Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
KrakenD
Engineered for peak performance and efficient resource use, KrakenD can manage a staggering 70k requests per second on just one instance. Its stateless build ensures hassle-free scalability, sidelining complications like database upkeep or node synchronization.
In terms of features, KrakenD is a jack-of-all-trades. It accommodates multiple protocols and API standards, offering granular access control, data shaping, and caching capabilities. A standout feature is its Backend For Frontend pattern, which consolidates various API calls into a single response, simplifying client interactions.
On the security front, KrakenD is OWASP-compliant and data-agnostic, streamlining regulatory adherence. Operational ease comes via its declarative setup and robust third-party tool integration. With its open-source community edition and transparent pricing model, KrakenD is the go-to API Gateway for organizations that refuse to compromise on performance or scalability.
Learn more
Amazon Personalize
Amazon Personalize allows developers to create applications utilizing the same machine learning (ML) technology that powers real-time personalized recommendations on Amazon.com, all without requiring any prior ML knowledge. This service simplifies the development of applications that can provide a variety of personalized experiences, such as tailored product suggestions, reordering of product listings based on user preferences, and individualized marketing campaigns. As a fully managed ML service, Amazon Personalize surpasses traditional static recommendation systems by training, tuning, and deploying custom ML models that offer highly tailored recommendations for various sectors, including retail and media. The platform takes care of all necessary infrastructure, managing the complete ML pipeline, which encompasses data processing, feature identification, selection of optimal algorithms, and the training, optimization, and hosting of the models. By streamlining these processes, Amazon Personalize empowers businesses to enhance user engagement and drive conversions through advanced personalization techniques. This innovative approach allows companies to leverage cutting-edge technology to stay competitive in today's fast-paced market.
Learn more
Jina Reranker
Jina Reranker v2 stands out as an advanced reranking solution tailored for Agentic Retrieval-Augmented Generation (RAG) frameworks. By leveraging a deeper semantic comprehension, it significantly improves the relevance of search results and the accuracy of RAG systems through efficient result reordering. This innovative tool accommodates more than 100 languages, making it a versatile option for multilingual retrieval tasks irrespective of the language used in the queries. It is particularly fine-tuned for function-calling and code search scenarios, proving to be exceptionally beneficial for applications that demand accurate retrieval of function signatures and code snippets. Furthermore, Jina Reranker v2 demonstrates exceptional performance in ranking structured data, including tables, by effectively discerning the underlying intent for querying structured databases such as MySQL or MongoDB. With a remarkable sixfold increase in speed compared to its predecessor, it ensures ultra-fast inference, capable of processing documents in mere milliseconds. Accessible through Jina's Reranker API, this model seamlessly integrates into existing applications, compatible with platforms like Langchain and LlamaIndex, thus offering developers a powerful tool for enhancing their retrieval capabilities. This adaptability ensures that users can optimize their workflows while benefiting from cutting-edge technology.
Learn more