Best OneTick Alternatives in 2025

Find the top alternatives to OneTick currently available. Compare ratings, reviews, pricing, and features of OneTick alternatives in 2025. Slashdot lists the best OneTick alternatives on the market that offer competing products that are similar to OneTick. Sort through OneTick alternatives below to make the best choice for your needs

  • 1
    RaimaDB Reviews
    Top Pick See Software
    Learn More
    Compare Both
    RaimaDB, an embedded time series database that can be used for Edge and IoT devices, can run in-memory. It is a lightweight, secure, and extremely powerful RDBMS. It has been field tested by more than 20 000 developers around the world and has been deployed in excess of 25 000 000 times. RaimaDB is a high-performance, cross-platform embedded database optimized for mission-critical applications in industries such as IoT and edge computing. Its lightweight design makes it ideal for resource-constrained environments, supporting both in-memory and persistent storage options. RaimaDB offers flexible data modeling, including traditional relational models and direct relationships through network model sets. With ACID-compliant transactions and advanced indexing methods like B+Tree, Hash Table, R-Tree, and AVL-Tree, it ensures data reliability and efficiency. Built for real-time processing, it incorporates multi-version concurrency control (MVCC) and snapshot isolation, making it a robust solution for applications demanding speed and reliability.
  • 2
    Redis Reviews
    See Software
    Learn More
    Compare Both
    Redis Labs is the home of Redis. Redis Enterprise is the best Redis version. Redis Enterprise is more than a cache. Redis Enterprise can be free in the cloud with NoSQL and data caching using the fastest in-memory database. Redis can be scaled, enterprise-grade resilience, massive scaling, ease of administration, and operational simplicity. Redis in the Cloud is a favorite of DevOps. Developers have access to enhanced data structures and a variety modules. This allows them to innovate faster and has a faster time-to-market. CIOs love the security and expert support of Redis, which provides 99.999% uptime. Use relational databases for active-active, geodistribution, conflict distribution, reads/writes in multiple regions to the same data set. Redis Enterprise offers flexible deployment options. Redis Labs is the home of Redis. Redis JSON, Redis Java, Python Redis, Redis on Kubernetes & Redis gui best practices.
  • 3
    kdb Insights Reviews
    kdb Insights is an advanced analytics platform built for the cloud, enabling high-speed real-time analysis of both live and past data streams. It empowers users to make informed decisions efficiently, regardless of the scale or speed of the data, and boasts exceptional price-performance ratios, achieving analytics performance that is up to 100 times quicker while costing only 10% compared to alternative solutions. The platform provides interactive data visualization through dynamic dashboards, allowing for immediate insights that drive timely decision-making. Additionally, it incorporates machine learning models to enhance predictive capabilities, identify clusters, detect patterns, and evaluate structured data, thereby improving AI functionalities on time-series datasets. With remarkable scalability, kdb Insights can manage vast amounts of real-time and historical data, demonstrating effectiveness with loads of up to 110 terabytes daily. Its rapid deployment and straightforward data ingestion process significantly reduce the time needed to realize value, while it natively supports q, SQL, and Python, along with compatibility for other programming languages through RESTful APIs. This versatility ensures that users can seamlessly integrate kdb Insights into their existing workflows and leverage its full potential for a wide range of analytical tasks.
  • 4
    kdb+ Reviews
    Introducing a robust cross-platform columnar database designed for high-performance historical time-series data, which includes: - A compute engine optimized for in-memory operations - A streaming processor that functions in real time - A powerful query and programming language known as q Kdb+ drives the kdb Insights portfolio and KDB.AI, offering advanced time-focused data analysis and generative AI functionalities to many of the world's top enterprises. Recognized for its unparalleled speed, kdb+ has been independently benchmarked* as the leading in-memory columnar analytics database, providing exceptional benefits for organizations confronting complex data challenges. This innovative solution significantly enhances decision-making capabilities, enabling businesses to adeptly respond to the ever-evolving data landscape. By leveraging kdb+, companies can gain deeper insights that lead to more informed strategies.
  • 5
    Warp 10 Reviews
    Warp 10 is a modular open source platform that collects, stores, and allows you to analyze time series and sensor data. Shaped for the IoT with a flexible data model, Warp 10 provides a unique and powerful framework to simplify your processes from data collection to analysis and visualization, with the support of geolocated data in its core model (called Geo Time Series). Warp 10 offers both a time series database and a powerful analysis environment, which can be used together or independently. It will allow you to make: statistics, extraction of characteristics for training models, filtering and cleaning of data, detection of patterns and anomalies, synchronization or even forecasts. The Platform is GDPR compliant and secure by design using cryptographic tokens to manage authentication and authorization. The Analytics Engine can be implemented within a large number of existing tools and ecosystems such as Spark, Kafka Streams, Hadoop, Jupyter, Zeppelin and many more. From small devices to distributed clusters, Warp 10 fits your needs at any scale, and can be used in many verticals: industry, transportation, health, monitoring, finance, energy, etc.
  • 6
    BangDB Reviews
    BangDB seamlessly incorporates AI, streaming capabilities, graph processing, and analytics directly within its database, empowering users to handle intricate data types like text, images, videos, and objects for immediate data processing and analysis. Users can ingest or stream various data types, process them, train models, make predictions, uncover patterns, and automate actions, facilitating applications such as IoT monitoring, fraud prevention, log analysis, lead generation, and personalized experiences. Modern applications necessitate the simultaneous ingestion, processing, and querying of diverse data types to address specific challenges effectively. BangDB accommodates a wide array of valuable data formats, simplifying problem-solving for users. The increasing demand for real-time data is driving the need for concurrent streaming and predictive analytics, which are essential for enhancing and optimizing business operations. As organizations continue to evolve, the ability to rapidly adapt to new data sources and insights will become increasingly vital for maintaining a competitive edge.
  • 7
    Rockset Reviews
    Real-time analytics on raw data. Live ingest from S3, DynamoDB, DynamoDB and more. Raw data can be accessed as SQL tables. In minutes, you can create amazing data-driven apps and live dashboards. Rockset is a serverless analytics and search engine that powers real-time applications and live dashboards. You can directly work with raw data such as JSON, XML and CSV. Rockset can import data from real-time streams and data lakes, data warehouses, and databases. You can import real-time data without the need to build pipelines. Rockset syncs all new data as it arrives in your data sources, without the need to create a fixed schema. You can use familiar SQL, including filters, joins, and aggregations. Rockset automatically indexes every field in your data, making it lightning fast. Fast queries are used to power your apps, microservices and live dashboards. Scale without worrying too much about servers, shards or pagers.
  • 8
    ITTIA DB Reviews
    The ITTIA DB suite brings together advanced features for time series, real-time data streaming, and analytics tailored for embedded systems, ultimately streamlining development processes while minimizing expenses. With ITTIA DB IoT, users can access a compact embedded database designed for real-time operations on resource-limited 32-bit microcontrollers (MCUs), while ITTIA DB SQL serves as a robust time-series embedded database that operates efficiently on both single and multicore microprocessors (MPUs). These ITTIA DB offerings empower devices to effectively monitor, process, and retain real-time data. Additionally, the products are specifically engineered to meet the needs of Electronic Control Units (ECUs) within the automotive sector. To ensure data security, ITTIA DB incorporates comprehensive protection mechanisms against unauthorized access, leveraging encryption, authentication, and the DB SEAL feature. Furthermore, ITTIA SDL adheres to the standards set forth by IEC/ISO 62443, reinforcing its commitment to safety. By integrating ITTIA DB, developers can seamlessly collect, process, and enhance incoming real-time data streams through a specialized SDK designed for edge devices, allowing for efficient searching, filtering, joining, and aggregating of data right at the edge. This comprehensive approach not only optimizes performance but also supports the growing demand for real-time data handling in today's technology landscape.
  • 9
    Prometheus Reviews
    Enhance your metrics and alerting capabilities using a top-tier open-source monitoring tool. Prometheus inherently organizes all data as time series, which consist of sequences of timestamped values associated with the same metric and a specific set of labeled dimensions. In addition to the stored time series, Prometheus has the capability to create temporary derived time series based on query outcomes. The tool features a powerful query language known as PromQL (Prometheus Query Language), allowing users to select and aggregate time series data in real time. The output from an expression can be displayed as a graph, viewed in tabular format through Prometheus’s expression browser, or accessed by external systems through the HTTP API. Configuration of Prometheus is achieved through a combination of command-line flags and a configuration file, where the flags are used to set immutable system parameters like storage locations and retention limits for both disk and memory. This dual method of configuration ensures a flexible and tailored monitoring setup that can adapt to various user needs. For those interested in exploring this robust tool, further details can be found at: https://sourceforge.net/projects/prometheus.mirror/
  • 10
    Apache Druid Reviews
    Apache Druid is a distributed data storage solution that is open source. Its fundamental architecture merges concepts from data warehouses, time series databases, and search technologies to deliver a high-performance analytics database capable of handling a diverse array of applications. By integrating the essential features from these three types of systems, Druid optimizes its ingestion process, storage method, querying capabilities, and overall structure. Each column is stored and compressed separately, allowing the system to access only the relevant columns for a specific query, which enhances speed for scans, rankings, and groupings. Additionally, Druid constructs inverted indexes for string data to facilitate rapid searching and filtering. It also includes pre-built connectors for various platforms such as Apache Kafka, HDFS, and AWS S3, as well as stream processors and others. The system adeptly partitions data over time, making queries based on time significantly quicker than those in conventional databases. Users can easily scale resources by simply adding or removing servers, and Druid will manage the rebalancing automatically. Furthermore, its fault-tolerant design ensures resilience by effectively navigating around any server malfunctions that may occur. This combination of features makes Druid a robust choice for organizations seeking efficient and reliable real-time data analytics solutions.
  • 11
    QuasarDB Reviews
    QuasarDB, the core of Quasar's intelligence, is an advanced, distributed, column-oriented database management system specifically engineered for high-performance timeseries data handling, enabling real-time processing for massive petascale applications. It boasts up to 20 times less disk space requirement, making it exceptionally efficient. The unmatched ingestion and compression features of QuasarDB allow for up to 10,000 times quicker feature extraction. This database can perform real-time feature extraction directly from raw data via an integrated map/reduce query engine, a sophisticated aggregation engine that utilizes SIMD capabilities of contemporary CPUs, and stochastic indexes that consume minimal disk storage. Its ultra-efficient resource utilization, ability to integrate with object storage solutions like S3, innovative compression methods, and reasonable pricing structure make it the most economical timeseries solution available. Furthermore, QuasarDB is versatile enough to operate seamlessly across various platforms, from 32-bit ARM devices to high-performance Intel servers, accommodating both Edge Computing environments and traditional cloud or on-premises deployments. Its scalability and efficiency make it an ideal choice for businesses aiming to harness the full potential of their data in real-time.
  • 12
    Amazon Timestream Reviews
    Amazon Timestream is an efficient, scalable, and serverless time series database designed for IoT and operational applications, capable of storing and analyzing trillions of events daily with speeds up to 1,000 times faster and costs as low as 1/10th that of traditional relational databases. By efficiently managing the lifecycle of time series data, Amazon Timestream reduces both time and expenses by keeping current data in memory while systematically transferring historical data to a more cost-effective storage tier based on user-defined policies. Its specialized query engine allows users to seamlessly access and analyze both recent and historical data without the need to specify whether the data is in memory or in the cost-optimized tier. Additionally, Amazon Timestream features integrated time series analytics functions, enabling users to detect trends and patterns in their data almost in real-time, making it an invaluable tool for data-driven decision-making. Furthermore, this service is designed to scale effortlessly with your data needs while ensuring optimal performance and cost efficiency.
  • 13
    Circonus IRONdb Reviews
    Circonus IRONdb simplifies the management and storage of limitless telemetry data, effortlessly processing billions of metric streams. It empowers users to recognize both opportunities and challenges in real time, offering unmatched forensic, predictive, and automated analytics capabilities. With the help of machine learning, it automatically establishes a "new normal" as your operations and data evolve. Additionally, Circonus IRONdb seamlessly integrates with Grafana, which natively supports our analytics query language, and is also compatible with other visualization tools like Graphite-web. To ensure data security, Circonus IRONdb maintains multiple copies across a cluster of IRONdb nodes. While system administrators usually oversee clustering, they often dedicate considerable time to its upkeep and functionality. However, with Circonus IRONdb, operators can easily configure their clusters to run autonomously, allowing them to focus on more strategic tasks rather than the tedious management of their time series data storage. This streamlined approach not only enhances efficiency but also maximizes resource utilization.
  • 14
    KX Streaming Analytics Reviews
    KX Streaming Analytics offers a comprehensive solution for ingesting, storing, processing, and analyzing both historical and time series data, ensuring that analytics, insights, and visualizations are readily accessible. To facilitate rapid productivity for your applications and users, the platform encompasses the complete range of data services, which includes query processing, tiering, migration, archiving, data protection, and scalability. Our sophisticated analytics and visualization tools, which are extensively utilized in sectors such as finance and industry, empower you to define and execute queries, calculations, aggregations, as well as machine learning and artificial intelligence on any type of streaming and historical data. This platform can be deployed across various hardware environments, with the capability to source data from real-time business events and high-volume inputs such as sensors, clickstreams, radio-frequency identification, GPS systems, social media platforms, and mobile devices. Moreover, the versatility of KX Streaming Analytics ensures that organizations can adapt to evolving data needs and leverage real-time insights for informed decision-making.
  • 15
    DataStax Reviews
    Introducing a versatile, open-source multi-cloud platform for contemporary data applications, built on Apache Cassandra™. Achieve global-scale performance with guaranteed 100% uptime while avoiding vendor lock-in. You have the flexibility to deploy on multi-cloud environments, on-premises infrastructures, or use Kubernetes. The platform is designed to be elastic and offers a pay-as-you-go pricing model to enhance total cost of ownership. Accelerate your development process with Stargate APIs, which support NoSQL, real-time interactions, reactive programming, as well as JSON, REST, and GraphQL formats. Bypass the difficulties associated with managing numerous open-source projects and APIs that lack scalability. This solution is perfect for various sectors including e-commerce, mobile applications, AI/ML, IoT, microservices, social networking, gaming, and other highly interactive applications that require dynamic scaling based on demand. Start your journey of creating modern data applications with Astra, a database-as-a-service powered by Apache Cassandra™. Leverage REST, GraphQL, and JSON alongside your preferred full-stack framework. This platform ensures that your richly interactive applications are not only elastic but also ready to gain traction from the very first day, all while offering a cost-effective Apache Cassandra DBaaS that scales seamlessly and affordably as your needs evolve. With this innovative approach, developers can focus on building rather than managing infrastructure.
  • 16
    IBM Informix Reviews
    IBM Informix® is a highly adaptable and efficient database that can effortlessly combine SQL, NoSQL/JSON, as well as time series and spatial data. Its flexibility and user-friendly design position Informix as a top choice for diverse settings, ranging from large-scale enterprise data warehouses to smaller individual application development projects. Moreover, due to its compact footprint and self-managing features, Informix is particularly advantageous for embedded data management applications. The rising demand for IoT data processing necessitates strong integration and processing capabilities, which Informix fulfills with its hybrid database architecture that requires minimal administrative effort and has a small memory footprint while delivering robust functionality. Notably, Informix is well-equipped for multi-tiered architectures that necessitate processing at various levels, including devices, gateway layers, and cloud environments. Furthermore, it incorporates native encryption to safeguard data both at rest and in transit. Additionally, Informix supports a flexible schema alongside multiple APIs and configurations, making it a versatile choice for modern data management challenges.
  • 17
    Google Cloud Bigtable Reviews
    Google Cloud Bigtable provides a fully managed, scalable NoSQL data service that can handle large operational and analytical workloads. Cloud Bigtable is fast and performant. It's the storage engine that grows with your data, from your first gigabyte up to a petabyte-scale for low latency applications and high-throughput data analysis. Seamless scaling and replicating: You can start with one cluster node and scale up to hundreds of nodes to support peak demand. Replication adds high availability and workload isolation to live-serving apps. Integrated and simple: Fully managed service that easily integrates with big data tools such as Dataflow, Hadoop, and Dataproc. Development teams will find it easy to get started with the support for the open-source HBase API standard.
  • 18
    Timescale Reviews
    TimescaleDB is the most popular open-source relational database that supports time-series data. Fully managed or self-hosted. You can rely on the same PostgreSQL that you love. It has full SQL, rock-solid reliability and a huge ecosystem. Write millions of data points per node. Horizontally scale up to petabytes. Don't worry too much about cardinality. Reduce complexity, ask more questions and build more powerful applications. You will save money with 94-97% compression rates using best-in-class algorithms, and other performance improvements. Modern cloud-native relational database platform that stores time-series data. It is based on PostgreSQL and TimescaleDB. This is the fastest, easiest, and most reliable way to store all of your time-series information. All observability data can be considered time-series data. Time-series problems are those that require efficient solutions to infrastructure and application problems.
  • 19
    InfluxDB Reviews
    InfluxDB is a purpose-built data platform designed to handle all time series data, from users, sensors, applications and infrastructure — seamlessly collecting, storing, visualizing, and turning insight into action. With a library of more than 250 open source Telegraf plugins, importing and monitoring data from any system is easy. InfluxDB empowers developers to build transformative IoT, monitoring and analytics services and applications. InfluxDB’s flexible architecture fits any implementation — whether in the cloud, at the edge or on-premises — and its versatility, accessibility and supporting tools (client libraries, APIs, etc.) make it easy for developers at any level to quickly build applications and services with time series data. Optimized for developer efficiency and productivity, the InfluxDB platform gives builders time to focus on the features and functionalities that give their internal projects value and their applications a competitive edge. To get started, InfluxData offers free training through InfluxDB University.
  • 20
    QuestDB Reviews
    QuestDB is an advanced relational database that focuses on column-oriented storage optimized for time series and event-driven data. It incorporates SQL with additional features tailored for time-based analytics to facilitate real-time data processing. This documentation encompasses essential aspects of QuestDB, including initial setup instructions, comprehensive usage manuals, and reference materials for syntax, APIs, and configuration settings. Furthermore, it elaborates on the underlying architecture of QuestDB, outlining its methods for storing and querying data, while also highlighting unique functionalities and advantages offered by the platform. A key feature is the designated timestamp, which empowers time-focused queries and efficient data partitioning. Additionally, the symbol type enhances the efficiency of managing and retrieving frequently used strings. The storage model explains how QuestDB organizes records and partitions within its tables, and the use of indexes can significantly accelerate read access for specific columns. Moreover, partitions provide substantial performance improvements for both calculations and queries. With its SQL extensions, users can achieve high-performance time series analysis using a streamlined syntax that simplifies complex operations. Overall, QuestDB stands out as a powerful tool for handling time-oriented data effectively.
  • 21
    Trendalyze Reviews
    Time-sensitive decisions require immediate attention. With TRND, machine learning projects can be accelerated from lengthy timelines to mere minutes, similar to the efficiency of Google's AI search engine that delivers insights in real time. Financial losses can stem from inaccuracies, and unlike standard KPIs, TRND identifies patterns that uncover critical information hidden from traditional metrics. This tool empowers decision-makers by highlighting trends that signal emerging threats or opportunities. In today's digital landscape, knowledge equates to financial advantage. TRND allows for the creation of shareable pattern libraries, promoting rapid learning and implementation for enhancing business operations. Without comprehensive monitoring, potential profits remain untapped. TRND excels at not only identifying rare insights but also continuously tracking relevant information across all indicators. The myth that scaling efforts must be excessively costly is shattered by our innovative search-based method, which makes extensive micro-monitoring both feasible and economical. In essence, TRND revolutionizes the approach to data utilization, ensuring that businesses stay ahead in a competitive environment.
  • 22
    JaguarDB Reviews
    JaguarDB facilitates the rapid ingestion of time series data while integrating location-based information. It possesses the capability to index data across both spatial and temporal dimensions effectively. Additionally, the system allows for swift back-filling of time series data, enabling the insertion of significant volumes of historical data points. Typically, time series refers to a collection of data points that are arranged in chronological order. However, in JaguarDB, time series encompasses both a sequence of data points and multiple tick tables that hold aggregated data values across designated time intervals. For instance, a time series table in JaguarDB may consist of a primary table that organizes data points in time sequence, along with tick tables that represent various time frames such as 5 minutes, 15 minutes, hourly, daily, weekly, and monthly, which store aggregated data for those intervals. The structure for RETENTION mirrors that of the TICK format but allows for a flexible number of retention periods, defining the duration for which data points in the base table are maintained. This approach ensures that users can efficiently manage and analyze historical data according to their specific needs.
  • 23
    CrateDB Reviews
    The enterprise database for time series, documents, and vectors. Store any type data and combine the simplicity and scalability NoSQL with SQL. CrateDB is a distributed database that runs queries in milliseconds regardless of the complexity, volume, and velocity.
  • 24
    Proficy Historian Reviews
    Proficy Historian stands out as a premier historian software solution designed to gather industrial time-series and A&E data at remarkable speeds, ensuring secure and efficient storage, distribution, and rapid access for analysis, ultimately enhancing business value. With a wealth of experience and a track record of thousands of successful implementations globally, Proficy Historian transforms how organizations operate and compete by making critical data accessible for analyzing asset and process performance. The latest version of Proficy Historian offers improved usability, configurability, and maintainability thanks to significant advancements in its architecture. Users can leverage the solution's powerful yet straightforward features to derive new insights from their equipment, process data, and business strategies. Additionally, the remote collector management feature enhances user experience, while horizontal scalability facilitates comprehensive data visibility across the enterprise, making it an essential tool for modern businesses. By adopting Proficy Historian, companies can unlock untapped potential and drive operational excellence.
  • 25
    Instaclustr Reviews

    Instaclustr

    Instaclustr

    $20 per node per month
    Instaclustr, the Open Source-as a Service company, delivers reliability at scale. We provide database, search, messaging, and analytics in an automated, trusted, and proven managed environment. We help companies focus their internal development and operational resources on creating cutting-edge customer-facing applications. Instaclustr is a cloud provider that works with AWS, Heroku Azure, IBM Cloud Platform, Azure, IBM Cloud and Google Cloud Platform. The company is certified by SOC 2 and offers 24/7 customer support.
  • 26
    ArcadeDB Reviews
    Effortlessly handle intricate models with ArcadeDB while ensuring no compromises are made. Say goodbye to the concept of Polyglot Persistence; there's no need to juggle multiple databases. With ArcadeDB's Multi-Model database, you can seamlessly store graphs, documents, key values, and time series data in one unified solution. As each model is inherently compatible with the database engine, you can avoid the delays caused by translation processes. Powered by advanced Alien Technology, ArcadeDB's engine can process millions of records every second. Notably, the speed of data traversal remains constant regardless of the database's size, whether it houses a handful of records or billions. ArcadeDB is versatile enough to function as an embedded database on a single server and can easily scale across multiple servers using Kubernetes. Its compact design allows it to operate on any platform while maintaining a minimal footprint. Your data's security is paramount; our robust, fully transactional engine guarantees durability for mission-critical production databases. Additionally, ArcadeDB employs a Raft Consensus Algorithm to ensure consistency and reliability across multiple servers, making it a top choice for data management. In an era where efficiency and reliability are crucial, ArcadeDB stands out as a comprehensive solution for diverse data storage needs.
  • 27
    Alibaba Cloud TSDB Reviews
    A Time Series Database (TSDB) is designed for rapid data input and output, allowing for swift reading and writing of information. It achieves impressive compression rates that lead to economical data storage solutions. Moreover, this service facilitates visualization techniques, such as precision reduction, interpolation, and multi-metric aggregation, alongside the processing of query results. By utilizing TSDB, businesses can significantly lower their storage expenses while enhancing the speed of data writing, querying, and analysis. This capability allows for the management of vast quantities of data points and enables more frequent data collection. Its applications span various sectors, including IoT monitoring, enterprise energy management systems (EMSs), production security oversight, and power supply monitoring. Additionally, TSDB is instrumental in optimizing database structures and algorithms, capable of processing millions of data points in mere seconds. By employing an advanced compression method, it can minimize each data point's size to just 2 bytes, leading to over 90% savings in storage costs. Consequently, this efficiency not only benefits businesses financially but also streamlines operational workflows across different industries.
  • 28
    Fauna Reviews
    Fauna is a data API that supports rich clients with serverless backends. It provides a web-native interface that supports GraphQL, custom business logic, frictionless integration to the serverless ecosystem, and a multi-cloud architecture that you can trust and grow with.
  • 29
    SiriDB Reviews
    SiriDB is optimized for speed. Inserts and queries are answered quickly. You can speed up your development with the custom query language. SiriDB is flexible and can be scaled on the fly. There is no downtime when you update or expand your database. You can scale your database without losing speed. As we distribute your time series data across all pools, we make full use of all resources. SiriDB was designed to deliver unmatched performance with minimal downtime. A SiriDB cluster distributes time series across multiple pools. Each pool has active replicas that can be used for load balancing or redundancy. The database can still be accessed even if one of the replicas is unavailable.
  • 30
    GridDB Reviews
    GridDB utilizes multicast communication to form its cluster, so it's essential to configure the network for this purpose. Start by verifying the host name and IP address; you can do this by running the command “hostname -i” to check the host's IP address configuration. If the reported IP address matches the specified value below, you can proceed directly to the next section without any further network adjustments. GridDB is a database designed to manage a collection of data entries, each consisting of a key paired with several values. In addition to functioning as an in-memory database that organizes all data within the memory, it also supports a hybrid architecture that combines both memory and disk storage, which can include solid-state drives (SSDs). This flexibility allows for efficient data management and retrieval, catering to various application needs.
  • 31
    eXtremeDB Reviews
    What makes eXtremeDB platform independent? - Hybrid storage of data. Unlike other IMDS databases, eXtremeDB databases are all-in-memory or all-persistent. They can also have a mix between persistent tables and in-memory table. eXtremeDB's Active Replication Fabric™, which is unique to eXtremeDB, offers bidirectional replication and multi-tier replication (e.g. edge-to-gateway-to-gateway-to-cloud), compression to maximize limited bandwidth networks and more. - Row and columnar flexibility for time series data. eXtremeDB supports database designs which combine column-based and row-based layouts in order to maximize the CPU cache speed. - Client/Server and embedded. eXtremeDB provides data management that is fast and flexible wherever you need it. It can be deployed as an embedded system and/or as a clients/server database system. eXtremeDB was designed for use in resource-constrained, mission-critical embedded systems. Found in over 30,000,000 deployments, from routers to satellites and trains to stock market world-wide.
  • 32
    Machbase Reviews
    Machbase is a leading time-series database designed for real-time storage and analysis of vast amounts of sensor data from various facilities. It stands out as the only database management system (DBMS) capable of processing and analyzing large datasets at remarkable speeds, showcasing its impressive capabilities. Experience the extraordinary processing speeds that Machbase offers! This innovative product allows for immediate handling, storage, and analysis of sensor information. It achieves rapid storage and querying of sensor data by integrating the DBMS directly into Edge devices. Additionally, it provides exceptional performance in data storage and extraction when operating on a single server. With the ability to configure multi-node clusters, Machbase offers enhanced availability and scalability. Furthermore, it serves as a comprehensive management solution for Edge computing, addressing device management, connectivity, and data handling needs effectively. In a fast-paced data-driven world, Machbase proves to be an essential tool for industries relying on real-time sensor data analysis.
  • 33
    VictoriaMetrics Reviews
    VictoriaMetrics is a cost-effective, scalable monitoring solution that can also be used as a time series database. It can also be used to store Prometheus' long-term data. VictoriaMetrics is a single executable that does not have any external dependencies. All configuration is done using explicit command-line flags and reasonable defaults. It provides global query view. Multiple Prometheus instances, or other data sources, may insert data into VictoriaMetrics. Later this data may be queried via a single query. It can handle high cardinality and high churn rates issues by using a series limiter.
  • 34
    Riak TS Reviews
    Riak®, TS is an enterprise-grade NoSQL Time Series Database that is specifically designed for IoT data and Time Series data. It can ingest, transform, store, and analyze massive amounts of time series information. Riak TS is designed to be faster than Cassandra. Riak TS masterless architecture can read and write data regardless of network partitions or hardware failures. Data is evenly distributed throughout the Riak ring. By default, there are three copies of your data. This ensures that at least one copy is available for reading operations. Riak TS is a distributed software system that does not have a central coordinator. It is simple to set up and use. It is easy to add or remove nodes from a cluster thanks to the masterless architecture. Riak TS's masterless architecture makes it easy for you to add or remove nodes from your cluster. Adding nodes made of commodity hardware to your cluster can help you achieve predictable and almost linear scale.
  • 35
    Canary Historian Reviews

    Canary Historian

    Canary

    $9,970 one-time payment
    The remarkable aspect of the Canary Historian is its versatility, functioning equally well on-site and across an entire organization. It allows for local data logging while simultaneously transmitting that data to your enterprise historian. Moreover, as your needs expand, the solution adapts seamlessly to accommodate growth. A single Canary Historian is capable of logging over two million tags, and by clustering multiple units, you can manage tens of millions of tags effortlessly. These enterprise historian solutions can be deployed in your own data centers or on cloud platforms like AWS and Azure. Additionally, contrary to many other enterprise historian options, Canary Historians do not necessitate large specialized teams for maintenance. Serving as a NoSQL time series database, the Canary Historian implements loss-less compression algorithms, delivering exceptional performance without the need for data interpolation, which is a significant advantage for users. This dual capability ensures that both speed and efficiency are maximized in data handling.
  • 36
    OpenTSDB Reviews
    OpenTSDB comprises a Time Series Daemon (TSD) along with a suite of command line tools. Users primarily engage with OpenTSDB by operating one or more independent TSDs, as there is no centralized master or shared state, allowing for the scalability to run multiple TSDs as necessary to meet varying loads. Each TSD utilizes HBase, an open-source database, or the hosted Google Bigtable service for the storage and retrieval of time-series data. The schema designed for the data is highly efficient, enabling rapid aggregations of similar time series while minimizing storage requirements. Users interact with the TSD without needing direct access to the underlying storage system. Communication with the TSD can be accomplished through a straightforward telnet-style protocol, an HTTP API, or a user-friendly built-in graphical interface. To begin utilizing OpenTSDB, the initial task is to send time series data to the TSDs, and there are various tools available to facilitate the import of data from different sources into OpenTSDB. Overall, OpenTSDB's design emphasizes flexibility and efficiency for time series data management.
  • 37
    Telegraf Reviews
    Telegraf is an open-source server agent that helps you collect metrics from your sensors, stacks, and systems. Telegraf is a plugin-driven agent that collects and sends metrics and events from systems, databases, and IoT sensors. Telegraf is written in Go. It compiles to a single binary and has no external dependencies. It also requires very little memory. Telegraf can gather metrics from a wide variety of inputs and then write them into a wide range of outputs. It can be easily extended by being plugin-driven for both the collection and output data. It is written in Go and can be run on any system without external dependencies. It is easy to collect metrics from your endpoints with the 300+ plugins that have been created by data experts in the community.
  • 38
    KairosDB Reviews
    KairosDB allows data ingestion through various protocols including Telnet, Rest, and Graphite, in addition to supporting plugins for further flexibility. It utilizes Cassandra, a well-regarded NoSQL database, to manage time series data effectively. The database schema is organized into three column families, facilitating efficient data storage. The API offers a range of functionalities, such as listing existing metric names, retrieving tag names and their corresponding values, storing metric data points, and querying these points for analysis. Upon a standard installation, users can access a query page that enables them to extract data from the database easily. This tool is primarily tailored for development applications. Aggregators within the system can perform operations on data points, allowing for down sampling and analysis. A set of standard functions, including min, max, sum, count, and mean, among others, are readily available for users to utilize. Additionally, the KairosDB server supports import and export functionalities via the command line interface. Internal metrics related to the database not only provide insights into the stored data but also allow for monitoring the performance of the server itself, ensuring optimal operation and efficiency. This comprehensive approach makes KairosDB a powerful solution for managing time series data.
  • 39
    Amazon FinSpace Reviews
    Amazon FinSpace streamlines the deployment of kdb Insights applications on AWS, making the process significantly easier. By automating the routine tasks necessary for provisioning, integrating, and securing the infrastructure needed for kdb Insights, Amazon FinSpace simplifies operations for its users. Furthermore, it offers intuitive APIs that enable customers to set up and initiate new kdb Insights applications in just a matter of minutes. This platform allows users the flexibility to transition their existing kdb Insights applications to AWS, harnessing the advantages of cloud computing without the burden of managing complex and expensive infrastructure. KX's kdb Insights serves as a robust analytics engine, tailored for the examination of both real-time and extensive historical time-series data. Frequently utilized by clients in Capital Markets, kdb Insights supports essential business functions such as options pricing, transaction cost analysis, and backtesting. Additionally, it eliminates the need to integrate more than 15 AWS services for the deployment of kdb, streamlining the entire process further. Overall, Amazon FinSpace empowers organizations to focus on their analytics while minimizing operational overhead.
  • 40
    Azure Time Series Insights Reviews

    Azure Time Series Insights

    Microsoft

    $36.208 per unit per month
    Azure Time Series Insights Gen2 is a robust and scalable IoT analytics service that provides an exceptional user experience along with comprehensive APIs for seamless integration into your current workflow or application. This platform enables the collection, processing, storage, querying, and visualization of data at an Internet of Things (IoT) scale, ensuring that the data is highly contextualized and specifically tailored for time series analysis. With a focus on ad hoc data exploration and operational analysis, it empowers users to identify hidden trends, detect anomalies, and perform root-cause investigations. Furthermore, Azure Time Series Insights Gen2 stands out as an open and adaptable solution that caters to the diverse needs of industrial IoT deployments, making it an invaluable tool for organizations looking to harness the power of their data. By leveraging its capabilities, businesses can gain deeper insights into their operations and make informed decisions to drive efficiency and innovation.
  • 41
    Blueflood Reviews
    Blueflood is an advanced distributed metric processing system designed for high throughput and low latency, operating as a multi-tenant solution that supports Rackspace Metrics. It is actively utilized by both the Rackspace Monitoring team and the Rackspace public cloud team to effectively manage and store metrics produced by their infrastructure. Beyond its application within Rackspace, Blueflood also sees extensive use in large-scale deployments documented in community resources. The data collected through Blueflood is versatile, allowing users to create dashboards, generate reports, visualize data through graphs, or engage in any activities that involve analyzing time-series data. With a primary emphasis on near-real-time processing, data can be queried just milliseconds after it is ingested, ensuring timely access to information. Users send their metrics to the ingestion service and retrieve them from the Query service, while the system efficiently handles background rollups through offline batch processing, thus facilitating quick responses for queries covering extended time frames. This architecture not only enhances performance but also ensures that users can rely on rapid access to their critical metrics for effective decision-making.
  • 42
    NumXL Reviews

    NumXL

    SPIDER FINANCIAL CORP

    $25/user/month
    NumXL is a suite time series Excel add-ins. It turns your Microsoft Excel application into a top-class time series software and an econometrics tool. It offers the same statistical accuracy as more expensive statistical packages. NumXL integrates with Excel natively, adding scores of econometric function, a rich set shortcuts, as well as intuitive user interfaces to help you navigate the entire process. (1) Summary Statistics - Gini and Hurst, KDE etc. (2) Statistical Testing - Normality, Stationarity, cointegration, etc. (3) Brown's, Holt's & Winter's exponential smoothing (4) ARMA/ARIMA/SARIMA & X12ARIMA (5) ARMAX/SARIMAX (6) GARCH/E-GARCH & E-GARCH
  • 43
    VictoriaMetrics Cloud Reviews

    VictoriaMetrics Cloud

    VictoriaMetrics

    $190 per month
    VictoriaMetrics Cloud allows you to run VictoriaMetrics Enterprise on AWS without having to perform typical DevOps activities such as proper configuration and monitoring, log collection, security, software updates, software protection, or backups. We run VictoriaMetrics Cloud in our environment using AWS, and provide easy to use endpoints for data ingestion. VictoriaMetrics takes care of software maintenance and optimal configuration. It has the following features: It can be used to manage Prometheus. Configure Prometheus, Vmagent or VictoriaMetrics to write data into Managed VictoriaMetrics. Then use the endpoint provided as a Prometheus source in Grafana. Each VictoriaMetrics Cloud instance runs in a separate environment so that instances cannot interfere with one another; VictoriaMetrics Cloud can be scaled-up or scaled-down in just a few clicks. Automated backups.
  • 44
    Axibase Time Series Database Reviews
    A parallel query engine designed for efficient access to time- and symbol-indexed data. It incorporates an extended SQL syntax that allows for sophisticated filtering and aggregation capabilities. Users can unify quotes, trades, snapshots, and reference data within a single environment. The platform supports strategy backtesting using high-frequency data for enhanced analysis. It facilitates quantitative research and insights into market microstructure. Additionally, it offers detailed transaction cost analysis and comprehensive rollup reporting features. Market surveillance mechanisms and anomaly detection capabilities are also integrated into the system. The decomposition of non-transparent ETF/ETN instruments is supported, along with the utilization of FAST, SBE, and proprietary communication protocols. A plain text protocol is available alongside consolidated and direct data feeds. The system includes built-in tools for monitoring latency and provides end-of-day archival options. It can perform ETL processes from both institutional and retail financial data sources. Designed with a parallel SQL engine that features syntax extensions, it allows advanced filtering by trading session, auction stage, and index composition for precise analysis. Optimizations for aggregates related to OHLCV and VWAP calculations enhance performance. An interactive SQL console with auto-completion improves user experience, while an API endpoint facilitates seamless programmatic integration. Scheduled SQL reporting options are available, allowing delivery via email, file, or web. JDBC and ODBC drivers ensure compatibility with various applications, making this system a versatile tool for financial data handling.
  • 45
    Cortex Reviews
    Cortex is an innovative open-source solution that enhances horizontal scalability. While Prometheus is capable of handling up to 1 million samples per second on a single machine, Cortex enables a virtually limitless level of horizontal scaling. In an ever-evolving landscape, it is essential to adopt alternative strategies for monitoring individual virtual machines or servers. Prometheus features a service-discovery-driven, pull-based metrics system that caters to the dynamic characteristics of microservices. This capability allows for seamless monitoring of your entire ecosystem, regardless of the number of components involved. You can instrument your application to generate tailored metrics using the standard Prometheus client libraries, or you can leverage the vast array of Prometheus Exporters that gather data from existing software like MySQL, Redis, Java, ElasticSearch, and many others. By adopting these tools, organizations can ensure they maintain visibility and control over their complex infrastructures. This flexibility is particularly valuable in today's fast-paced, continuously changing technological environments.
  • 46
    Versio.io Reviews
    Versio.io is a cutting-edge enterprise software solution designed to oversee the identification and post-processing of changes within large organizations. Our innovative methodologies have allowed us to develop a completely novel type of enterprise product that stands out in the market. In this document, we provide an overview of our extensive research and development efforts. Relationships can form between various assets and configurations, serving as a crucial enhancement of the available information. Traditional data sources typically capture only a fraction of this essential information. Through Versio.io, we leverage our topology service to automatically identify and map these relationships, facilitating the connection of dependencies among instances from any data source. Consequently, all critical business assets and configuration items across every level of an organization can be effectively gathered, historicized, topologized, and stored in a centralized repository, ensuring comprehensive visibility and management. This capability not only enhances operational efficiency but also supports informed decision-making across the enterprise.
  • 47
    LSEG Lipper Reviews
    Lipper offers a comprehensive, independent analysis of global fund performance through a detailed classification system that encompasses a wide array of investment vehicles, including mutual funds, closed-end funds (CEFs), exchange-traded funds (ETFs), hedge funds, domestic retirement plans, pension funds, and insurance products. With its extensive array of over 500 classifications, Lipper enables straightforward comparisons among funds that share similar investment objectives, facilitating the benchmarking of fund performance. As the authoritative database of records for investment fund data and ownership, Lipper supports users across its extensive portfolio. Investors can more effectively compare like funds and assess performance using this precise, granular classification system that features more than 500 Lipper categories. Moreover, users can research a vast collection of 360,000 investments across more than 80 countries, allowing for customization based on universal criteria, language preferences, fund specifics, update frequencies, file formats, and distribution options, which enhances the overall research experience.
  • 48
    Hawkular Metrics Reviews
    Hawkular Metrics is a robust, asynchronous, multi-tenant engine designed for long-term metrics storage, utilizing Cassandra for its data management and REST as its main interface. This segment highlights some of the essential characteristics of Hawkular Metrics, while subsequent sections will delve deeper into these features as well as additional functionalities. One of the standout aspects of Hawkular Metrics is its impressive scalability; its architecture allows for operation on a single instance with just one Cassandra node, or it can be expanded to encompass multiple nodes to accommodate growing demands. Moreover, the server is designed with a stateless architecture, facilitating easy scaling. Illustrated in the accompanying diagram are various deployment configurations enabled by the scalable design of Hawkular Metrics. The upper left corner depicts the most straightforward setup involving a lone Cassandra node connected to a single Hawkular Metrics node, while the lower right corner demonstrates a scenario where multiple Hawkular Metrics nodes can operate in conjunction with fewer Cassandra nodes, showcasing flexibility in deployment. Overall, this system is engineered to meet the evolving requirements of users efficiently.
  • 49
    Coin Metrics Reviews
    Coin Metrics enhances the accessibility and transparency of global cryptocurrency data. Their CM Network Data Pro service offers a comprehensive feed of valuable aggregate metrics related to the networks of leading cryptoassets. ATLAS™ Search stands out as a highly efficient and dependable blockchain explorer on the market. Additionally, the CM Market Data Feed delivers both historical and real-time insights from over 30 prominent spot and derivatives crypto exchanges, encompassing all essential market data types like tick-by-tick trades, quotes, order book snapshots, and candlestick data. The Coin Metrics Bletchley Indexes (CMBI) provide a wide-ranging collection of benchmarks for individual assets, multiple assets, and distinctive cryptoasset categories. Furthermore, CM Reference Rates deliver strong, manipulation-resistant pricing for a multitude of assets. Institutions seeking to create customized methodologies or manage their own indexes can also access calculation agent services. This extensive array of offerings solidifies Coin Metrics' position as a leader in the cryptocurrency data industry.
  • 50
    Rithmic Reviews
    Rithmic prioritizes your trading needs, catering to both professional traders and those within proprietary trading firms by offering a trade execution software that boasts the low latency and high throughput capabilities previously accessible only to major trading firms and elite hedge funds. With R | API+™, you can create customized trading applications, deploy them on machines that are co-located with ours, and easily connect to our fully hosted multi-asset trade execution platform. Alternatively, you can choose to reserve a dedicated deployment for your exclusive use, whether in your own data center or within ours. Rithmic takes on the responsibility of operating and maintaining all software deployments on your behalf, ensuring a seamless experience. Administrators have the ability to establish risk limits, manage user and account activation, and document fill and cancel actions that occur outside the platform. Additionally, the system offers features such as trailing stops, brackets, and OCOs, along with customizable time, tick, volume, and price range bars to enhance your trading strategy. This comprehensive suite empowers traders with the tools necessary for efficient and effective market engagement.