Grafana
Grafana Labs provides an open and composable observability stack built around Grafana, the leading open source technology for dashboards and visualization. Recognized as a 2025 Gartner® Magic Quadrant™ Leader for Observability Platforms and positioned furthest to the right for Completeness of Vision, Grafana Labs supports over 25M users and 5,000+ customers.
Grafana Cloud delivers the full power of Grafana’s open and composable observability stack—without the overhead of managing infrastructure. As a fully managed SaaS offering from Grafana Labs, it unifies metrics, logs, and traces in one place, giving engineering teams real-time visibility into systems and applications. Built around the LGTM Stack—Loki for logs, Grafana for visualization, Tempo for traces, and Mimir for metrics—Grafana Cloud provides a scalable foundation for modern observability.
With built-in integrations for Kubernetes, cloud services, CI/CD pipelines, and OpenTelemetry, Grafana Cloud accelerates time to value while reducing operational complexity. Grafana Cloud also supports OLAP-style analytics through integrations with data warehouses and analytical engines like BigQuery, ClickHouse, and Druid—enabling multi-dimensional exploration across observability and business data. Teams gain access to powerful features like Adaptive Metrics for cost optimization, incident response workflows, and synthetic monitoring for performance testing—all within a secure, globally distributed platform. Whether you’re modernizing infrastructure, scaling observability, or driving SLO-based performance, Grafana Cloud delivers the insights you need—fast, flexible, and vendor-neutral.
Learn more
DataBuck
Big Data Quality must always be verified to ensure that data is safe, accurate, and complete. Data is moved through multiple IT platforms or stored in Data Lakes. The Big Data Challenge: Data often loses its trustworthiness because of (i) Undiscovered errors in incoming data (iii). Multiple data sources that get out-of-synchrony over time (iii). Structural changes to data in downstream processes not expected downstream and (iv) multiple IT platforms (Hadoop DW, Cloud). Unexpected errors can occur when data moves between systems, such as from a Data Warehouse to a Hadoop environment, NoSQL database, or the Cloud. Data can change unexpectedly due to poor processes, ad-hoc data policies, poor data storage and control, and lack of control over certain data sources (e.g., external providers). DataBuck is an autonomous, self-learning, Big Data Quality validation tool and Data Matching tool.
Learn more
dbt
dbt Labs is redefining how data teams work with SQL. Instead of waiting on complex ETL processes, dbt lets data analysts and data engineers build production-ready transformations directly in the warehouse, using code, version control, and CI/CD. This community-driven approach puts power back in the hands of practitioners while maintaining governance and scalability for enterprise use.
With a rapidly growing open-source community and an enterprise-grade cloud platform, dbt is at the heart of the modern data stack. It’s the go-to solution for teams who want faster analytics, higher quality data, and the confidence that comes from transparent, testable transformations.
Learn more
Edge Delta
Edge Delta is a new way to do observability. We are the only provider that processes your data as it's created and gives DevOps, platform engineers and SRE teams the freedom to route it anywhere. As a result, customers can make observability costs predictable, surface the most useful insights, and shape your data however they need.
Our primary differentiator is our distributed architecture. We are the only observability provider that pushes data processing upstream to the infrastructure level, enabling users to process their logs and metrics as soon as they’re created at the source. Data processing includes:
* Shaping, enriching, and filtering data
* Creating log analytics
* Distilling metrics libraries into the most useful data
* Detecting anomalies and triggering alerts
We combine our distributed approach with a column-oriented backend to help users store and analyze massive data volumes without impacting performance or cost.
By using Edge Delta, customers can reduce observability costs without sacrificing visibility. Additionally, they can surface insights and trigger alerts before data leaves their environment.
Learn more