Best Neysa Nebula Alternatives in 2024

Find the top alternatives to Neysa Nebula currently available. Compare ratings, reviews, pricing, and features of Neysa Nebula alternatives in 2024. Slashdot lists the best Neysa Nebula alternatives on the market that offer competing products that are similar to Neysa Nebula. Sort through Neysa Nebula alternatives below to make the best choice for your needs

  • 1
    Vertex AI Reviews
    See Software
    Learn More
    Compare Both
    Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
  • 2
    OpenNebula Reviews
    OpenNebula is the Cloud & Edge Computing Platform. It offers flexibility, scalability and simplicity to meet the growing demands of developers and DevOps practitioners. OpenNebula, an open-source platform that allows you to create and manage Enterprise Clouds, is powerful but simple to use. OpenNebula allows for unified management of IT infrastructures and applications. This avoids vendor lock-in, reduces complexity, resource consumption, and reduces operational costs. OpenNebula combines container and virtualization technologies with multi-tenancy and automatic provisioning to offer on-demand services and applications.
  • 3
    GMI Cloud Reviews

    GMI Cloud

    GMI Cloud

    $2.50 per hour
    GMI GPU Cloud allows you to create generative AI applications within minutes. GMI Cloud offers more than just bare metal. Train, fine-tune and infer the latest models. Our clusters come preconfigured with popular ML frameworks and scalable GPU containers. Instantly access the latest GPUs to power your AI workloads. We can provide you with flexible GPUs on-demand or dedicated private cloud instances. Our turnkey Kubernetes solution maximizes GPU resources. Our advanced orchestration tools make it easy to allocate, deploy and monitor GPUs or other nodes. Create AI applications based on your data by customizing and serving models. GMI Cloud allows you to deploy any GPU workload quickly, so that you can focus on running your ML models and not managing infrastructure. Launch pre-configured environment and save time building container images, downloading models, installing software and configuring variables. You can also create your own Docker images to suit your needs.
  • 4
    Ori GPU Cloud Reviews
    Launch GPU-accelerated instances that are highly configurable for your AI workload and budget. Reserve thousands of GPUs for training and inference in a next generation AI data center. The AI world is moving to GPU clouds in order to build and launch groundbreaking models without having the hassle of managing infrastructure or scarcity of resources. AI-centric cloud providers are outperforming traditional hyperscalers in terms of availability, compute costs, and scaling GPU utilization for complex AI workloads. Ori has a large pool with different GPU types that are tailored to meet different processing needs. This ensures that a greater concentration of powerful GPUs are readily available to be allocated compared to general purpose clouds. Ori offers more competitive pricing, whether it's for dedicated servers or on-demand instances. Our GPU compute costs are significantly lower than the per-hour and per-use pricing of legacy cloud services.
  • 5
    Nebula Reviews
    Nebula is a network management platform that allows innovative companies to manage their networks. After years of R&D, Slack opened sourced the project and began deploying it at scale. Nebula is a lightweight service, which is easy to distribute and configure on modern operating system. It can be used on a variety of hardware, including x86, arm and mips. Traditional VPNs have performance and availability bottlenecks. Nebula is not centralized: Encrypted tunnels can be created per-host or on-demand as required. Nebula was created by security engineers. It uses trusted crypto libraries (Noise), has a firewall with granular security groupings, and uses the best bits of PKI to authenticate hosts.
  • 6
    Amazon SageMaker Model Deployment Reviews
    Amazon SageMaker makes it easy for you to deploy ML models to make predictions (also called inference) at the best price and performance for your use case. It offers a wide range of ML infrastructure options and model deployment options to meet your ML inference requirements. It integrates with MLOps tools to allow you to scale your model deployment, reduce costs, manage models more efficiently in production, and reduce operational load. Amazon SageMaker can handle all your inference requirements, including low latency (a few seconds) and high throughput (hundreds upon thousands of requests per hour).
  • 7
    Lambda GPU Cloud Reviews
    The most complex AI, ML, Deep Learning models can be trained. With just a few clicks, you can scale from a single machine up to a whole fleet of VMs. Lambda Cloud makes it easy to scale up or start your Deep Learning project. You can get started quickly, save compute costs, and scale up to hundreds of GPUs. Every VM is pre-installed with the most recent version of Lambda Stack. This includes major deep learning frameworks as well as CUDA®. drivers. You can access the cloud dashboard to instantly access a Jupyter Notebook development environment on each machine. You can connect directly via the Web Terminal or use SSH directly using one of your SSH keys. Lambda can make significant savings by building scaled compute infrastructure to meet the needs of deep learning researchers. Cloud computing allows you to be flexible and save money, even when your workloads increase rapidly.
  • 8
    NVIDIA Triton Inference Server Reviews
    NVIDIA Triton™, an inference server, delivers fast and scalable AI production-ready. Open-source inference server software, Triton inference servers streamlines AI inference. It allows teams to deploy trained AI models from any framework (TensorFlow or NVIDIA TensorRT®, PyTorch or ONNX, XGBoost or Python, custom, and more on any GPU or CPU-based infrastructure (cloud or data center, edge, or edge). Triton supports concurrent models on GPUs to maximize throughput. It also supports x86 CPU-based inferencing and ARM CPUs. Triton is a tool that developers can use to deliver high-performance inference. It integrates with Kubernetes to orchestrate and scale, exports Prometheus metrics and supports live model updates. Triton helps standardize model deployment in production.
  • 9
    Nebula Graph Reviews
    The graph database is designed for graphs up to super large scale with very low latency. We continue to work with the community to promote, popularize, and prepare the graph database. Nebula Graph allows only authenticated access through role-based access control. Nebula Graph can support multiple storage engines and the query language is extensible to support new algorithms. Nebula Graph offers low latency read/write while maintaining high throughput to simplify complex data sets. Nebula Graph's distributed, shared-nothing architecture allows for linear scaling. Nebula Graph's SQL query language is similar to SQL and can be used to address complex business requirements. Nebula Graph's horizontal scalability, snapshot feature and high availability guarantee that there will be no downtime. Nebula Graph has been used in production environments by large Internet companies such as JD, Meituan and Xiaohongshu.
  • 10
    Qubrid AI Reviews

    Qubrid AI

    Qubrid AI

    $0.68/hour/GPU
    Qubrid AI is a company that specializes in Artificial Intelligence. Its mission is to solve complex real-world problems across multiple industries. Qubrid AI’s software suite consists of AI Hub, an all-in-one shop for AI models, AI Compute GPU cloud and On-Prem appliances, and AI Data Connector. You can train or infer industry-leading models, or your own custom creations. All within a streamlined and user-friendly interface. Test and refine models with ease. Then, deploy them seamlessly to unlock the power AI in your projects. AI Hub enables you to embark on a journey of AI, from conception to implementation, in a single powerful platform. Our cutting-edge AI Compute Platform harnesses the power from GPU Cloud and On Prem Server Appliances in order to efficiently develop and operate next generation AI applications. Qubrid is a team of AI developers, research teams and partner teams focused on enhancing the unique platform to advance scientific applications.
  • 11
    Google Cloud AI Infrastructure Reviews
    There are options for every business to train deep and machine learning models efficiently. There are AI accelerators that can be used for any purpose, from low-cost inference to high performance training. It is easy to get started with a variety of services for development or deployment. Tensor Processing Units are ASICs that are custom-built to train and execute deep neural network. You can train and run more powerful, accurate models at a lower cost and with greater speed and scale. NVIDIA GPUs are available to assist with cost-effective inference and scale-up/scale-out training. Deep learning can be achieved by leveraging RAPID and Spark with GPUs. You can run GPU workloads on Google Cloud, which offers industry-leading storage, networking and data analytics technologies. Compute Engine allows you to access CPU platforms when you create a VM instance. Compute Engine provides a variety of Intel and AMD processors to support your VMs.
  • 12
    Together AI Reviews

    Together AI

    Together AI

    $0.0001 per 1k tokens
    We are ready to meet all your business needs, whether it is quick engineering, fine-tuning or training. The Together Inference API makes it easy to integrate your new model in your production application. Together AI's elastic scaling and fastest performance allows it to grow with you. To increase accuracy and reduce risks, you can examine how models are created and what data was used. You are the owner of the model that you fine-tune and not your cloud provider. Change providers for any reason, even if the price changes. Store data locally or on our secure cloud to maintain complete data privacy.
  • 13
    VESSL AI Reviews

    VESSL AI

    VESSL AI

    $100 + compute/month
    Fully managed infrastructure, tools and workflows allow you to build, train and deploy models faster. Scale inference and deploy custom AI & LLMs in seconds on any infrastructure. Schedule batch jobs to handle your most demanding tasks, and only pay per second. Optimize costs by utilizing GPUs, spot instances, and automatic failover. YAML simplifies complex infrastructure setups by allowing you to train with a single command. Automate the scaling up of workers during periods of high traffic, and scaling down to zero when inactive. Deploy cutting edge models with persistent endpoints within a serverless environment to optimize resource usage. Monitor system and inference metrics, including worker counts, GPU utilization, throughput, and latency in real-time. Split traffic between multiple models to evaluate.
  • 14
    Mystic Reviews
    You can deploy Mystic in your own Azure/AWS/GCP accounts or in our shared GPU cluster. All Mystic features can be accessed directly from your cloud. In just a few steps, you can get the most cost-effective way to run ML inference. Our shared cluster of graphics cards is used by hundreds of users at once. Low cost, but performance may vary depending on GPU availability in real time. We solve the infrastructure problem. A Kubernetes platform fully managed that runs on your own cloud. Open-source Python API and library to simplify your AI workflow. You get a platform that is high-performance to serve your AI models. Mystic will automatically scale GPUs up or down based on the number API calls that your models receive. You can easily view and edit your infrastructure using the Mystic dashboard, APIs, and CLI.
  • 15
    Griptape Reviews
    Build, deploy and scale AI applications from end-to-end in the cloud. Griptape provides developers with everything they need from the development framework up to the execution runtime to build, deploy and scale retrieval driven AI-powered applications. Griptape, a Python framework that is modular and flexible, allows you to build AI-powered apps that securely connect with your enterprise data. It allows developers to maintain control and flexibility throughout the development process. Griptape Cloud hosts your AI structures whether they were built with Griptape or another framework. You can also call directly to LLMs. To get started, simply point your GitHub repository. You can run your hosted code using a basic API layer, from wherever you are. This will allow you to offload the expensive tasks associated with AI development. Automatically scale your workload to meet your needs.
  • 16
    fal.ai Reviews

    fal.ai

    fal.ai

    $0.00111 per second
    Fal is a serverless Python Runtime that allows you to scale your code on the cloud without any infrastructure management. Build real-time AI apps with lightning-fast inferences (under 120ms). You can start building AI applications with some of the models that are ready to use. They have simple API endpoints. Ship custom model endpoints that allow for fine-grained control of idle timeout, maximum concurrency and autoscaling. APIs are available for models like Stable Diffusion Background Removal ControlNet and more. These models will be kept warm for free. Join the discussion and help shape the future AI. Scale up to hundreds GPUs and down to zero GPUs when idle. Pay only for the seconds your code runs. You can use fal in any Python project simply by importing fal and wrapping functions with the decorator.
  • 17
    MosaicML Reviews
    With a single command, you can train and serve large AI models in scale. You can simply point to your S3 bucket. We take care of the rest: orchestration, efficiency and node failures. Simple and scalable. MosaicML allows you to train and deploy large AI model on your data in a secure environment. Keep up with the latest techniques, recipes, and foundation models. Our research team has developed and rigorously tested these recipes. In just a few easy steps, you can deploy your private cloud. Your data and models will never leave the firewalls. You can start in one cloud and continue in another without missing a beat. Own the model trained on your data. Model decisions can be better explained by examining them. Filter content and data according to your business needs. Integrate seamlessly with your existing data pipelines and experiment trackers. We are cloud-agnostic and enterprise-proven.
  • 18
    NVIDIA Picasso Reviews
    NVIDIA Picasso, a cloud service that allows you to build generative AI-powered visual apps, is available. Software creators, service providers, and enterprises can run inference on models, train NVIDIA Edify foundation model models on proprietary data, and start from pre-trained models to create image, video, or 3D content from text prompts. The Picasso service is optimized for GPUs. It streamlines optimization, training, and inference on NVIDIA DGX Cloud. Developers and organizations can train NVIDIA Edify models using their own data, or use models pre-trained by our premier partners. Expert denoising network to create photorealistic 4K images The novel video denoiser and temporal layers generate high-fidelity videos with consistent temporality. A novel optimization framework to generate 3D objects and meshes of high-quality geometry. Cloud service to build and deploy generative AI-powered image and video applications.
  • 19
    NVIDIA GPU-Optimized AMI Reviews
    The NVIDIA GPU Optimized AMI is a virtual image that accelerates your GPU-accelerated Machine Learning and Deep Learning workloads. This AMI allows you to spin up a GPU accelerated EC2 VM in minutes, with a preinstalled Ubuntu OS and GPU driver. Docker, NVIDIA container toolkit, and Docker are also included. This AMI provides access to NVIDIA’s NGC Catalog. It is a hub of GPU-optimized software for pulling and running performance-tuned docker containers that have been tested and certified by NVIDIA. The NGC Catalog provides free access to containerized AI and HPC applications. It also includes pre-trained AI models, AI SDKs, and other resources. This GPU-optimized AMI comes free, but you can purchase enterprise support through NVIDIA Enterprise. Scroll down to the 'Support information' section to find out how to get support for AMI.
  • 20
    Barbara Reviews
    Barbara is the Edge AI Platform in the industry space. Barbara helps Machine Learning Teams, manage the lifecycle of models in the Edge, at scale. Now companies can deploy, run, and manage their models remotely, in distributed locations, as easily as in the cloud. Barbara is composed by: .- Industrial Connectors for legacy or next-generation equipment. .- Edge Orchestrator to deploy and control container-based and native edge apps across thousands of distributed locations .- MLOps to optimize, deploy, and monitor your trained model in minutes. .- Marketplace of certified Edge Apps, ready to be deployed. .- Remote Device Management for provisioning, configuration, and updates. More --> www. barbara.tech
  • 21
    Nebula Reviews
    Nebula®, a powerful combination of simplicity and capability, brings a new perspective to technology with greater flexibility and control. Nebula is more user-friendly than other review tools, which can be difficult to use and navigate. It also reduces the learning curve and makes critical information easily accessible. This results in time and cost savings. Nebula Portable™ allows you to host it in the Microsoft Azure cloud. This allows you to offer it virtually anywhere in the world, to meet increasingly stringent data privacy and sovereignty regulations. Only Nebula offers total control over document batching using the dynamic Workflow system. Workflow fully automates document routing to maximize efficiency, accuracy, and defensibility.
  • 22
    ClearML Reviews
    ClearML is an open-source MLOps platform that enables data scientists, ML engineers, and DevOps to easily create, orchestrate and automate ML processes at scale. Our frictionless and unified end-to-end MLOps Suite allows users and customers to concentrate on developing ML code and automating their workflows. ClearML is used to develop a highly reproducible process for end-to-end AI models lifecycles by more than 1,300 enterprises, from product feature discovery to model deployment and production monitoring. You can use all of our modules to create a complete ecosystem, or you can plug in your existing tools and start using them. ClearML is trusted worldwide by more than 150,000 Data Scientists, Data Engineers and ML Engineers at Fortune 500 companies, enterprises and innovative start-ups.
  • 23
    ONTAP AI Reviews
    D-I-Y can be used in certain situations, such as weed control. It's a different story to build your AI infrastructure. ONTAP AI consolidates the data center's worth in analytics, training, inference computation, and training into one, 5-petaflop AI system. NetApp ONTAP AI is powered by NVIDIA's DGX™, and NetApp's cloud-connected all flash storage. This allows you to fully realize the promise and potential of deep learning (DL). With the proven ONTAP AI architecture, you can simplify, accelerate and integrate your data pipeline. Your data fabric, which spans from the edge to the core to the cloud, will streamline data flow and improve analytics, training, inference, and performance. NetApp ONTAPAI is the first converged infrastructure platform to include NVIDIA DGX A100 (the world's first 5-petaflop AIO system) and NVIDIA Mellanox®, high-performance Ethernet switches. You get unified AI workloads and simplified deployment.
  • 24
    Oblivus Reviews

    Oblivus

    Oblivus

    $0.29 per hour
    We have the infrastructure to meet all your computing needs, whether you need one or thousands GPUs or one vCPU or tens of thousand vCPUs. Our resources are available whenever you need them. Our platform makes switching between GPU and CPU instances a breeze. You can easily deploy, modify and rescale instances to meet your needs. You can get outstanding machine learning performance without breaking your bank. The latest technology for a much lower price. Modern GPUs are built to meet your workload demands. Get access to computing resources that are tailored for your models. Our OblivusAI OS allows you to access libraries and leverage our infrastructure for large-scale inference. Use our robust infrastructure to unleash the full potential of gaming by playing games in settings of your choosing.
  • 25
    Wallaroo.AI Reviews
    Wallaroo is the last mile of your machine-learning journey. It helps you integrate ML into your production environment and improve your bottom line. Wallaroo was designed from the ground up to make it easy to deploy and manage ML production-wide, unlike Apache Spark or heavy-weight containers. ML that costs up to 80% less and can scale to more data, more complex models, and more models at a fraction of the cost. Wallaroo was designed to allow data scientists to quickly deploy their ML models against live data. This can be used for testing, staging, and prod environments. Wallaroo supports the most extensive range of machine learning training frameworks. The platform will take care of deployment and inference speed and scale, so you can focus on building and iterating your models.
  • 26
    Google Deep Learning Containers Reviews
    Google Cloud allows you to quickly build your deep learning project. You can quickly prototype your AI applications using Deep Learning Containers. These Docker images are compatible with popular frameworks, optimized for performance, and ready to be deployed. Deep Learning Containers create a consistent environment across Google Cloud Services, making it easy for you to scale in the cloud and shift from on-premises. You can deploy on Google Kubernetes Engine, AI Platform, Cloud Run and Compute Engine as well as Docker Swarm and Kubernetes Engine.
  • 27
    Deep Infra Reviews

    Deep Infra

    Deep Infra

    $0.70 per 1M input tokens
    Self-service machine learning platform that allows you to turn models into APIs with just a few mouse clicks. Sign up for a Deep Infra Account using GitHub, or login using GitHub. Choose from hundreds of popular ML models. Call your model using a simple REST API. Our serverless GPUs allow you to deploy models faster and cheaper than if you were to build the infrastructure yourself. Depending on the model, we have different pricing models. Some of our models have token-based pricing. The majority of models are charged by the time it takes to execute an inference. This pricing model allows you to only pay for the services you use. You can easily scale your business as your needs change. There are no upfront costs or long-term contracts. All models are optimized for low latency and inference performance on A100 GPUs. Our system will automatically scale up the model based on your requirements.
  • 28
    AWS Neuron Reviews
    It supports high-performance learning on AWS Trainium based Amazon Elastic Compute Cloud Trn1 instances. It supports low-latency and high-performance inference for model deployment on AWS Inferentia based Amazon EC2 Inf1 and AWS Inferentia2-based Amazon EC2 Inf2 instance. Neuron allows you to use popular frameworks such as TensorFlow or PyTorch and train and deploy machine-learning (ML) models using Amazon EC2 Trn1, inf1, and inf2 instances without requiring vendor-specific solutions. AWS Neuron SDK is natively integrated into PyTorch and TensorFlow, and supports Inferentia, Trainium, and other accelerators. This integration allows you to continue using your existing workflows within these popular frameworks, and get started by changing only a few lines. The Neuron SDK provides libraries for distributed model training such as Megatron LM and PyTorch Fully Sharded Data Parallel (FSDP).
  • 29
    Nebius Reviews
    Platform with NVIDIA H100 Tensor core GPUs. Competitive pricing. Support from a dedicated team. Built for large-scale ML workloads. Get the most from multihost training with thousands of H100 GPUs in full mesh connections using the latest InfiniBand networks up to 3.2Tb/s. Best value: Save up to 50% on GPU compute when compared with major public cloud providers*. You can save even more by purchasing GPUs in large quantities and reserving GPUs. Onboarding assistance: We provide a dedicated engineer to ensure smooth platform adoption. Get your infrastructure optimized, and k8s installed. Fully managed Kubernetes - Simplify the deployment and scaling of ML frameworks using Kubernetes. Use Managed Kubernetes to train GPUs on multiple nodes. Marketplace with ML Frameworks: Browse our Marketplace to find ML-focused libraries and applications, frameworks, and tools that will streamline your model training. Easy to use. All new users are entitled to a one-month free trial.
  • 30
    NeoPulse Reviews
    The NeoPulse Product Suite contains everything a company needs to begin building custom AI solutions using their own curated data. Server application that uses a powerful AI called "the Oracle" to automate the creation of sophisticated AI models. Manages your AI infrastructure, and orchestrates workflows for automating AI generation activities. A program that has been licensed by an organization to allow any application within the enterprise to access the AI model via a web-based (REST API). NeoPulse, an automated AI platform, enables organizations to deploy, manage and train AI solutions in heterogeneous environments. NeoPulse can handle all aspects of the AI engineering workflow: design, training, deployment, managing, and retiring.
  • 31
    Azure OpenAI Service Reviews

    Azure OpenAI Service

    Microsoft

    $0.0004 per 1000 tokens
    You can use advanced language models and coding to solve a variety of problems. To build cutting-edge applications, leverage large-scale, generative AI models that have deep understandings of code and language to allow for new reasoning and comprehension. These coding and language models can be applied to a variety use cases, including writing assistance, code generation, reasoning over data, and code generation. Access enterprise-grade Azure security and detect and mitigate harmful use. Access generative models that have been pretrained with trillions upon trillions of words. You can use them to create new scenarios, including code, reasoning, inferencing and comprehension. A simple REST API allows you to customize generative models with labeled information for your particular scenario. To improve the accuracy of your outputs, fine-tune the hyperparameters of your model. You can use the API's few-shot learning capability for more relevant results and to provide examples.
  • 32
    IBM watsonx.ai Reviews
    Now available: a next-generation enterprise studio for AI developers to train, validate and tune AI models IBM® Watsonx.ai™ AI Studio is part of IBM watsonx™ AI platform. It combines generative AI capabilities powered by foundational models with traditional machine learning into a powerful AI studio that spans the AI lifecycle. With easy-to-use tools, you can build and refine performant prompts to tune and guide models based on your enterprise data. With watsonx.ai you can build AI apps in a fraction the time with a fraction the data. Watsonx.ai offers: End-to end AI governance: Enterprises are able to scale and accelerate AI's impact by using trusted data from across the business. IBM offers the flexibility to integrate your AI workloads and deploy them into your hybrid cloud stack of choice.
  • 33
    Vast.ai Reviews

    Vast.ai

    Vast.ai

    $0.20 per hour
    Vast.ai offers the lowest-cost cloud GPU rentals. Save up to 5-6 times on GPU computation with a simple interface. Rent on-demand for convenience and consistency in pricing. You can save up to 50% more by using spot auction pricing for interruptible instances. Vast offers a variety of providers with different levels of security, from hobbyists to Tier-4 data centres. Vast.ai can help you find the right price for the level of reliability and security you need. Use our command-line interface to search for offers in the marketplace using scriptable filters and sorting options. Launch instances directly from the CLI, and automate your deployment. Use interruptible instances to save an additional 50% or even more. The highest bidding instance runs; other conflicting instances will be stopped.
  • 34
    Foundry Reviews
    Foundry is the next generation of public cloud powered by an orchestration system that makes it as simple as flicking a switch to access AI computing. Discover the features of our GPU cloud service designed for maximum performance. You can use our GPU cloud services to manage training runs, serve clients, or meet research deadlines. For years, industry giants have invested in infra-teams that build sophisticated tools for cluster management and workload orchestration to abstract the hardware. Foundry makes it possible for everyone to benefit from the compute leverage of a twenty-person team. The current GPU ecosystem operates on a first-come-first-served basis and is fixed-price. The availability of GPUs during peak periods is a problem, as are the wide differences in pricing across vendors. Foundry's price performance is superior to anyone else on the market thanks to a sophisticated mechanism.
  • 35
    Anyscale Reviews
    Ray's creators have created a fully-managed platform. The best way to create, scale, deploy, and maintain AI apps on Ray. You can accelerate development and deployment of any AI app, at any scale. Ray has everything you love, but without the DevOps burden. Let us manage Ray for you. Ray is hosted on our cloud infrastructure. This allows you to focus on what you do best: creating great products. Anyscale automatically scales your infrastructure to meet the dynamic demands from your workloads. It doesn't matter if you need to execute a production workflow according to a schedule (e.g. Retraining and updating a model with new data every week or running a highly scalable, low-latency production service (for example. Anyscale makes it easy for machine learning models to be served in production. Anyscale will automatically create a job cluster and run it until it succeeds.
  • 36
    NVIDIA Base Command Reviews
    NVIDIA Base Command™ is an enterprise-class AI software service that allows businesses and their data scientists accelerate AI development. Base Command Platform, which is part of the NVIDIA DGX™ platform provides centralized, hybrid controls for AI training projects. It is compatible with NVIDIA DGX cloud and NVIDIA DGX superPOD. Base Command Platform in conjunction with NVIDIA's accelerated AI infrastructure provides a cloud hosted solution for AI development. Users can avoid the overheads and pitfalls associated with deploying and operating a DIY platform. Base Command Platform configures and manages AI workflows, provides integrated dataset management and executes them using the right-sized resources, ranging from a single GPU up to large-scale multi-node cloud clusters or on-premises. The platform is constantly updated by NVIDIA engineers and researchers, who rely on it daily.
  • 37
    Google Cloud TPU Reviews
    Machine learning has led to business and research breakthroughs in everything from network security to medical diagnosis. To make similar breakthroughs possible, we created the Tensor Processing unit (TPU). Cloud TPU is a custom-designed machine learning ASIC which powers Google products such as Translate, Photos and Search, Assistant, Assistant, and Gmail. Here are some ways you can use the TPU and machine-learning to accelerate your company's success, especially when it comes to scale. Cloud TPU is designed for cutting-edge machine learning models and AI services on Google Cloud. Its custom high-speed network provides over 100 petaflops performance in a single pod. This is enough computational power to transform any business or create the next breakthrough in research. It is similar to compiling code to train machine learning models. You need to update frequently and you want to do it as efficiently as possible. As apps are built, deployed, and improved, ML models must be trained repeatedly.
  • 38
    Azure Machine Learning Reviews
    Accelerate the entire machine learning lifecycle. Developers and data scientists can have more productive experiences building, training, and deploying machine-learning models faster by empowering them. Accelerate time-to-market and foster collaboration with industry-leading MLOps -DevOps machine learning. Innovate on a trusted platform that is secure and trustworthy, which is designed for responsible ML. Productivity for all levels, code-first and drag and drop designer, and automated machine-learning. Robust MLOps capabilities integrate with existing DevOps processes to help manage the entire ML lifecycle. Responsible ML capabilities – understand models with interpretability, fairness, and protect data with differential privacy, confidential computing, as well as control the ML cycle with datasheets and audit trials. Open-source languages and frameworks supported by the best in class, including MLflow and Kubeflow, ONNX and PyTorch. TensorFlow and Python are also supported.
  • 39
    NetMind AI Reviews
    NetMind.AI, a decentralized AI ecosystem and computing platform, is designed to accelerate global AI innovations. It offers AI computing power that is affordable and accessible to individuals, companies, and organizations of any size by leveraging idle GPU resources around the world. The platform offers a variety of services including GPU rental, serverless Inference, as well as an AI ecosystem that includes data processing, model development, inference and agent development. Users can rent GPUs for competitive prices, deploy models easily with serverless inference on-demand, and access a variety of open-source AI APIs with low-latency, high-throughput performance. NetMind.AI allows contributors to add their idle graphics cards to the network and earn NetMind Tokens. These tokens are used to facilitate transactions on the platform. Users can pay for services like training, fine-tuning and inference as well as GPU rentals.
  • 40
    Hyperstack Reviews

    Hyperstack

    Hyperstack

    $0.18 per GPU per hour
    Hyperstack, the ultimate self-service GPUaaS Platform, offers the H100 and A100 as well as the L40, and delivers its services to the most promising AI start ups in the world. Hyperstack was built for enterprise-grade GPU acceleration and optimised for AI workloads. NexGen Cloud offers enterprise-grade infrastructure for a wide range of users from SMEs, Blue-Chip corporations to Managed Service Providers and tech enthusiasts. Hyperstack, powered by NVIDIA architecture and running on 100% renewable energy, offers its services up to 75% cheaper than Legacy Cloud Providers. The platform supports diverse high-intensity workloads such as Generative AI and Large Language Modeling, machine learning and rendering.
  • 41
    NVIDIA NGC Reviews
    NVIDIA GPU Cloud is a GPU-accelerated cloud platform that is optimized for scientific computing and deep learning. NGC is responsible for a catalogue of fully integrated and optimized deep-learning framework containers that take full benefit of NVIDIA GPUs in single and multi-GPU configurations.
  • 42
    cnvrg.io Reviews
    An end-to-end solution gives you all the tools your data science team needs to scale your machine learning development, from research to production. cnvrg.io, the world's leading data science platform for MLOps (model management) is a leader in creating cutting-edge machine-learning development solutions that allow you to build high-impact models in half the time. In a collaborative and clear machine learning management environment, bridge science and engineering teams. Use interactive workspaces, dashboards and model repositories to communicate and reproduce results. You should be less concerned about technical complexity and more focused on creating high-impact ML models. The Cnvrg.io container based infrastructure simplifies engineering heavy tasks such as tracking, monitoring and configuration, compute resource management, server infrastructure, feature extraction, model deployment, and serving infrastructure.
  • 43
    Amazon EC2 Inf1 Instances Reviews
    Amazon EC2 Inf1 instances were designed to deliver high-performance, cost-effective machine-learning inference. Amazon EC2 Inf1 instances offer up to 2.3x higher throughput, and up to 70% less cost per inference compared with other Amazon EC2 instance. Inf1 instances are powered by up to 16 AWS inference accelerators, designed by AWS. They also feature Intel Xeon Scalable 2nd generation processors, and up to 100 Gbps of networking bandwidth, to support large-scale ML apps. These instances are perfect for deploying applications like search engines, recommendation system, computer vision and speech recognition, natural-language processing, personalization and fraud detection. Developers can deploy ML models to Inf1 instances by using the AWS Neuron SDK. This SDK integrates with popular ML Frameworks such as TensorFlow PyTorch and Apache MXNet.
  • 44
    Banana Reviews

    Banana

    Banana

    $7.4868 per hour
    Banana was founded to fill a critical market gap. Machine learning is highly demanded. But deploying models in production is a highly technical and complex process. Banana focuses on building machine learning infrastructures for the digital economy. We simplify the deployment process, making it as easy as copying and paste an API. This allows companies of any size to access and use the most up-to-date models. We believe the democratization and accessibility of machine learning is one of the key components that will fuel the growth of businesses on a global level. Banana is well positioned to take advantage of this technological gold rush.
  • 45
    NVIDIA RAPIDS Reviews
    The RAPIDS software library, which is built on CUDAX AI, allows you to run end-to-end data science pipelines and analytics entirely on GPUs. It uses NVIDIA®, CUDA®, primitives for low level compute optimization. However, it exposes GPU parallelism through Python interfaces and high-bandwidth memories speed through user-friendly Python interfaces. RAPIDS also focuses its attention on data preparation tasks that are common for data science and analytics. This includes a familiar DataFrame API, which integrates with a variety machine learning algorithms for pipeline accelerations without having to pay serialization fees. RAPIDS supports multi-node, multiple-GPU deployments. This allows for greatly accelerated processing and training with larger datasets. You can accelerate your Python data science toolchain by making minimal code changes and learning no new tools. Machine learning models can be improved by being more accurate and deploying them faster.
  • 46
    FluidStack Reviews

    FluidStack

    FluidStack

    $1.49 per month
    Unlock prices that are 3-5x higher than those of traditional clouds. FluidStack aggregates GPUs from data centres around the world that are underutilized to deliver the best economics in the industry. Deploy up to 50,000 high-performance servers within seconds using a single platform. In just a few days, you can access large-scale A100 or H100 clusters using InfiniBand. FluidStack allows you to train, fine-tune and deploy LLMs for thousands of GPUs at affordable prices in minutes. FluidStack unifies individual data centers in order to overcome monopolistic GPU pricing. Cloud computing can be made more efficient while allowing for 5x faster computation. Instantly access over 47,000 servers with tier four uptime and security through a simple interface. Train larger models, deploy Kubernetes Clusters, render faster, and stream without latency. Setup with custom images and APIs in seconds. Our engineers provide 24/7 direct support through Slack, email, or phone calls.
  • 47
    aiXplain Reviews
    We offer a set of world-class tools and assets to convert ideas into production ready AI solutions. Build and deploy custom Generative AI end-to-end solutions on our unified Platform, and avoid the hassle of tool fragmentation or platform switching. Launch your next AI-based solution using a single API endpoint. It has never been easier to create, maintain, and improve AI systems. Subscribe to models and datasets on aiXplain’s marketplace. Subscribe to models and data sets to use with aiXplain's no-code/low code tools or the SDK.
  • 48
    Modal Reviews

    Modal

    Modal Labs

    $0.192 per core per hour
    We designed a container system in rust from scratch for the fastest cold start times. Scale up to hundreds of GPUs in seconds and down to zero again, paying only for what you need. Deploy functions in the cloud with custom container images, and hardware requirements. Never write a line of YAML. Modal offers up to $25k in free compute credits for startups and academic researchers. These credits can be used to access GPU compute and in-demand GPU types. Modal measures CPU utilization continuously by comparing the number of physical cores to the number of fractional cores. Each physical core is equal to 2 vCPUs. Memory consumption is continuously measured. You only pay for the memory and CPU you actually use.
  • 49
    Google Cloud Deep Learning VM Image Reviews
    You can quickly provision a VM with everything you need for your deep learning project on Google Cloud. Deep Learning VM Image makes it simple and quick to create a VM image containing all the most popular AI frameworks for a Google Compute Engine instance. Compute Engine instances can be launched pre-installed in TensorFlow and PyTorch. Cloud GPU and Cloud TPU support can be easily added. Deep Learning VM Image supports all the most popular and current machine learning frameworks like TensorFlow, PyTorch, and more. Deep Learning VM Images can be used to accelerate model training and deployment. They are optimized with the most recent NVIDIA®, CUDA-X AI drivers and libraries, and the Intel®, Math Kernel Library. All the necessary frameworks, libraries and drivers are pre-installed, tested and approved for compatibility. Deep Learning VM Image provides seamless notebook experience with integrated JupyterLab support.
  • 50
    Vertex AI Vision Reviews
    You can easily build, deploy, manage, and monitor computer vision applications using a fully managed, end to end application development environment. This reduces the time it takes to build computer vision apps from days to minutes, at a fraction of the cost of current offerings. You can quickly and easily ingest real-time video streams and images on a global scale. Drag-and-drop interface makes it easy to create computer vision applications. With built-in AI capabilities, you can store and search petabytes worth of data. Vertex AI Vision provides all the tools necessary to manage the lifecycle of computer vision applications. This includes ingestion, analysis and storage, as well as deployment. Connect application output to a data destination such as BigQuery for analytics or live streaming to drive business actions. You can import thousands of video streams from all over the world. Enjoy a monthly pricing structure that allows you to enjoy up-to one-tenth less than the previous offerings.