, as well as relational and JSON data models. It can scale from standalone databases to data warehouses to fully distributed SQL, which can execute millions of transactions per second and perform interactive, ad-hoc analytics on billions upon billions of rows. MariaDB can be deployed on prem-on commodity hardware. It is also available on all major public cloud providers and MariaDB SkySQL, a fully managed cloud database. MariaDB.com provides more information.
  • 49
    Apache Doris Reviews

    Apache Doris

    The Apache Software Foundation

    Free
    Apache Doris serves as an advanced data warehouse tailored for real-time analytics, providing exceptionally rapid insights into large-scale real-time data. It features both push-based micro-batch and pull-based streaming data ingestion, achieving this within a second, along with a storage engine capable of real-time updates, appends, and pre-aggregations. The platform is optimized for handling high-concurrency and high-throughput queries thanks to its columnar storage engine, MPP architecture, cost-based query optimizer, and vectorized execution engine. Moreover, it supports federated querying across various data lakes like Hive, Iceberg, and Hudi, as well as traditional databases such as MySQL and PostgreSQL. Doris also accommodates complex data types, including Array, Map, and JSON, and features a variant data type that allows for automatic inference of JSON data types. Additionally, it employs advanced indexing techniques like NGram bloomfilter and inverted index to enhance text search capabilities. With its distributed architecture, Doris enables linear scalability, incorporates workload isolation, and implements tiered storage to optimize resource management effectively. Furthermore, it is designed to support both shared-nothing clusters and the separation of storage and compute resources, making it a versatile solution for diverse analytical needs.
  • 50
    Molecula Reviews
    Molecula serves as an enterprise feature store that streamlines, enhances, and manages big data access to facilitate large-scale analytics and artificial intelligence. By consistently extracting features, minimizing data dimensionality at the source, and channeling real-time feature updates into a centralized repository, it allows for millisecond-level queries, computations, and feature re-utilization across various formats and locations without the need to duplicate or transfer raw data. This feature store grants data engineers, scientists, and application developers a unified access point, enabling them to transition from merely reporting and interpreting human-scale data to actively forecasting and recommending immediate business outcomes using comprehensive data sets. Organizations often incur substantial costs when preparing, consolidating, and creating multiple copies of their data for different projects, which delays their decision-making processes. Molecula introduces a groundbreaking approach for continuous, real-time data analysis that can be leveraged for all mission-critical applications, dramatically improving efficiency and effectiveness in data utilization. This transformation empowers businesses to make informed decisions swiftly and accurately, ensuring they remain competitive in an ever-evolving landscape.