What Integrates with PopSQL?
Find out what PopSQL integrations exist in 2025. Learn what software and services currently integrate with PopSQL, and sort them by reviews, cost, features, and more. Below is a list of products that PopSQL currently integrates with:
-
1
Google Cloud BigQuery
Google
Free ($300 in free credits) 1,734 RatingsBigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises. Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently. -
2
Slack
Salesforce
$6.67 per user per month 249 RatingsSlack is a cloud-based platform that enhances project collaboration and team communication, specifically tailored to foster smooth interaction within organizations. With a robust suite of tools and services unified in one platform, Slack allows for private channels that encourage engagement among smaller groups, direct messaging options for sending information straight to coworkers, and public channels that invite discussions among members from different organizations. Accessible on various operating systems including Mac, Windows, Android, and iOS, Slack boasts a wide array of features such as chat capabilities, file sharing, collaborative workspaces, instant notifications, two-way audio and video calls, screen sharing, document imaging, and activity tracking, among other functionalities. Additionally, its user-friendly interface and versatile integration options make it a popular choice for teams seeking to enhance their productivity and communication effectiveness. -
3
MongoDB
MongoDB
Free 21 RatingsMongoDB is a versatile, document-oriented, distributed database designed specifically for contemporary application developers and the cloud landscape. It offers unparalleled productivity, enabling teams to ship and iterate products 3 to 5 times faster thanks to its adaptable document data model and a single query interface that caters to diverse needs. Regardless of whether you're serving your very first customer or managing 20 million users globally, you'll be able to meet your performance service level agreements in any setting. The platform simplifies high availability, safeguards data integrity, and adheres to the security and compliance requirements for your critical workloads. Additionally, it features a comprehensive suite of cloud database services that support a broad array of use cases, including transactional processing, analytics, search functionality, and data visualizations. Furthermore, you can easily deploy secure mobile applications with built-in edge-to-cloud synchronization and automatic resolution of conflicts. MongoDB's flexibility allows you to operate it in various environments, from personal laptops to extensive data centers, making it a highly adaptable solution for modern data management challenges. -
4
SQLite is a C-language library that offers a compact, efficient, and reliable SQL database engine that is fully featured. Recognized as the most popular database engine globally, SQLite is embedded in every mobile device and the majority of computers, while also being included in a myriad of applications that are used daily by individuals. Operating as an in-process library, SQLite provides a self-sufficient, serverless, and zero-configuration transactional SQL database engine. The source code of SQLite resides in the public domain, making it available for anyone to use freely, whether for commercial or personal purposes. With its extensive deployment and integration into numerous applications, SQLite stands out as an invaluable tool for developers in various high-profile projects. Its versatility and ease of use contribute to its unmatched popularity in the database landscape.
-
5
MySQL stands out as the most widely used open source database globally. Thanks to its established track record in performance, dependability, and user-friendliness, it has emerged as the preferred database for web applications, powering notable platforms such as Facebook, Twitter, and YouTube, alongside the top five websites. Furthermore, MySQL is also highly favored as an embedded database solution, being distributed by numerous independent software vendors and original equipment manufacturers. Its versatility and robust features contribute to its widespread adoption across various industries.
-
6
Snowflake offers a unified AI Data Cloud platform that transforms how businesses store, analyze, and leverage data by eliminating silos and simplifying architectures. It features interoperable storage that enables seamless access to diverse datasets at massive scale, along with an elastic compute engine that delivers leading performance for a wide range of workloads. Snowflake Cortex AI integrates secure access to cutting-edge large language models and AI services, empowering enterprises to accelerate AI-driven insights. The platform’s cloud services automate and streamline resource management, reducing complexity and cost. Snowflake also offers Snowgrid, which securely connects data and applications across multiple regions and cloud providers for a consistent experience. Their Horizon Catalog provides built-in governance to manage security, privacy, compliance, and access control. Snowflake Marketplace connects users to critical business data and apps to foster collaboration within the AI Data Cloud network. Serving over 11,000 customers worldwide, Snowflake supports industries from healthcare and finance to retail and telecom.
-
7
SQL Server
Microsoft
Free 2 RatingsMicrosoft SQL Server 2019 incorporates both intelligence and security, providing users with added features at no additional cost while ensuring top-tier performance and adaptability for on-premises requirements. You can seamlessly transition to the cloud, taking full advantage of its efficiency and agility without the need to alter your existing code. By leveraging Azure, you can accelerate insight generation and predictive analytics. Development is flexible, allowing you to utilize your preferred technologies, including open-source options, supported by Microsoft's advancements. The platform enables easy data integration into your applications and offers a comprehensive suite of cognitive services that facilitate the creation of human-like intelligence, regardless of data volume. The integration of AI is intrinsic to the data platform, allowing for quicker insight extraction from both on-premises and cloud-stored data. By combining your unique enterprise data with global data, you can foster an organization that is driven by intelligence. The dynamic data platform provides a consistent user experience across various environments, expediting the time it takes to bring innovations to market; this allows you to develop your applications and deploy them in any environment you choose, enhancing overall operational efficiency. -
8
Amazon Athena
Amazon
2 RatingsAmazon Athena serves as an interactive query service that simplifies the process of analyzing data stored in Amazon S3 through the use of standard SQL. As a serverless service, it eliminates the need for infrastructure management, allowing users to pay solely for the queries they execute. The user-friendly interface enables you to simply point to your data in Amazon S3, establish the schema, and begin querying with standard SQL commands, with most results returning in mere seconds. Athena negates the requirement for intricate ETL processes to prepare data for analysis, making it accessible for anyone possessing SQL skills to swiftly examine large datasets. Additionally, Athena integrates seamlessly with AWS Glue Data Catalog, which facilitates the creation of a consolidated metadata repository across multiple services. This integration allows users to crawl data sources to identify schemas, update the Catalog with new and modified table and partition definitions, and manage schema versioning effectively. Not only does this streamline data management, but it also enhances the overall efficiency of data analysis within the AWS ecosystem. -
9
Apache Cassandra
Apache Software Foundation
1 RatingWhen seeking a database that ensures both scalability and high availability without sacrificing performance, Apache Cassandra stands out as an ideal option. Its linear scalability paired with proven fault tolerance on standard hardware or cloud services positions it as an excellent choice for handling mission-critical data effectively. Additionally, Cassandra's superior capability to replicate data across several datacenters not only enhances user experience by reducing latency but also offers reassurance in the event of regional failures. This combination of features makes it a robust solution for organizations that prioritize data resilience and efficiency. -
10
Azure Synapse Analytics
Microsoft
1 RatingAzure Synapse represents the advanced evolution of Azure SQL Data Warehouse. It is a comprehensive analytics service that integrates enterprise data warehousing with Big Data analytics capabilities. Users can query data flexibly, choosing between serverless or provisioned resources, and can do so at scale. By merging these two domains, Azure Synapse offers a cohesive experience for ingesting, preparing, managing, and delivering data, catering to the immediate requirements of business intelligence and machine learning applications. This integration enhances the efficiency and effectiveness of data-driven decision-making processes. -
11
ClickHouse
ClickHouse
1 RatingClickHouse is an efficient, open-source OLAP database management system designed for high-speed data processing. Its column-oriented architecture facilitates the creation of analytical reports through real-time SQL queries. In terms of performance, ClickHouse outshines similar column-oriented database systems currently on the market. It has the capability to handle hundreds of millions to over a billion rows, as well as tens of gigabytes of data, on a single server per second. By maximizing the use of available hardware, ClickHouse ensures rapid query execution. The peak processing capacity for individual queries can exceed 2 terabytes per second, considering only the utilized columns after decompression. In a distributed environment, read operations are automatically optimized across available replicas to minimize latency. Additionally, ClickHouse features multi-master asynchronous replication, enabling deployment across various data centers. Each node operates equally, effectively eliminating potential single points of failure and enhancing overall reliability. This robust architecture allows organizations to maintain high availability and performance even under heavy workloads. -
12
Amazon Redshift
Amazon
$0.25 per hourAmazon Redshift is the preferred choice among customers for cloud data warehousing, outpacing all competitors in popularity. It supports analytical tasks for a diverse range of organizations, from Fortune 500 companies to emerging startups, facilitating their evolution into large-scale enterprises, as evidenced by Lyft's growth. No other data warehouse simplifies the process of extracting insights from extensive datasets as effectively as Redshift. Users can perform queries on vast amounts of structured and semi-structured data across their operational databases, data lakes, and the data warehouse using standard SQL queries. Moreover, Redshift allows for the seamless saving of query results back to S3 data lakes in open formats like Apache Parquet, enabling further analysis through various analytics services, including Amazon EMR, Amazon Athena, and Amazon SageMaker. Recognized as the fastest cloud data warehouse globally, Redshift continues to enhance its performance year after year. For workloads that demand high performance, the new RA3 instances provide up to three times the performance compared to any other cloud data warehouse available today, ensuring businesses can operate at peak efficiency. This combination of speed and user-friendly features makes Redshift a compelling choice for organizations of all sizes. -
13
dbt
dbt Labs
$50 per user per monthVersion control, quality assurance, documentation, and modularity enable data teams to work together similarly to software engineering teams. It is crucial to address analytics errors with the same urgency as one would for bugs in a live product. A significant portion of the analytic workflow is still performed manually. Therefore, we advocate for workflows to be designed for execution with a single command. Data teams leverage dbt to encapsulate business logic, making it readily available across the organization for various purposes including reporting, machine learning modeling, and operational tasks. The integration of continuous integration and continuous deployment (CI/CD) ensures that modifications to data models progress smoothly through the development, staging, and production phases. Additionally, dbt Cloud guarantees uptime and offers tailored service level agreements (SLAs) to meet organizational needs. This comprehensive approach fosters a culture of reliability and efficiency within data operations. -
14
GitHub Student Developer Pack
GitHub
$40 per yearMaster the art of software deployment like an expert. While hands-on practice is invaluable, many students find that accessing real-world tools can be financially burdensome. To alleviate this issue, we launched the GitHub Student Developer Pack in collaboration with some of our partners and supporters. This pack equips you with all the essentials for hosting a virtual event. Focus on creating an engaging experience, and we'll handle the necessary tools. Our virtual event kit is designed to empower students by simplifying the process of organizing online events and making them more accessible. Additionally, everything you need for your upcoming website project is included. You will learn to design and construct your own website while grasping the fundamentals of web development. The introductory web development experience provides students with essential resources to embark on their journey, regardless of their current skill level or technical expertise. With the tools included, anyone can produce visually appealing graphics and designs, thanks to a library of thousands of templates and a user-friendly editor. Moreover, you will discover cost-effective options for registration, hosting, domain management, and many other services that will enhance your online presence. This comprehensive approach ensures that every student has the opportunity to thrive in the digital landscape. -
15
PostgresML
PostgresML
$.60 per hourPostgresML serves as a comprehensive platform integrated within a PostgreSQL extension, allowing users to construct models that are not only simpler and faster but also more scalable directly within their database environment. Users can delve into the SDK and utilize open-source models available in our hosted database for experimentation. The platform enables a seamless automation of the entire process, from generating embeddings to indexing and querying, which facilitates the creation of efficient knowledge-based chatbots. By utilizing various natural language processing and machine learning techniques, including vector search and personalized embeddings, users can enhance their search capabilities significantly. Additionally, it empowers businesses to analyze historical data through time series forecasting, thereby unearthing vital insights. With the capability to develop both statistical and predictive models, users can harness the full potential of SQL alongside numerous regression algorithms. The integration of machine learning at the database level allows for quicker result retrieval and more effective fraud detection. By abstracting the complexities of data management throughout the machine learning and AI lifecycle, PostgresML permits users to execute machine learning and large language models directly on a PostgreSQL database, making it a robust tool for data-driven decision-making. Ultimately, this innovative approach streamlines processes and fosters a more efficient use of data resources. -
16
Freshpaint
Perfalytics
To enhance your decision-making process, it's essential to utilize customer data without the burden of requiring engineers to write code for every single event. Freshpaint automatically identifies clicks and actions on your website and transfers the collected data to numerous analytics and advertising platforms through its ready-made integrations. If you happen to miss tracking an event, Freshpaint can provide you with immediate insights by retrieving historical data for any newly identified event, eliminating the usual waiting period of two weeks. For startups in the digital health sector, Freshpaint is ready to sign Business Associate Agreements (BAAs) and is entirely tailored to handle Protected Health Information (PHI). Since developers typically implement tracking for various analytics and marketing tools but aren’t always the primary users of these systems, Freshpaint offers the adaptability needed for a more efficient workflow. This allows teams to accelerate their pace and allocate more time to focus on developing their core products effectively. By streamlining the data tracking process, Freshpaint empowers businesses to make informed decisions swiftly. -
17
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights. -
18
PostgreSQL
PostgreSQL Global Development Group
PostgreSQL stands out as a highly capable, open-source object-relational database system that has been actively developed for more than three decades, earning a solid reputation for its reliability, extensive features, and impressive performance. Comprehensive resources for installation and usage are readily available in the official documentation, which serves as an invaluable guide for both new and experienced users. Additionally, the open-source community fosters numerous forums and platforms where individuals can learn about PostgreSQL, understand its functionalities, and explore job opportunities related to it. Engaging with this community can enhance your knowledge and connection to the PostgreSQL ecosystem. Recently, the PostgreSQL Global Development Group announced updates for all supported versions, including 15.1, 14.6, 13.9, 12.13, 11.18, and 10.23, which address 25 reported bugs from the past few months. Notably, this marks the final release for PostgreSQL 10, meaning that it will no longer receive any security patches or bug fixes going forward. Therefore, if you are currently utilizing PostgreSQL 10 in your production environment, it is highly recommended that you plan to upgrade to a more recent version to ensure continued support and security. Upgrading will not only help maintain the integrity of your data but also allow you to take advantage of the latest features and improvements introduced in newer releases. -
19
Presto
Presto Foundation
Presto serves as an open-source distributed SQL query engine designed for executing interactive analytic queries across data sources that can range in size from gigabytes to petabytes. It addresses the challenges faced by data engineers who often navigate multiple query languages and interfaces tied to isolated databases and storage systems. Presto stands out as a quick and dependable solution by offering a unified ANSI SQL interface for comprehensive data analytics and your open lakehouse. Relying on different engines for various workloads often leads to the necessity of re-platforming in the future. However, with Presto, you benefit from a singular, familiar ANSI SQL language and one engine for all your analytic needs, negating the need to transition to another lakehouse engine. Additionally, it efficiently accommodates both interactive and batch workloads, handling small to large datasets and scaling from just a few users to thousands. By providing a straightforward ANSI SQL interface for all your data residing in varied siloed systems, Presto effectively integrates your entire data ecosystem, fostering seamless collaboration and accessibility across platforms. Ultimately, this integration empowers organizations to make more informed decisions based on a comprehensive view of their data landscape. -
20
SQL
SQL
SQL is a specialized programming language designed specifically for the purpose of retrieving, organizing, and modifying data within relational databases and the systems that manage them. Its use is essential for effective database management and interaction. -
21
Oracle Database
Oracle
Oracle's database offerings provide clients with cost-effective and high-efficiency options, including the renowned multi-model database management system, as well as in-memory, NoSQL, and MySQL databases. The Oracle Autonomous Database, which can be accessed on-premises through Oracle Cloud@Customer or within the Oracle Cloud Infrastructure, allows users to streamline their relational database systems and lessen management burdens. By removing the intricacies associated with operating and securing Oracle Database, Oracle Autonomous Database ensures customers experience exceptional performance, scalability, and reliability. Furthermore, organizations concerned about data residency and network latency can opt for on-premises deployment of Oracle Database. Additionally, clients who rely on specific versions of Oracle databases maintain full authority over their operational versions and the timing of any updates. This flexibility empowers businesses to tailor their database environments according to their unique requirements.
- Previous
- You're on page 1
- Next