Best Oarkflow Alternatives in 2025

Find the top alternatives to Oarkflow currently available. Compare ratings, reviews, pricing, and features of Oarkflow alternatives in 2025. Slashdot lists the best Oarkflow alternatives on the market that offer competing products that are similar to Oarkflow. Sort through Oarkflow alternatives below to make the best choice for your needs

  • 1
    Alooma Reviews
    Alooma provides data teams with the ability to monitor and manage their data effectively. It consolidates information from disparate data silos into BigQuery instantly, allowing for real-time data integration. Users can set up data flows in just a few minutes, or opt to customize, enhance, and transform their data on-the-fly prior to it reaching the data warehouse. With Alooma, no event is ever lost thanks to its integrated safety features that facilitate straightforward error management without interrupting the pipeline. Whether dealing with a few data sources or a multitude, Alooma's flexible architecture adapts to meet your requirements seamlessly. This capability ensures that organizations can efficiently handle their data demands regardless of scale or complexity.
  • 2
    Cribl Stream Reviews
    Cribl Stream allows you create an observability pipeline that helps you parse and restructure data in flight before you pay to analyze it. You can get the right data in the format you need, at the right place and in the format you want. Translate and format data into any tooling scheme you need to route data to the right tool for the job or all of the job tools. Different departments can choose different analytics environments without the need to deploy new forwarders or agents. Log and metric data can go unused up to 50%. This includes duplicate data, null fields, and fields with zero analytical value. Cribl Stream allows you to trim waste data streams and only analyze what you need. Cribl Stream is the best way for multiple data formats to be integrated into trusted tools that you use for IT and Security. Cribl Stream universal receiver can be used to collect data from any machine source - and to schedule batch collection from REST APIs (Kinesis Firehose), Raw HTTP and Microsoft Office 365 APIs.
  • 3
    Chalk Reviews
    Experience robust data engineering processes free from the challenges of infrastructure management. By utilizing straightforward, modular Python, you can define intricate streaming, scheduling, and data backfill pipelines with ease. Transition from traditional ETL methods and access your data instantly, regardless of its complexity. Seamlessly blend deep learning and large language models with structured business datasets to enhance decision-making. Improve forecasting accuracy using up-to-date information, eliminate the costs associated with vendor data pre-fetching, and conduct timely queries for online predictions. Test your ideas in Jupyter notebooks before moving them to a live environment. Avoid discrepancies between training and serving data while developing new workflows in mere milliseconds. Monitor all of your data operations in real-time to effortlessly track usage and maintain data integrity. Have full visibility into everything you've processed and the ability to replay data as needed. Easily integrate with existing tools and deploy on your infrastructure, while setting and enforcing withdrawal limits with tailored hold periods. With such capabilities, you can not only enhance productivity but also ensure streamlined operations across your data ecosystem.
  • 4
    CData Sync Reviews
    CData Sync is a universal database pipeline that automates continuous replication between hundreds SaaS applications & cloud-based data sources. It also supports any major data warehouse or database, whether it's on-premise or cloud. Replicate data from hundreds cloud data sources to popular databases destinations such as SQL Server and Redshift, S3, Snowflake and BigQuery. It is simple to set up replication: log in, select the data tables you wish to replicate, then select a replication period. It's done. CData Sync extracts data iteratively. It has minimal impact on operational systems. CData Sync only queries and updates data that has been updated or added since the last update. CData Sync allows for maximum flexibility in partial and full replication scenarios. It ensures that critical data is safely stored in your database of choice. Get a 30-day trial of the Sync app for free or request more information at www.cdata.com/sync
  • 5
    Panoply Reviews

    Panoply

    SQream

    $299 per month
    Panoply makes it easy to store, sync and access all your business information in the cloud. With built-in integrations to all major CRMs and file systems, building a single source of truth for your data has never been easier. Panoply is quick to set up and requires no ongoing maintenance. It also offers award-winning support, and a plan to fit any need.
  • 6
    AWS Data Pipeline Reviews
    AWS Data Pipeline is a robust web service designed to facilitate the reliable processing and movement of data across various AWS compute and storage services, as well as from on-premises data sources, according to defined schedules. This service enables you to consistently access data in its storage location, perform large-scale transformations and processing, and seamlessly transfer the outcomes to AWS services like Amazon S3, Amazon RDS, Amazon DynamoDB, and Amazon EMR. With AWS Data Pipeline, you can effortlessly construct intricate data processing workflows that are resilient, repeatable, and highly available. You can rest assured knowing that you do not need to manage resource availability, address inter-task dependencies, handle transient failures or timeouts during individual tasks, or set up a failure notification system. Additionally, AWS Data Pipeline provides the capability to access and process data that was previously confined within on-premises data silos, expanding your data processing possibilities significantly. This service ultimately streamlines the data management process and enhances operational efficiency across your organization.
  • 7
    BDB Platform Reviews
    BDB is an advanced platform for data analytics and business intelligence that excels in extracting valuable insights from your data. It can be implemented both in cloud environments and on-premises. With a unique microservices architecture, it incorporates components for Data Preparation, Predictive Analytics, Pipelines, and Dashboard design, enabling tailored solutions and scalable analytics across various sectors. Thanks to its robust NLP-driven search functionality, users can harness the potential of data seamlessly across desktops, tablets, and mobile devices. BDB offers numerous integrated data connectors, allowing it to interface with a wide array of popular data sources, applications, third-party APIs, IoT devices, and social media platforms in real-time. It facilitates connections to relational databases, big data systems, FTP/SFTP servers, flat files, and web services, effectively managing structured, semi-structured, and unstructured data. Embark on your path to cutting-edge analytics today, and discover the transformative power of BDB for your organization.
  • 8
    Dropbase Reviews

    Dropbase

    Dropbase

    $19.97 per user per month
    Consolidate offline data, import various files, and meticulously process and refine the information. With just a single click, you can export everything to a live database, thereby optimizing your data workflows. Centralize offline information, ensuring that your team can easily access it. Transfer offline files to Dropbase in multiple formats, accommodating any preferences you may have. Process and format your data seamlessly, allowing for additions, edits, reordering, and deletions of processing steps as needed. Enjoy the convenience of 1-click exports, whether to a database, endpoints, or downloadable code. Gain instant REST API access to securely query your Dropbase data using REST API access keys. Onboard your data wherever necessary, and combine multiple datasets to fit your required format or data model without needing to write any code. Manage your data pipelines effortlessly through a user-friendly spreadsheet interface, tracking every step of the process. Benefit from flexibility by utilizing a library of pre-built processing functions or by creating your own as you see fit. With 1-click exports, you can easily manage databases and credentials, ensuring a smooth and efficient data management experience. This system empowers teams to work more collaboratively and efficiently, transforming how they handle data.
  • 9
    Upsolver Reviews
    Upsolver makes it easy to create a governed data lake, manage, integrate, and prepare streaming data for analysis. Only use auto-generated schema on-read SQL to create pipelines. A visual IDE that makes it easy to build pipelines. Add Upserts to data lake tables. Mix streaming and large-scale batch data. Automated schema evolution and reprocessing of previous state. Automated orchestration of pipelines (no Dags). Fully-managed execution at scale Strong consistency guarantee over object storage Nearly zero maintenance overhead for analytics-ready information. Integral hygiene for data lake tables, including columnar formats, partitioning and compaction, as well as vacuuming. Low cost, 100,000 events per second (billions every day) Continuous lock-free compaction to eliminate the "small file" problem. Parquet-based tables are ideal for quick queries.
  • 10
    Dataform Reviews
    Dataform provides a platform for data analysts and engineers to create and manage scalable data transformation pipelines in BigQuery using solely SQL from a single, integrated interface. The open-source core language allows teams to outline table structures, manage dependencies, include column descriptions, and establish data quality checks within a collective code repository, all while adhering to best practices in software development, such as version control, various environments, testing protocols, and comprehensive documentation. A fully managed, serverless orchestration layer seamlessly oversees workflow dependencies, monitors data lineage, and executes SQL pipelines either on demand or on a schedule through tools like Cloud Composer, Workflows, BigQuery Studio, or external services. Within the browser-based development interface, users can receive immediate error notifications, visualize their dependency graphs, link their projects to GitHub or GitLab for version control and code reviews, and initiate high-quality production pipelines in just minutes without exiting BigQuery Studio. This efficiency not only accelerates the development process but also enhances collaboration among team members.
  • 11
    Google Cloud Data Fusion Reviews
    Open core technology facilitates the integration of hybrid and multi-cloud environments. Built on the open-source initiative CDAP, Data Fusion guarantees portability of data pipelines for its users. The extensive compatibility of CDAP with both on-premises and public cloud services enables Cloud Data Fusion users to eliminate data silos and access previously unreachable insights. Additionally, its seamless integration with Google’s top-tier big data tools enhances the user experience. By leveraging Google Cloud, Data Fusion not only streamlines data security but also ensures that data is readily available for thorough analysis. Whether you are constructing a data lake utilizing Cloud Storage and Dataproc, transferring data into BigQuery for robust data warehousing, or transforming data for placement into a relational database like Cloud Spanner, the integration capabilities of Cloud Data Fusion promote swift and efficient development while allowing for rapid iteration. This comprehensive approach ultimately empowers businesses to derive greater value from their data assets.
  • 12
    Datazoom Reviews
    Data is essential to improve the efficiency, profitability, and experience of streaming video. Datazoom allows video publishers to manage distributed architectures more efficiently by centralizing, standardizing and integrating data in real time. This creates a more powerful data pipeline, improves observability and adaptability, as well as optimizing solutions. Datazoom is a video data platform which continuously gathers data from endpoints such as a CDN or video player through an ecosystem of collectors. Once the data has been gathered, it is normalized with standardized data definitions. The data is then sent via available connectors to analytics platforms such as Google BigQuery, Google Analytics and Splunk. It can be visualized using tools like Looker or Superset. Datazoom is your key for a more efficient and effective data pipeline. Get the data you need right away. Do not wait to get your data if you have an urgent issue.
  • 13
    DataKitchen Reviews
    You can regain control over your data pipelines and instantly deliver value without any errors. DataKitchen™, DataOps platforms automate and coordinate all people, tools and environments within your entire data analytics organization. This includes everything from orchestration, testing and monitoring, development, and deployment. You already have the tools you need. Our platform automates your multi-tool, multienvironment pipelines from data access to value delivery. Add automated tests to every node of your production and development pipelines to catch costly and embarrassing errors before they reach the end user. In minutes, you can create repeatable work environments that allow teams to make changes or experiment without interrupting production. With a click, you can instantly deploy new features to production. Your teams can be freed from the tedious, manual work that hinders innovation.
  • 14
    Google Cloud Composer Reviews
    The managed features of Cloud Composer, along with its compatibility with Apache Airflow, enable you to concentrate on crafting, scheduling, and overseeing your workflows rather than worrying about resource provisioning. Its seamless integration with various Google Cloud products such as BigQuery, Dataflow, Dataproc, Datastore, Cloud Storage, Pub/Sub, and AI Platform empowers users to orchestrate their data pipelines effectively. You can manage your workflows from a single orchestration tool, regardless of whether your pipeline operates on-premises, in multiple clouds, or entirely within Google Cloud. This solution simplifies your transition to the cloud and supports a hybrid data environment by allowing you to orchestrate workflows that span both on-premises setups and the public cloud. By creating workflows that interconnect data, processing, and services across different cloud platforms, you can establish a cohesive data ecosystem that enhances efficiency and collaboration. Additionally, this unified approach not only streamlines operations but also optimizes resource utilization across various environments.
  • 15
    Pandio Reviews

    Pandio

    Pandio

    $1.40 per hour
    It is difficult, costly, and risky to connect systems to scale AI projects. Pandio's cloud native managed solution simplifies data pipelines to harness AI's power. You can access your data from any location at any time to query, analyze, or drive to insight. Big data analytics without the high cost Enable data movement seamlessly. Streaming, queuing, and pub-sub with unparalleled throughput, latency and durability. In less than 30 minutes, you can design, train, deploy, and test machine learning models locally. Accelerate your journey to ML and democratize it across your organization. It doesn't take months or years of disappointment. Pandio's AI driven architecture automatically orchestrates all your models, data and ML tools. Pandio can be integrated with your existing stack to help you accelerate your ML efforts. Orchestrate your messages and models across your organization.
  • 16
    Tarsal Reviews
    Tarsal's capability for infinite scalability ensures that as your organization expands, it seamlessly adapts to your needs. With Tarsal, you can effortlessly change the destination of your data; what serves as SIEM data today can transform into data lake information tomorrow, all accomplished with a single click. You can maintain your SIEM while gradually shifting analytics to a data lake without the need for any extensive overhaul. Some analytics may not be compatible with your current SIEM, but Tarsal empowers you to have data ready for queries in a data lake environment. Since your SIEM represents a significant portion of your expenses, utilizing Tarsal to transfer some of that data to your data lake can be a cost-effective strategy. Tarsal stands out as the first highly scalable ETL data pipeline specifically designed for security teams, allowing you to easily exfiltrate vast amounts of data in just a few clicks. With its instant normalization feature, Tarsal enables you to route data efficiently to any destination of your choice, making data management simpler and more effective than ever. This flexibility allows organizations to maximize their resources while enhancing their data handling capabilities.
  • 17
    Spring Cloud Data Flow Reviews
    Microservices architecture enables efficient streaming and batch data processing specifically designed for platforms like Cloud Foundry and Kubernetes. By utilizing Spring Cloud Data Flow, users can effectively design intricate topologies for their data pipelines, which feature Spring Boot applications developed with the Spring Cloud Stream or Spring Cloud Task frameworks. This powerful tool caters to a variety of data processing needs, encompassing areas such as ETL, data import/export, event streaming, and predictive analytics. The Spring Cloud Data Flow server leverages Spring Cloud Deployer to facilitate the deployment of these data pipelines, which consist of Spring Cloud Stream or Spring Cloud Task applications, onto contemporary infrastructures like Cloud Foundry and Kubernetes. Additionally, a curated selection of pre-built starter applications for streaming and batch tasks supports diverse data integration and processing scenarios, aiding users in their learning and experimentation endeavors. Furthermore, developers have the flexibility to create custom stream and task applications tailored to specific middleware or data services, all while adhering to the user-friendly Spring Boot programming model. This adaptability makes Spring Cloud Data Flow a valuable asset for organizations looking to optimize their data workflows.
  • 18
    RudderStack Reviews
    RudderStack is the smart customer information pipeline. You can easily build pipelines that connect your entire customer data stack. Then, make them smarter by pulling data from your data warehouse to trigger enrichment in customer tools for identity sewing and other advanced uses cases. Start building smarter customer data pipelines today.
  • 19
    Trifacta Reviews
    Trifacta offers an efficient solution for preparing data and constructing data pipelines in the cloud. By leveraging visual and intelligent assistance, it enables users to expedite data preparation, leading to quicker insights. Data analytics projects can falter due to poor data quality; therefore, Trifacta equips you with the tools to comprehend and refine your data swiftly and accurately. It empowers users to harness the full potential of their data without the need for coding expertise. Traditional manual data preparation methods can be tedious and lack scalability, but with Trifacta, you can create, implement, and maintain self-service data pipelines in mere minutes instead of months, revolutionizing your data workflow. This ensures that your analytics projects are not only successful but also sustainable over time.
  • 20
    Stripe Data Pipeline Reviews
    The Stripe Data Pipeline efficiently transfers your current Stripe data and reports to either Snowflake or Amazon Redshift with just a few clicks. By consolidating your Stripe data alongside other business information, you can expedite your accounting processes and achieve deeper insights into your operations. Setting up the Stripe Data Pipeline takes only a few minutes, after which your Stripe data and reports will be automatically sent to your data warehouse regularly—no coding skills are necessary. This creates a unified source of truth, enhancing the speed of your financial closing while providing improved analytical capabilities. You can easily pinpoint your top-performing payment methods and investigate fraud patterns based on location, among other analyses. The pipeline allows you to send your Stripe data straight to your data warehouse, eliminating the need for a third-party extract, transform, and load (ETL) process. Additionally, you can relieve yourself of the burden of ongoing maintenance with a pipeline that is inherently integrated with Stripe. Regardless of the volume of data, you can trust that it will remain complete and accurate. This automation of data delivery at scale helps in reducing security vulnerabilities and prevents potential data outages and delays, ensuring smooth operations. Ultimately, this solution empowers businesses to leverage their data more effectively and make informed decisions swiftly.
  • 21
    Hevo Reviews
    Hevo Data is a no-code, bi-directional data pipeline platform specially built for modern ETL, ELT, and Reverse ETL Needs. It helps data teams streamline and automate org-wide data flows that result in a saving of ~10 hours of engineering time/week and 10x faster reporting, analytics, and decision making. The platform supports 100+ ready-to-use integrations across Databases, SaaS Applications, Cloud Storage, SDKs, and Streaming Services. Over 500 data-driven companies spread across 35+ countries trust Hevo for their data integration needs.
  • 22
    Datavolo Reviews

    Datavolo

    Datavolo

    $36,000 per year
    Gather all your unstructured data to meet your LLM requirements effectively. Datavolo transforms single-use, point-to-point coding into rapid, adaptable, reusable pipelines, allowing you to concentrate on what truly matters—producing exceptional results. As a dataflow infrastructure, Datavolo provides you with a significant competitive advantage. Enjoy swift, unrestricted access to all your data, including the unstructured files essential for LLMs, thereby enhancing your generative AI capabilities. Experience pipelines that expand alongside you, set up in minutes instead of days, without the need for custom coding. You can easily configure sources and destinations at any time, while trust in your data is ensured, as lineage is incorporated into each pipeline. Move beyond single-use pipelines and costly configurations. Leverage your unstructured data to drive AI innovation with Datavolo, which is supported by Apache NiFi and specifically designed for handling unstructured data. With a lifetime of experience, our founders are dedicated to helping organizations maximize their data's potential. This commitment not only empowers businesses but also fosters a culture of data-driven decision-making.
  • 23
    Informatica Data Engineering Reviews
    Efficiently ingest, prepare, and manage data pipelines at scale specifically designed for cloud-based AI and analytics. The extensive data engineering suite from Informatica equips users with all the essential tools required to handle large-scale data engineering tasks that drive AI and analytical insights, including advanced data integration, quality assurance, streaming capabilities, data masking, and preparation functionalities. With the help of CLAIRE®-driven automation, users can quickly develop intelligent data pipelines, which feature automatic change data capture (CDC), allowing for the ingestion of thousands of databases and millions of files alongside streaming events. This approach significantly enhances the speed of achieving return on investment by enabling self-service access to reliable, high-quality data. Gain genuine, real-world perspectives on Informatica's data engineering solutions from trusted peers within the industry. Additionally, explore reference architectures designed for sustainable data engineering practices. By leveraging AI-driven data engineering in the cloud, organizations can ensure their analysts and data scientists have access to the dependable, high-quality data essential for transforming their business operations effectively. Ultimately, this comprehensive approach not only streamlines data management but also empowers teams to make data-driven decisions with confidence.
  • 24
    Lyftrondata Reviews
    If you're looking to establish a governed delta lake, create a data warehouse, or transition from a conventional database to a contemporary cloud data solution, Lyftrondata has you covered. You can effortlessly create and oversee all your data workloads within a single platform, automating the construction of your pipeline and warehouse. Instantly analyze your data using ANSI SQL and business intelligence or machine learning tools, and easily share your findings without the need for custom coding. This functionality enhances the efficiency of your data teams and accelerates the realization of value. You can define, categorize, and locate all data sets in one centralized location, enabling seamless sharing with peers without the complexity of coding, thus fostering insightful data-driven decisions. This capability is particularly advantageous for organizations wishing to store their data once, share it with various experts, and leverage it repeatedly for both current and future needs. In addition, you can define datasets, execute SQL transformations, or migrate your existing SQL data processing workflows to any cloud data warehouse of your choice, ensuring flexibility and scalability in your data management strategy.
  • 25
    Lumada IIoT Reviews
    Implement sensors tailored for IoT applications and enhance the data collected by integrating it with environmental and control system information. This integration should occur in real-time with enterprise data, facilitating the deployment of predictive algorithms to uncover fresh insights and leverage your data for impactful purposes. Utilize advanced analytics to foresee maintenance issues, gain insights into asset usage, minimize defects, and fine-tune processes. Capitalize on the capabilities of connected devices to provide remote monitoring and diagnostic solutions. Furthermore, use IoT analytics to anticipate safety risks and ensure compliance with regulations, thereby decreasing workplace accidents. Lumada Data Integration allows for the swift creation and expansion of data pipelines, merging information from various sources, including data lakes, warehouses, and devices, while effectively managing data flows across diverse environments. By fostering ecosystems with clients and business associates in multiple sectors, we can hasten digital transformation, ultimately generating new value for society in the process. This collaborative approach not only enhances innovation but also leads to sustainable growth in an increasingly interconnected world.
  • 26
    Unravel Reviews
    Unravel empowers data functionality across various environments, whether it’s Azure, AWS, GCP, or your own data center, by enhancing performance, automating issue resolution, and managing expenses effectively. It enables users to oversee, control, and optimize their data pipelines both in the cloud and on-site, facilitating a more consistent performance in the applications that drive business success. With Unravel, you gain a holistic perspective of your complete data ecosystem. The platform aggregates performance metrics from all systems, applications, and platforms across any cloud, employing agentless solutions and machine learning to thoroughly model your data flows from start to finish. This allows for an in-depth exploration, correlation, and analysis of every component within your contemporary data and cloud infrastructure. Unravel's intelligent data model uncovers interdependencies, identifies challenges, and highlights potential improvements, providing insight into how applications and resources are utilized, as well as distinguishing between effective and ineffective elements. Instead of merely tracking performance, you can swiftly identify problems and implement solutions. Utilize AI-enhanced suggestions to automate enhancements, reduce expenses, and strategically prepare for future needs. Ultimately, Unravel not only optimizes your data management strategies but also supports a proactive approach to data-driven decision-making.
  • 27
    Skyvia Reviews
    Data integration, backup, management and connectivity. Cloud-based platform that is 100 percent cloud-based. It offers cloud agility and scalability. No manual upgrades or deployment required. There is no coding wizard that can meet the needs of both IT professionals as well as business users without technical skills. Skyvia suites are available in flexible pricing plans that can be customized for any product. To automate workflows, connect your cloud, flat, and on-premise data. Automate data collection from different cloud sources to a database. In just a few clicks, you can transfer your business data between cloud applications. All your cloud data can be protected and kept secure in one location. To connect with multiple OData consumers, you can share data instantly via the REST API. You can query and manage any data via the browser using SQL or the intuitive visual Query Builder.
  • 28
    Osmos Reviews

    Osmos

    Osmos

    $299 per month
    With Osmos, customers can effortlessly tidy up their disorganized data files and seamlessly upload them into their operational systems without the need for any coding. Central to our service is an AI-driven data transformation engine, which allows users to quickly map, validate, and clean their data with just a few clicks. When a plan is changed, your account will be adjusted in accordance with the proportion of the billing cycle remaining. For instance, an eCommerce business can streamline the ingestion of product catalog data sourced from various distributors and vendors directly into their database. Similarly, a manufacturing firm can automate the extraction of purchase orders from email attachments into their Netsuite system. This solution enables users to automatically clean and reformat incoming data to align with their target schema effortlessly. By using Osmos, you can finally say goodbye to the hassle of dealing with custom scripts and cumbersome spreadsheets. Our platform is designed to enhance efficiency and accuracy, ensuring that your data management processes are smooth and reliable.
  • 29
    StreamScape Reviews
    Leverage Reactive Programming on the back-end without the hassle of using specialized languages or complex frameworks. With the help of Triggers, Actors, and Event Collections, it becomes straightforward to create data pipelines and manage data streams through an intuitive SQL-like syntax, effectively simplifying the challenges associated with distributed system development. A standout aspect is the Extensible Data Modeling feature, which enables rich semantics and schema definitions to accurately represent real-world entities. The implementation of on-the-fly validation and data shaping rules accommodates various formats, including XML and JSON, making it effortless to articulate and adapt your schema in line with evolving business needs. If you can articulate it, we have the capability to query it. If you're familiar with SQL and JavaScript, you're already equipped to navigate the data engine. No matter the format, a robust query language allows for immediate testing of logic expressions and functions, which accelerates development and streamlines deployment, resulting in exceptional data agility and responsiveness to changing circumstances. This adaptability not only enhances productivity but also fosters innovation within teams.
  • 30
    Y42 Reviews

    Y42

    Datos-Intelligence GmbH

    Y42 is the first fully managed Modern DataOps Cloud for production-ready data pipelines on top of Google BigQuery and Snowflake.
  • 31
    QuerySurge Reviews
    Top Pick
    QuerySurge is the smart Data Testing solution that automates the data validation and ETL testing of Big Data, Data Warehouses, Business Intelligence Reports and Enterprise Applications with full DevOps functionality for continuous testing. Use Cases - Data Warehouse & ETL Testing - Big Data (Hadoop & NoSQL) Testing - DevOps for Data / Continuous Testing - Data Migration Testing - BI Report Testing - Enterprise Application/ERP Testing Features Supported Technologies - 200+ data stores are supported QuerySurge Projects - multi-project support Data Analytics Dashboard - provides insight into your data Query Wizard - no programming required Design Library - take total control of your custom test desig BI Tester - automated business report testing Scheduling - run now, periodically or at a set time Run Dashboard - analyze test runs in real-time Reports - 100s of reports API - full RESTful API DevOps for Data - integrates into your CI/CD pipeline Test Management Integration QuerySurge will help you: - Continuously detect data issues in the delivery pipeline - Dramatically increase data validation coverage - Leverage analytics to optimize your critical data - Improve your data quality at speed
  • 32
    GlassFlow Reviews

    GlassFlow

    GlassFlow

    $350 per month
    GlassFlow is an innovative, serverless platform for building event-driven data pipelines, specifically tailored for developers working with Python. It allows users to create real-time data workflows without the complexities associated with traditional infrastructure solutions like Kafka or Flink. Developers can simply write Python functions to specify data transformations, while GlassFlow takes care of the infrastructure, providing benefits such as automatic scaling, low latency, and efficient data retention. The platform seamlessly integrates with a variety of data sources and destinations, including Google Pub/Sub, AWS Kinesis, and OpenAI, utilizing its Python SDK and managed connectors. With a low-code interface, users can rapidly set up and deploy their data pipelines in a matter of minutes. Additionally, GlassFlow includes functionalities such as serverless function execution, real-time API connections, as well as alerting and reprocessing features. This combination of capabilities makes GlassFlow an ideal choice for Python developers looking to streamline the development and management of event-driven data pipelines, ultimately enhancing their productivity and efficiency. As the data landscape continues to evolve, GlassFlow positions itself as a pivotal tool in simplifying data processing workflows.
  • 33
    Nextflow Reviews
    Data-driven computational pipelines. Nextflow allows for reproducible and scalable scientific workflows by using software containers. It allows adaptation of scripts written in most common scripting languages. Fluent DSL makes it easy to implement and deploy complex reactive and parallel workflows on clusters and clouds. Nextflow was built on the belief that Linux is the lingua Franca of data science. Nextflow makes it easier to create a computational pipeline that can be used to combine many tasks. You can reuse existing scripts and tools. Additionally, you don't have to learn a new language to use Nextflow. Nextflow supports Docker, Singularity and other containers technology. This, together with integration of the GitHub Code-sharing Platform, allows you write self-contained pipes, manage versions, reproduce any configuration quickly, and allow you to integrate the GitHub code-sharing portal. Nextflow acts as an abstraction layer between the logic of your pipeline and its execution layer.
  • 34
    Orchestra Reviews
    Orchestra serves as a Comprehensive Control Platform for Data and AI Operations, aimed at empowering data teams to effortlessly create, deploy, and oversee workflows. This platform provides a declarative approach that merges coding with a graphical interface, enabling users to develop workflows at a tenfold speed while cutting maintenance efforts by half. Through its real-time metadata aggregation capabilities, Orchestra ensures complete data observability, facilitating proactive alerts and swift recovery from any pipeline issues. It smoothly integrates with a variety of tools such as dbt Core, dbt Cloud, Coalesce, Airbyte, Fivetran, Snowflake, BigQuery, Databricks, and others, ensuring it fits well within existing data infrastructures. With a modular design that accommodates AWS, Azure, and GCP, Orchestra proves to be a flexible option for businesses and growing organizations looking to optimize their data processes and foster confidence in their AI ventures. Additionally, its user-friendly interface and robust connectivity options make it an essential asset for organizations striving to harness the full potential of their data ecosystems.
  • 35
    IBM StreamSets Reviews
    IBM® StreamSets allows users to create and maintain smart streaming data pipelines using an intuitive graphical user interface. This facilitates seamless data integration in hybrid and multicloud environments. IBM StreamSets is used by leading global companies to support millions data pipelines, for modern analytics and intelligent applications. Reduce data staleness, and enable real-time information at scale. Handle millions of records across thousands of pipelines in seconds. Drag-and-drop processors that automatically detect and adapt to data drift will protect your data pipelines against unexpected changes and shifts. Create streaming pipelines for ingesting structured, semistructured, or unstructured data to deliver it to multiple destinations.
  • 36
    Adele Reviews
    Adele is a user-friendly platform that streamlines the process of transferring data pipelines from outdated systems to a designated target platform. It gives users comprehensive control over the migration process, and its smart mapping features provide crucial insights. By reverse-engineering existing data pipelines, Adele generates data lineage maps and retrieves metadata, thereby improving transparency and comprehension of data movement. This approach not only facilitates the migration but also fosters a deeper understanding of the data landscape within organizations.
  • 37
    Talend Pipeline Designer Reviews
    Talend Pipeline Designer is an intuitive web-based application designed for users to transform raw data into a format suitable for analytics. It allows for the creation of reusable pipelines that can extract, enhance, and modify data from various sources before sending it to selected data warehouses, which can then be used to generate insightful dashboards for your organization. With this tool, you can efficiently build and implement data pipelines in a short amount of time. The user-friendly visual interface enables both design and preview capabilities for batch or streaming processes directly within your web browser. Its architecture is built to scale, supporting the latest advancements in hybrid and multi-cloud environments, while enhancing productivity through real-time development and debugging features. The live preview functionality provides immediate visual feedback, allowing you to diagnose data issues swiftly. Furthermore, you can accelerate decision-making through comprehensive dataset documentation, quality assurance measures, and effective promotion strategies. The platform also includes built-in functions to enhance data quality and streamline the transformation process, making data management an effortless and automated practice. In this way, Talend Pipeline Designer empowers organizations to maintain high data integrity with ease.
  • 38
    Apache Airflow Reviews

    Apache Airflow

    The Apache Software Foundation

    Airflow is a community-driven platform designed for the programmatic creation, scheduling, and monitoring of workflows. With its modular architecture, Airflow employs a message queue to manage an unlimited number of workers, making it highly scalable. The system is capable of handling complex operations through its ability to define pipelines using Python, facilitating dynamic pipeline generation. This flexibility enables developers to write code that can create pipelines on the fly. Users can easily create custom operators and expand existing libraries, tailoring the abstraction level to meet their specific needs. The pipelines in Airflow are both concise and clear, with built-in parametrization supported by the robust Jinja templating engine. Eliminate the need for complex command-line operations or obscure XML configurations! Instead, leverage standard Python functionalities to construct workflows, incorporating date-time formats for scheduling and utilizing loops for the dynamic generation of tasks. This approach ensures that you retain complete freedom and adaptability when designing your workflows, allowing you to efficiently respond to changing requirements. Additionally, Airflow's user-friendly interface empowers teams to collaboratively refine and optimize their workflow processes.
  • 39
    Astro by Astronomer Reviews
    Astronomer is the driving force behind Apache Airflow, the de facto standard for expressing data flows as code. Airflow is downloaded more than 4 million times each month and is used by hundreds of thousands of teams around the world. For data teams looking to increase the availability of trusted data, Astronomer provides Astro, the modern data orchestration platform, powered by Airflow. Astro enables data engineers, data scientists, and data analysts to build, run, and observe pipelines-as-code. Founded in 2018, Astronomer is a global remote-first company with hubs in Cincinnati, New York, San Francisco, and San Jose. Customers in more than 35 countries trust Astronomer as their partner for data orchestration.
  • 40
    Kestra Reviews
    Kestra is a free, open-source orchestrator based on events that simplifies data operations while improving collaboration between engineers and users. Kestra brings Infrastructure as Code to data pipelines. This allows you to build reliable workflows with confidence. The declarative YAML interface allows anyone who wants to benefit from analytics to participate in the creation of the data pipeline. The UI automatically updates the YAML definition whenever you make changes to a work flow via the UI or an API call. The orchestration logic can be defined in code declaratively, even if certain workflow components are modified.
  • 41
    Lightbend Reviews
    Lightbend offers innovative technology that empowers developers to create applications centered around data, facilitating the development of demanding, globally distributed systems and streaming data pipelines. Businesses across the globe rely on Lightbend to address the complexities associated with real-time, distributed data, which is essential for their most critical business endeavors. The Akka Platform provides essential components that simplify the process for organizations to construct, deploy, and manage large-scale applications that drive digital transformation. By leveraging reactive microservices, companies can significantly speed up their time-to-value while minimizing expenses related to infrastructure and cloud services, all while ensuring resilience against failures and maintaining efficiency at any scale. With built-in features for encryption, data shredding, TLS enforcement, and adherence to GDPR standards, it ensures secure data handling. Additionally, the framework supports rapid development, deployment, and oversight of streaming data pipelines, making it a comprehensive solution for modern data challenges. This versatility positions companies to fully harness the potential of their data, ultimately propelling them forward in an increasingly competitive landscape.
  • 42
    Openbridge Reviews

    Openbridge

    Openbridge

    $149 per month
    Discover how to enhance sales growth effortlessly by utilizing automated data pipelines that connect seamlessly to data lakes or cloud storage solutions without the need for coding. This adaptable platform adheres to industry standards, enabling the integration of sales and marketing data to generate automated insights for more intelligent expansion. Eliminate the hassle and costs associated with cumbersome manual data downloads. You’ll always have a clear understanding of your expenses, only paying for the services you actually use. Empower your tools with rapid access to data that is ready for analytics. Our certified developers prioritize security by exclusively working with official APIs. You can quickly initiate data pipelines sourced from widely-used platforms. With pre-built, pre-transformed pipelines at your disposal, you can unlock crucial data from sources like Amazon Vendor Central, Amazon Seller Central, Instagram Stories, Facebook, Amazon Advertising, Google Ads, and more. The processes for data ingestion and transformation require no coding, allowing teams to swiftly and affordably harness the full potential of their data. Your information is consistently safeguarded and securely stored in a reliable, customer-controlled data destination such as Databricks or Amazon Redshift, ensuring peace of mind as you manage your data assets. This streamlined approach not only saves time but also enhances overall operational efficiency.
  • 43
    BigBI Reviews
    BigBI empowers data professionals to create robust big data pipelines in an interactive and efficient manner, all without requiring any programming skills. By harnessing the capabilities of Apache Spark, BigBI offers remarkable benefits such as scalable processing of extensive datasets, achieving speeds that can be up to 100 times faster. Moreover, it facilitates the seamless integration of conventional data sources like SQL and batch files with contemporary data types, which encompass semi-structured formats like JSON, NoSQL databases, Elastic, and Hadoop, as well as unstructured data including text, audio, and video. Additionally, BigBI supports the amalgamation of streaming data, cloud-based information, artificial intelligence/machine learning, and graphical data, making it a comprehensive tool for data management. This versatility allows organizations to leverage diverse data types and sources, enhancing their analytical capabilities significantly.
  • 44
    Dagster Reviews
    Dagster is the cloud-native open-source orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. It is the platform of choice data teams responsible for the development, production, and observation of data assets. With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early.
  • 45
    Azure Event Hubs Reviews
    Event Hubs provides a fully managed service for real-time data ingestion that is easy to use, reliable, and highly scalable. It enables the streaming of millions of events every second from various sources, facilitating the creation of dynamic data pipelines that allow businesses to quickly address challenges. In times of crisis, you can continue data processing thanks to its geo-disaster recovery and geo-replication capabilities. Additionally, it integrates effortlessly with other Azure services, enabling users to derive valuable insights. Existing Apache Kafka clients can communicate with Event Hubs without requiring code alterations, offering a managed Kafka experience while eliminating the need to maintain individual clusters. Users can enjoy both real-time data ingestion and microbatching on the same stream, allowing them to concentrate on gaining insights rather than managing infrastructure. By leveraging Event Hubs, organizations can rapidly construct real-time big data pipelines and swiftly tackle business issues as they arise, enhancing their operational efficiency.