LM-Kit.NET
LM-Kit.NET is an enterprise-grade toolkit designed for seamlessly integrating generative AI into your .NET applications, fully supporting Windows, Linux, and macOS. Empower your C# and VB.NET projects with a flexible platform that simplifies the creation and orchestration of dynamic AI agents.
Leverage efficient Small Language Models for on‑device inference, reducing computational load, minimizing latency, and enhancing security by processing data locally. Experience the power of Retrieval‑Augmented Generation (RAG) to boost accuracy and relevance, while advanced AI agents simplify complex workflows and accelerate development.
Native SDKs ensure smooth integration and high performance across diverse platforms. With robust support for custom AI agent development and multi‑agent orchestration, LM‑Kit.NET streamlines prototyping, deployment, and scalability—enabling you to build smarter, faster, and more secure solutions trusted by professionals worldwide.
Learn more
Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
EXAONE Deep
EXAONE Deep represents a collection of advanced language models that are enhanced for reasoning, created by LG AI Research, and come in sizes of 2.4 billion, 7.8 billion, and 32 billion parameters. These models excel in a variety of reasoning challenges, particularly in areas such as mathematics and coding assessments. Significantly, the EXAONE Deep 2.4B model outshines other models of its size, while the 7.8B variant outperforms both open-weight models of similar dimensions and the proprietary reasoning model known as OpenAI o1-mini. Furthermore, the EXAONE Deep 32B model competes effectively with top-tier open-weight models in the field. The accompanying repository offers extensive documentation that includes performance assessments, quick-start guides for leveraging EXAONE Deep models with the Transformers library, detailed explanations of quantized EXAONE Deep weights formatted in AWQ and GGUF, as well as guidance on how to run these models locally through platforms like llama.cpp and Ollama. Additionally, this resource serves to enhance user understanding and accessibility to the capabilities of EXAONE Deep models.
Learn more
DeepSeek R1
DeepSeek-R1 is a cutting-edge open-source reasoning model created by DeepSeek, aimed at competing with OpenAI's Model o1. It is readily available through web, app, and API interfaces, showcasing its proficiency in challenging tasks such as mathematics and coding, and achieving impressive results on assessments like the American Invitational Mathematics Examination (AIME) and MATH. Utilizing a mixture of experts (MoE) architecture, this model boasts a remarkable total of 671 billion parameters, with 37 billion parameters activated for each token, which allows for both efficient and precise reasoning abilities. As a part of DeepSeek's dedication to the progression of artificial general intelligence (AGI), the model underscores the importance of open-source innovation in this field. Furthermore, its advanced capabilities may significantly impact how we approach complex problem-solving in various domains.
Learn more