Best Pixis Alternatives in 2024
Find the top alternatives to Pixis currently available. Compare ratings, reviews, pricing, and features of Pixis alternatives in 2024. Slashdot lists the best Pixis alternatives on the market that offer competing products that are similar to Pixis. Sort through Pixis alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
620 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. -
2
Amazon SageMaker Model training reduces the time and costs of training and tuning machine learning (ML), models at scale, without the need for infrastructure management. SageMaker automatically scales infrastructure up or down from one to thousands of GPUs. This allows you to take advantage of the most performant ML compute infrastructure available. You can control your training costs better because you only pay for what you use. SageMaker distributed libraries can automatically split large models across AWS GPU instances. You can also use third-party libraries like DeepSpeed, Horovod or Megatron to speed up deep learning models. You can efficiently manage your system resources using a variety of GPUs and CPUs, including P4d.24xl instances. These are the fastest training instances available in the cloud. Simply specify the location of the data and indicate the type of SageMaker instances to get started.
-
3
BentoML
BentoML
FreeYour ML model can be served in minutes in any cloud. Unified model packaging format that allows online and offline delivery on any platform. Our micro-batching technology allows for 100x more throughput than a regular flask-based server model server. High-quality prediction services that can speak the DevOps language, and seamlessly integrate with common infrastructure tools. Unified format for deployment. High-performance model serving. Best practices in DevOps are incorporated. The service uses the TensorFlow framework and the BERT model to predict the sentiment of movie reviews. DevOps-free BentoML workflow. This includes deployment automation, prediction service registry, and endpoint monitoring. All this is done automatically for your team. This is a solid foundation for serious ML workloads in production. Keep your team's models, deployments and changes visible. You can also control access via SSO and RBAC, client authentication and auditing logs. -
4
OctoAI
OctoML
OctoAI is a world-class computing infrastructure that allows you to run and tune models that will impress your users. Model endpoints that are fast and efficient, with the freedom to run any type of model. OctoAI models can be used or you can bring your own. Create ergonomic model endpoints within minutes with just a few lines code. Customize your model for any use case that benefits your users. You can scale from zero users to millions without worrying about hardware, speed or cost overruns. Use our curated list to find the best open-source foundations models. We've optimized them for faster and cheaper performance using our expertise in machine learning compilation and acceleration techniques. OctoAI selects the best hardware target and applies the latest optimization techniques to keep your running models optimized. -
5
NVIDIA AI Enterprise
NVIDIA
NVIDIA AI Enterprise is the software layer of NVIDIA AI Platform. It accelerates the data science pipeline, streamlines development and deployments of production AI including generative AI, machine vision, speech AI, and more. NVIDIA AI Enterprise has over 50 frameworks, pre-trained models, and development tools. It is designed to help enterprises get to the forefront of AI while simplifying AI to make it more accessible to all. Artificial intelligence and machine learning are now mainstream and a key part of every company's competitive strategy. Enterprises face the greatest challenges when it comes to managing siloed infrastructure in the cloud and on-premises. AI requires that their environments be managed as a single platform and not as isolated clusters of compute. -
6
Ori GPU Cloud
Ori
$3.24 per monthLaunch GPU-accelerated instances that are highly configurable for your AI workload and budget. Reserve thousands of GPUs for training and inference in a next generation AI data center. The AI world is moving to GPU clouds in order to build and launch groundbreaking models without having the hassle of managing infrastructure or scarcity of resources. AI-centric cloud providers are outperforming traditional hyperscalers in terms of availability, compute costs, and scaling GPU utilization for complex AI workloads. Ori has a large pool with different GPU types that are tailored to meet different processing needs. This ensures that a greater concentration of powerful GPUs are readily available to be allocated compared to general purpose clouds. Ori offers more competitive pricing, whether it's for dedicated servers or on-demand instances. Our GPU compute costs are significantly lower than the per-hour and per-use pricing of legacy cloud services. -
7
Run:AI
Run:AI
Virtualization Software for AI Infrastructure. Increase GPU utilization by having visibility and control over AI workloads. Run:AI has created the first virtualization layer in the world for deep learning training models. Run:AI abstracts workloads from the underlying infrastructure and creates a pool of resources that can dynamically provisioned. This allows for full utilization of costly GPU resources. You can control the allocation of costly GPU resources. The scheduling mechanism in Run:AI allows IT to manage, prioritize and align data science computing requirements with business goals. IT has full control over GPU utilization thanks to Run:AI's advanced monitoring tools and queueing mechanisms. IT leaders can visualize their entire infrastructure capacity and utilization across sites by creating a flexible virtual pool of compute resources. -
8
MosaicML
MosaicML
With a single command, you can train and serve large AI models in scale. You can simply point to your S3 bucket. We take care of the rest: orchestration, efficiency and node failures. Simple and scalable. MosaicML allows you to train and deploy large AI model on your data in a secure environment. Keep up with the latest techniques, recipes, and foundation models. Our research team has developed and rigorously tested these recipes. In just a few easy steps, you can deploy your private cloud. Your data and models will never leave the firewalls. You can start in one cloud and continue in another without missing a beat. Own the model trained on your data. Model decisions can be better explained by examining them. Filter content and data according to your business needs. Integrate seamlessly with your existing data pipelines and experiment trackers. We are cloud-agnostic and enterprise-proven. -
9
Qubrid AI
Qubrid AI
$0.68/hour/ GPU Qubrid AI is a company that specializes in Artificial Intelligence. Its mission is to solve complex real-world problems across multiple industries. Qubrid AI’s software suite consists of AI Hub, an all-in-one shop for AI models, AI Compute GPU cloud and On-Prem appliances, and AI Data Connector. You can train or infer industry-leading models, or your own custom creations. All within a streamlined and user-friendly interface. Test and refine models with ease. Then, deploy them seamlessly to unlock the power AI in your projects. AI Hub enables you to embark on a journey of AI, from conception to implementation, in a single powerful platform. Our cutting-edge AI Compute Platform harnesses the power from GPU Cloud and On Prem Server Appliances in order to efficiently develop and operate next generation AI applications. Qubrid is a team of AI developers, research teams and partner teams focused on enhancing the unique platform to advance scientific applications. -
10
Banana
Banana
$7.4868 per hourBanana was founded to fill a critical market gap. Machine learning is highly demanded. But deploying models in production is a highly technical and complex process. Banana focuses on building machine learning infrastructures for the digital economy. We simplify the deployment process, making it as easy as copying and paste an API. This allows companies of any size to access and use the most up-to-date models. We believe the democratization and accessibility of machine learning is one of the key components that will fuel the growth of businesses on a global level. Banana is well positioned to take advantage of this technological gold rush. -
11
VESSL AI
VESSL AI
$100 + compute/month Fully managed infrastructure, tools and workflows allow you to build, train and deploy models faster. Scale inference and deploy custom AI & LLMs in seconds on any infrastructure. Schedule batch jobs to handle your most demanding tasks, and only pay per second. Optimize costs by utilizing GPUs, spot instances, and automatic failover. YAML simplifies complex infrastructure setups by allowing you to train with a single command. Automate the scaling up of workers during periods of high traffic, and scaling down to zero when inactive. Deploy cutting edge models with persistent endpoints within a serverless environment to optimize resource usage. Monitor system and inference metrics, including worker counts, GPU utilization, throughput, and latency in real-time. Split traffic between multiple models to evaluate. -
12
HPE InfoSight
Hewlett Packard Enterprise
You won't have to spend days searching for the root cause of your hybrid environment. HPE InfoSight collects data every second from more than 100,000 systems around the world and uses this intelligence to make each system smarter and self-sufficient. HPE InfoSight automatically predicts and resolves 86% customer issues. To achieve always-on, fast apps, infrastructure must provide greater visibility, intelligent performance suggestions, and more autonomous autonomous operations. HPE InfoSight app insights is the answer. AI can help you go beyond traditional performance monitoring and quickly diagnose and predict problems across all apps and workloads. HPE InfoSight uses AI to create autonomous infrastructure. -
13
NVIDIA Base Command
NVIDIA
NVIDIA Base Command™ is an enterprise-class AI software service that allows businesses and their data scientists accelerate AI development. Base Command Platform, which is part of the NVIDIA DGX™ platform provides centralized, hybrid controls for AI training projects. It is compatible with NVIDIA DGX cloud and NVIDIA DGX superPOD. Base Command Platform in conjunction with NVIDIA's accelerated AI infrastructure provides a cloud hosted solution for AI development. Users can avoid the overheads and pitfalls associated with deploying and operating a DIY platform. Base Command Platform configures and manages AI workflows, provides integrated dataset management and executes them using the right-sized resources, ranging from a single GPU up to large-scale multi-node cloud clusters or on-premises. The platform is constantly updated by NVIDIA engineers and researchers, who rely on it daily. -
14
VectorShift
VectorShift
Create, design, prototype and deploy custom AI workflows. Enhance customer engagement and team/personal productivity. Create and embed your website in just minutes. Connect your chatbot to your knowledge base. Instantly summarize and answer questions about audio, video, and website files. Create marketing copy, personalized emails, call summaries and graphics at large scale. Save time with a library of prebuilt pipelines, such as those for chatbots or document search. Share your pipelines to help the marketplace grow. Your data will not be stored on model providers' servers due to our zero-day retention policy and secure infrastructure. Our partnership begins with a free diagnostic, where we assess if your organization is AI-ready. We then create a roadmap to create a turnkey solution that fits into your processes. -
15
Neysa Nebula
Neysa
$0.12 per hourNebula enables you to scale and deploy your AI projects quickly and easily2 on a highly robust GPU infrastructure. Nebula Cloud powered by Nvidia GPUs on demand allows you to train and infer models easily and securely. You can also create and manage containerized workloads using Nebula's easy-to-use orchestration layer. Access Nebula’s MLOps, low-code/no code engines and AI-powered applications to quickly and seamlessly deploy AI-powered apps for business teams. Choose from the Nebula containerized AI Cloud, your on-prem or any cloud. The Nebula Unify platform allows you to build and scale AI-enabled use cases for business in a matter weeks, not months. -
16
FluidStack
FluidStack
$1.49 per monthUnlock prices that are 3-5x higher than those of traditional clouds. FluidStack aggregates GPUs from data centres around the world that are underutilized to deliver the best economics in the industry. Deploy up to 50,000 high-performance servers within seconds using a single platform. In just a few days, you can access large-scale A100 or H100 clusters using InfiniBand. FluidStack allows you to train, fine-tune and deploy LLMs for thousands of GPUs at affordable prices in minutes. FluidStack unifies individual data centers in order to overcome monopolistic GPU pricing. Cloud computing can be made more efficient while allowing for 5x faster computation. Instantly access over 47,000 servers with tier four uptime and security through a simple interface. Train larger models, deploy Kubernetes Clusters, render faster, and stream without latency. Setup with custom images and APIs in seconds. Our engineers provide 24/7 direct support through Slack, email, or phone calls. -
17
Foundry
Foundry
Foundry is the next generation of public cloud powered by an orchestration system that makes it as simple as flicking a switch to access AI computing. Discover the features of our GPU cloud service designed for maximum performance. You can use our GPU cloud services to manage training runs, serve clients, or meet research deadlines. For years, industry giants have invested in infra-teams that build sophisticated tools for cluster management and workload orchestration to abstract the hardware. Foundry makes it possible for everyone to benefit from the compute leverage of a twenty-person team. The current GPU ecosystem operates on a first-come-first-served basis and is fixed-price. The availability of GPUs during peak periods is a problem, as are the wide differences in pricing across vendors. Foundry's price performance is superior to anyone else on the market thanks to a sophisticated mechanism. -
18
Perpetua provides growth optimization and reporting technology for the world’s smartest eCommerce businesses. Through the platform, brands and sellers create goals based on strategy and rely on Perpetua’s best-in-class, always-on optimization engine to execute tactically. Integrations with Amazon, Walmart, Target, Instacart and Google Ads ensure brands achieve full-funnel engagement and maximum visibility. Through Perpetua, you are able to launch efficient, effective, and performance-driven campaigns, while Perpetua’s intelligent reporting tools will surface the most important metrics you need to see in order to easily quantify and examine the investment of your advertising dollars into your business. Perpetua offers tools for advertisers across the full funnel with access to Amazon DSP (OTT, OLV, dynamic display ads), influencer marketing & editorial content with only a few clicks.
-
19
Lemma
Thread AI
Distributed workflows for production and prototype that are event-driven and span AI models, databases, APIs, ETL systems and applications. All on one platform. Reduce operational overheads and infrastructure complexity to enable a faster time-to-value for your organization. Focus on investing in proprietary logical and accelerating feature deliveries without wasting time with platform and architecture choices that slow down development and execution. Revolutionize emergency response through real-time transcription, keyword identification and keyphrase recognition, and integrated connectivity with external systems. Connect the physical and digital realms and optimize maintenance by monitoring sensors, creating a triage for operator review after an alert and creating service tickets on your work order platform. By generating responses based on data from various platforms, you can apply past experience to current problems in new ways. -
20
Amazon EC2 Trn1 Instances
Amazon
$1.34 per hourAmazon Elastic Compute Cloud Trn1 instances powered by AWS Trainium are designed for high-performance deep-learning training of generative AI model, including large language models, latent diffusion models, and large language models. Trn1 instances can save you up to 50% on the cost of training compared to other Amazon EC2 instances. Trn1 instances can be used to train 100B+ parameters DL and generative AI model across a wide range of applications such as text summarizations, code generation and question answering, image generation and video generation, fraud detection, and recommendation. The AWS neuron SDK allows developers to train models on AWS trainsium (and deploy them on the AWS Inferentia chip). It integrates natively into frameworks like PyTorch and TensorFlow, so you can continue to use your existing code and workflows for training models on Trn1 instances. -
21
Amazon SageMaker Clarify
Amazon
Amazon SageMaker Clarify is a machine learning (ML), development tool that provides purpose-built tools to help them gain more insight into their ML training data. SageMaker Clarify measures and detects potential bias using a variety metrics so that ML developers can address bias and explain model predictions. SageMaker Clarify detects potential bias in data preparation, model training, and in your model. You can, for example, check for bias due to age in your data or in your model. A detailed report will quantify the different types of possible bias. SageMaker Clarify also offers feature importance scores that allow you to explain how SageMaker Clarify makes predictions and generates explainability reports in bulk. These reports can be used to support internal or customer presentations and to identify potential problems with your model. -
22
NVIDIA DGX Cloud
NVIDIA
The world's first AI supercomputer in the cloud, NVIDIA DGX™ Cloud is an AI-training-as-a-service solution with integrated DGX infrastructure designed for the unique demands of enterprise AI. NVIDIA DGX Cloud allows businesses to access a combination software-infrastructure solution for AI training. It includes a full-stack AI development suite, a leadership-class infrastructure and concierge support. Businesses can get started immediately with predictable, all in-one pricing. -
23
Google Cloud Vertex AI Workbench
Google
$10 per GBOne development environment for all data science workflows. Natively analyze your data without the need to switch between services. Data to training at scale Models can be built and trained 5X faster than traditional notebooks. Scale up model development using simple connectivity to Vertex AI Services. Access to data is simplified and machine learning is made easier with BigQuery Dataproc, Spark and Vertex AI integration. Vertex AI training allows you to experiment and prototype at scale. Vertex AI Workbench allows you to manage your training and deployment workflows for Vertex AI all from one location. Fully managed, scalable and enterprise-ready, Jupyter-based, fully managed, scalable, and managed compute infrastructure with security controls. Easy connections to Google Cloud's Big Data Solutions allow you to explore data and train ML models. -
24
cnvrg.io
cnvrg.io
An end-to-end solution gives you all the tools your data science team needs to scale your machine learning development, from research to production. cnvrg.io, the world's leading data science platform for MLOps (model management) is a leader in creating cutting-edge machine-learning development solutions that allow you to build high-impact models in half the time. In a collaborative and clear machine learning management environment, bridge science and engineering teams. Use interactive workspaces, dashboards and model repositories to communicate and reproduce results. You should be less concerned about technical complexity and more focused on creating high-impact ML models. The Cnvrg.io container based infrastructure simplifies engineering heavy tasks such as tracking, monitoring and configuration, compute resource management, server infrastructure, feature extraction, model deployment, and serving infrastructure. -
25
JarvisLabs.ai
JarvisLabs.ai
$1,440 per monthWe have all the infrastructure (computers, Frameworks, Cuda) and software (Cuda) you need to train and deploy deep-learning models. You can launch GPU/CPU instances directly from your web browser or automate the process through our Python API. -
26
aiXplain
aiXplain
We offer a set of world-class tools and assets to convert ideas into production ready AI solutions. Build and deploy custom Generative AI end-to-end solutions on our unified Platform, and avoid the hassle of tool fragmentation or platform switching. Launch your next AI-based solution using a single API endpoint. It has never been easier to create, maintain, and improve AI systems. Subscribe to models and datasets on aiXplain’s marketplace. Subscribe to models and data sets to use with aiXplain's no-code/low code tools or the SDK. -
27
There are options for every business to train deep and machine learning models efficiently. There are AI accelerators that can be used for any purpose, from low-cost inference to high performance training. It is easy to get started with a variety of services for development or deployment. Tensor Processing Units are ASICs that are custom-built to train and execute deep neural network. You can train and run more powerful, accurate models at a lower cost and with greater speed and scale. NVIDIA GPUs are available to assist with cost-effective inference and scale-up/scale-out training. Deep learning can be achieved by leveraging RAPID and Spark with GPUs. You can run GPU workloads on Google Cloud, which offers industry-leading storage, networking and data analytics technologies. Compute Engine allows you to access CPU platforms when you create a VM instance. Compute Engine provides a variety of Intel and AMD processors to support your VMs.
-
28
SynapseAI
Habana Labs
SynapseAI, like our accelerator hardware, is designed to optimize deep learning performance and efficiency, but most importantly, for developers, it is also easy to use. SynapseAI's goal is to make it easier and faster for developers by supporting popular frameworks and model. SynapseAI, with its tools and support, is designed to meet deep-learning developers where they are -- allowing them to develop what and in the way they want. Habana-based processors for deep learning preserve software investments and make it simple to build new models. This is true both for training and deployment. -
29
Barbara
Barbara
Barbara is the Edge AI Platform in the industry space. Barbara helps Machine Learning Teams, manage the lifecycle of models in the Edge, at scale. Now companies can deploy, run, and manage their models remotely, in distributed locations, as easily as in the cloud. Barbara is composed by: .- Industrial Connectors for legacy or next-generation equipment. .- Edge Orchestrator to deploy and control container-based and native edge apps across thousands of distributed locations .- MLOps to optimize, deploy, and monitor your trained model in minutes. .- Marketplace of certified Edge Apps, ready to be deployed. .- Remote Device Management for provisioning, configuration, and updates. More --> www. barbara.tech -
30
NVIDIA RAPIDS
NVIDIA
The RAPIDS software library, which is built on CUDAX AI, allows you to run end-to-end data science pipelines and analytics entirely on GPUs. It uses NVIDIA®, CUDA®, primitives for low level compute optimization. However, it exposes GPU parallelism through Python interfaces and high-bandwidth memories speed through user-friendly Python interfaces. RAPIDS also focuses its attention on data preparation tasks that are common for data science and analytics. This includes a familiar DataFrame API, which integrates with a variety machine learning algorithms for pipeline accelerations without having to pay serialization fees. RAPIDS supports multi-node, multiple-GPU deployments. This allows for greatly accelerated processing and training with larger datasets. You can accelerate your Python data science toolchain by making minimal code changes and learning no new tools. Machine learning models can be improved by being more accurate and deploying them faster. -
31
NetMind AI
NetMind AI
NetMind.AI, a decentralized AI ecosystem and computing platform, is designed to accelerate global AI innovations. It offers AI computing power that is affordable and accessible to individuals, companies, and organizations of any size by leveraging idle GPU resources around the world. The platform offers a variety of services including GPU rental, serverless Inference, as well as an AI ecosystem that includes data processing, model development, inference and agent development. Users can rent GPUs for competitive prices, deploy models easily with serverless inference on-demand, and access a variety of open-source AI APIs with low-latency, high-throughput performance. NetMind.AI allows contributors to add their idle graphics cards to the network and earn NetMind Tokens. These tokens are used to facilitate transactions on the platform. Users can pay for services like training, fine-tuning and inference as well as GPU rentals. -
32
NVIDIA Triton Inference Server
NVIDIA
FreeNVIDIA Triton™, an inference server, delivers fast and scalable AI production-ready. Open-source inference server software, Triton inference servers streamlines AI inference. It allows teams to deploy trained AI models from any framework (TensorFlow or NVIDIA TensorRT®, PyTorch or ONNX, XGBoost or Python, custom, and more on any GPU or CPU-based infrastructure (cloud or data center, edge, or edge). Triton supports concurrent models on GPUs to maximize throughput. It also supports x86 CPU-based inferencing and ARM CPUs. Triton is a tool that developers can use to deliver high-performance inference. It integrates with Kubernetes to orchestrate and scale, exports Prometheus metrics and supports live model updates. Triton helps standardize model deployment in production. -
33
NeoPulse
AI Dynamics
The NeoPulse Product Suite contains everything a company needs to begin building custom AI solutions using their own curated data. Server application that uses a powerful AI called "the Oracle" to automate the creation of sophisticated AI models. Manages your AI infrastructure, and orchestrates workflows for automating AI generation activities. A program that has been licensed by an organization to allow any application within the enterprise to access the AI model via a web-based (REST API). NeoPulse, an automated AI platform, enables organizations to deploy, manage and train AI solutions in heterogeneous environments. NeoPulse can handle all aspects of the AI engineering workflow: design, training, deployment, managing, and retiring. -
34
Nebius
Nebius
$2.66/hour Platform with NVIDIA H100 Tensor core GPUs. Competitive pricing. Support from a dedicated team. Built for large-scale ML workloads. Get the most from multihost training with thousands of H100 GPUs in full mesh connections using the latest InfiniBand networks up to 3.2Tb/s. Best value: Save up to 50% on GPU compute when compared with major public cloud providers*. You can save even more by purchasing GPUs in large quantities and reserving GPUs. Onboarding assistance: We provide a dedicated engineer to ensure smooth platform adoption. Get your infrastructure optimized, and k8s installed. Fully managed Kubernetes - Simplify the deployment and scaling of ML frameworks using Kubernetes. Use Managed Kubernetes to train GPUs on multiple nodes. Marketplace with ML Frameworks: Browse our Marketplace to find ML-focused libraries and applications, frameworks, and tools that will streamline your model training. Easy to use. All new users are entitled to a one-month free trial. -
35
Wallaroo.AI
Wallaroo.AI
Wallaroo is the last mile of your machine-learning journey. It helps you integrate ML into your production environment and improve your bottom line. Wallaroo was designed from the ground up to make it easy to deploy and manage ML production-wide, unlike Apache Spark or heavy-weight containers. ML that costs up to 80% less and can scale to more data, more complex models, and more models at a fraction of the cost. Wallaroo was designed to allow data scientists to quickly deploy their ML models against live data. This can be used for testing, staging, and prod environments. Wallaroo supports the most extensive range of machine learning training frameworks. The platform will take care of deployment and inference speed and scale, so you can focus on building and iterating your models. -
36
Instill Core
Instill AI
$19/month/ user Instill Core is a powerful AI infrastructure tool that orchestrates data, models, and pipelines, allowing for the rapid creation of AI-first apps. Instill Cloud is available or you can self-host from the instill core GitHub repository. Instill Core includes Instill VDP: Versatile Data Pipeline, designed to address unstructured data ETL problems and provide robust pipeline orchestration. Instill Model: A MLOps/LLMOps Platform that provides seamless model serving, fine tuning, and monitoring to ensure optimal performance with unstructured ETL. Instill Artifact: Facilitates orchestration of data for unified unstructured representation. Instill Core simplifies AI workflows and makes them easier to manage. It is a must-have for data scientists and developers who use AI technologies. -
37
Oblivus
Oblivus
$0.29 per hourWe have the infrastructure to meet all your computing needs, whether you need one or thousands GPUs or one vCPU or tens of thousand vCPUs. Our resources are available whenever you need them. Our platform makes switching between GPU and CPU instances a breeze. You can easily deploy, modify and rescale instances to meet your needs. You can get outstanding machine learning performance without breaking your bank. The latest technology for a much lower price. Modern GPUs are built to meet your workload demands. Get access to computing resources that are tailored for your models. Our OblivusAI OS allows you to access libraries and leverage our infrastructure for large-scale inference. Use our robust infrastructure to unleash the full potential of gaming by playing games in settings of your choosing. -
38
Amazon EC2 Trn2 Instances
Amazon
Amazon EC2 Trn2 instances powered by AWS Trainium2 are designed for high-performance deep-learning training of generative AI model, including large language models, diffusion models, and diffusion models. They can save up to 50% on the cost of training compared to comparable Amazon EC2 Instances. Trn2 instances can support up to 16 Trainium2 accelerations, delivering up to 3 petaflops FP16/BF16 computing power and 512GB of high bandwidth memory. Trn2 instances support up to 1600 Gbps second-generation Elastic Fabric Adapter network bandwidth. NeuronLink is a high-speed nonblocking interconnect that facilitates efficient data and models parallelism. They are deployed as EC2 UltraClusters and can scale up to 30,000 Trainium2 processors interconnected by a nonblocking, petabit-scale, network, delivering six exaflops in compute performance. The AWS neuron SDK integrates with popular machine-learning frameworks such as PyTorch or TensorFlow. -
39
GMI Cloud
GMI Cloud
$2.50 per hourGMI GPU Cloud allows you to create generative AI applications within minutes. GMI Cloud offers more than just bare metal. Train, fine-tune and infer the latest models. Our clusters come preconfigured with popular ML frameworks and scalable GPU containers. Instantly access the latest GPUs to power your AI workloads. We can provide you with flexible GPUs on-demand or dedicated private cloud instances. Our turnkey Kubernetes solution maximizes GPU resources. Our advanced orchestration tools make it easy to allocate, deploy and monitor GPUs or other nodes. Create AI applications based on your data by customizing and serving models. GMI Cloud allows you to deploy any GPU workload quickly, so that you can focus on running your ML models and not managing infrastructure. Launch pre-configured environment and save time building container images, downloading models, installing software and configuring variables. You can also create your own Docker images to suit your needs. -
40
Google Cloud TPU
Google
$0.97 per chip-hourMachine learning has led to business and research breakthroughs in everything from network security to medical diagnosis. To make similar breakthroughs possible, we created the Tensor Processing unit (TPU). Cloud TPU is a custom-designed machine learning ASIC which powers Google products such as Translate, Photos and Search, Assistant, Assistant, and Gmail. Here are some ways you can use the TPU and machine-learning to accelerate your company's success, especially when it comes to scale. Cloud TPU is designed for cutting-edge machine learning models and AI services on Google Cloud. Its custom high-speed network provides over 100 petaflops performance in a single pod. This is enough computational power to transform any business or create the next breakthrough in research. It is similar to compiling code to train machine learning models. You need to update frequently and you want to do it as efficiently as possible. As apps are built, deployed, and improved, ML models must be trained repeatedly. -
41
IBM watsonx.ai
IBM
Now available: a next-generation enterprise studio for AI developers to train, validate and tune AI models IBM® Watsonx.ai™ AI Studio is part of IBM watsonx™ AI platform. It combines generative AI capabilities powered by foundational models with traditional machine learning into a powerful AI studio that spans the AI lifecycle. With easy-to-use tools, you can build and refine performant prompts to tune and guide models based on your enterprise data. With watsonx.ai you can build AI apps in a fraction the time with a fraction the data. Watsonx.ai offers: End-to end AI governance: Enterprises are able to scale and accelerate AI's impact by using trusted data from across the business. IBM offers the flexibility to integrate your AI workloads and deploy them into your hybrid cloud stack of choice. -
42
ONTAP AI
NetApp
D-I-Y can be used in certain situations, such as weed control. It's a different story to build your AI infrastructure. ONTAP AI consolidates the data center's worth in analytics, training, inference computation, and training into one, 5-petaflop AI system. NetApp ONTAP AI is powered by NVIDIA's DGX™, and NetApp's cloud-connected all flash storage. This allows you to fully realize the promise and potential of deep learning (DL). With the proven ONTAP AI architecture, you can simplify, accelerate and integrate your data pipeline. Your data fabric, which spans from the edge to the core to the cloud, will streamline data flow and improve analytics, training, inference, and performance. NetApp ONTAPAI is the first converged infrastructure platform to include NVIDIA DGX A100 (the world's first 5-petaflop AIO system) and NVIDIA Mellanox®, high-performance Ethernet switches. You get unified AI workloads and simplified deployment. -
43
Lambda GPU Cloud
Lambda
$1.25 per hour 1 RatingThe most complex AI, ML, Deep Learning models can be trained. With just a few clicks, you can scale from a single machine up to a whole fleet of VMs. Lambda Cloud makes it easy to scale up or start your Deep Learning project. You can get started quickly, save compute costs, and scale up to hundreds of GPUs. Every VM is pre-installed with the most recent version of Lambda Stack. This includes major deep learning frameworks as well as CUDA®. drivers. You can access the cloud dashboard to instantly access a Jupyter Notebook development environment on each machine. You can connect directly via the Web Terminal or use SSH directly using one of your SSH keys. Lambda can make significant savings by building scaled compute infrastructure to meet the needs of deep learning researchers. Cloud computing allows you to be flexible and save money, even when your workloads increase rapidly. -
44
Amazon SageMaker Edge
Amazon
SageMaker Edge Agent allows for you to capture metadata and data based on triggers you set. This allows you to retrain existing models with real-world data, or create new models. This data can also be used for your own analysis such as model drift analysis. There are three options available for deployment. GGv2 (size 100MB) is an integrated AWS IoT deployment method. SageMaker Edge has a smaller, built-in deployment option for customers with limited device capacities. Customers who prefer a third-party deployment mechanism can plug into our user flow. Amazon SageMaker Edge Manager offers a dashboard that allows you to see the performance of all models across your fleet. The dashboard allows you to visually assess your fleet health and identify problematic models using a dashboard within the console. -
45
Azure Machine Learning
Microsoft
Accelerate the entire machine learning lifecycle. Developers and data scientists can have more productive experiences building, training, and deploying machine-learning models faster by empowering them. Accelerate time-to-market and foster collaboration with industry-leading MLOps -DevOps machine learning. Innovate on a trusted platform that is secure and trustworthy, which is designed for responsible ML. Productivity for all levels, code-first and drag and drop designer, and automated machine-learning. Robust MLOps capabilities integrate with existing DevOps processes to help manage the entire ML lifecycle. Responsible ML capabilities – understand models with interpretability, fairness, and protect data with differential privacy, confidential computing, as well as control the ML cycle with datasheets and audit trials. Open-source languages and frameworks supported by the best in class, including MLflow and Kubeflow, ONNX and PyTorch. TensorFlow and Python are also supported. -
46
OORT DataHub
OORT
OORT DataHub, a blockchain-powered platform, allows people to contribute to AI development around the world by collecting and preprocessing AI data using smartphones and PCs. AI data transparency and safety built for an "OpenAI". All AI data will be automatically stored on OORT Cloud Storage - a global, decentralized storage network - and verified on the blockchain. DataHub allows users to submit data such as images, audio or video. These data are then used to improve AI models and machine learning models. Users can complete daily challenges, earn $OORT tokens and accumulate points to receive additional benefits. The more tasks you accomplish, the better your chances are of receiving one of our Profit Sharing Certificates. You can easily join and get started with just a few easy steps! -
47
Hyperstack
Hyperstack
$0.18 per GPU per hourHyperstack, the ultimate self-service GPUaaS Platform, offers the H100 and A100 as well as the L40, and delivers its services to the most promising AI start ups in the world. Hyperstack was built for enterprise-grade GPU acceleration and optimised for AI workloads. NexGen Cloud offers enterprise-grade infrastructure for a wide range of users from SMEs, Blue-Chip corporations to Managed Service Providers and tech enthusiasts. Hyperstack, powered by NVIDIA architecture and running on 100% renewable energy, offers its services up to 75% cheaper than Legacy Cloud Providers. The platform supports diverse high-intensity workloads such as Generative AI and Large Language Modeling, machine learning and rendering. -
48
Campaigns are essential at every stage in the customer's lifecycle. Marketers need a powerful campaign management tool to ensure they run successful campaigns that increase customer satisfaction, retention, loyalty, and profitability. Etiya Campaign Management Platform was created to assist marketers in designing, executing, managing, and measuring marketing campaigns across all channels. Campaign Management allows you to deliver the right offer to your target audience through the appropriate channel at the right time. Campaign Management by Etiya allows you to manage holistic campaigns in half the time and effort across all marketing channels. You can also determine which message is most effective in which customer base and which channel by reviewing the campaign results. The platform comes with the appropriate installation models. These models can be used to integrate with existing systems via cloud infrastructure, or on-premise options depending on your requirements.
-
49
Marketo Engage is part of Adobe Experience Cloud and is a complete solution that allows B2B marketers to manage leads and transform customer experiences through engaging with customers at every stage of complex buying journeys. Marketo Engage supports both account-based and demand-based marketing strategies. It combines sales and marketing to create personalized experiences, optimize content and measure business impact across all channels, from acquisition to advocacy. Rich behavioral data, built in intelligence, and sophisticated flow flows can be used to identify, engage, & accelerate your best opportunities. To deliver consistent and relevant experiences every time, you can use A/B testing, predictive content, and personalization. Reach buyers and prospects across all channels, including email, display and mobile, social media, search and offline. Deliver timely and engaging experiences. Optimize your marketing impact by understanding, proving, and optimizing it.
-
50
Pyxis Marketing Cloud
Pyxis
Target users with pinpoint targeting to identify their behavior. Produce outperforming creatives. Optimize at peak efficiency. Pyxis, the next-generation marketing cloud, allows brands to use data creatively and create iconic marketing campaigns for greater success. Pyxis Marketing Cloud provides a full range of marketing APIs that enable you to create a digital marketing experience from the beginning to end. Our modular approach is robust and can help you achieve your business goals. It also delivers actionable outputs. Our Creative AI tools will redefine how you communicate with your audience. They adapt to changing trends and can be used to help you move as fast as your customers. Use artificial intelligence to target the most relevant segments. This will give you a clear picture about what each sub-group needs, what they value, and how they behave. Optimize AI stack can help you achieve your marketing goals across platforms to maximize efficiency.