Best Neuton AutoML Alternatives in 2024

Find the top alternatives to Neuton AutoML currently available. Compare ratings, reviews, pricing, and features of Neuton AutoML alternatives in 2024. Slashdot lists the best Neuton AutoML alternatives on the market that offer competing products that are similar to Neuton AutoML. Sort through Neuton AutoML alternatives below to make the best choice for your needs

  • 1
    Levity Reviews
    Levity is a no-code platform for creating custom AI models that take daily, repetitive tasks off your shoulders. Levity allows you to train AI models on documents, free text or images without writing any code. Build intelligent automations into existing workflows and connect them to the tools you already use. The platform is designed in a non-technical way, so everybody can start building within minutes and set up powerful automations without waiting for developer resources. If you struggle with daily tedious tasks that rule-based automation just can't handle, Levity is the quickest way to finally let machines handle them. Check out Levity's extensive library of templates for common use-cases such as sentiment analysis, customer support or document classification to get started within minutes. Add your custom data to further tailor the AI to your specific needs and only stay in the loop for difficult cases, so the AI can learn along the way.
  • 2
    Google Cloud Natural Language API Reviews
    Machine learning can provide insightful text analysis that extracts, analyses, and stores text. AutoML allows you to create high-quality custom machine learning models without writing a single line. Natural Language API allows you to apply natural language understanding (NLU). To identify and label fields in a document, such as emails and chats, use entity analysis. Next, perform sentiment analysis to understand customer opinions and find UX and product insights. Natural Language with speech to text API extracts insights form audio. Vision API provides optical character recognition (OCR), which can be used to scan scanned documents. Translation API can understand sentiments in multiple languages. You can use custom entity extraction to identify domain-specific entities in documents. Many of these entities don't appear within standard language models. This allows you to save time and money by not having to do manual analysis. You can create your own machine learning custom models that can classify, extract and detect sentiment.
  • 3
    Neural Designer Reviews
    Neural Designer is a data-science and machine learning platform that allows you to build, train, deploy, and maintain neural network models. This tool was created to allow innovative companies and research centres to focus on their applications, not on programming algorithms or programming techniques. Neural Designer does not require you to code or create block diagrams. Instead, the interface guides users through a series of clearly defined steps. Machine Learning can be applied in different industries. These are some examples of machine learning solutions: - In engineering: Performance optimization, quality improvement and fault detection - In banking, insurance: churn prevention and customer targeting. - In healthcare: medical diagnosis, prognosis and activity recognition, microarray analysis and drug design. Neural Designer's strength is its ability to intuitively build predictive models and perform complex operations.
  • 4
    Supervisely Reviews
    The best platform for the entire lifecycle of computer vision. You can go from image annotation to precise neural networks in 10x less time. Our best-in-class data labeling software transforms images, videos, and 3D point clouds into high-quality training data. You can train your models, track experiments and visualize the results. Our self-hosted solution guarantees data privacy, powerful customization capabilities and easy integration into any technology stack. Computer Vision is a turnkey solution: multi-format data management, quality control at scale, and neural network training in an end-to-end platform. Professional video editing software created by data scientists for data science -- the most powerful tool for machine learning and other purposes.
  • 5
    Neural Magic Reviews
    The GPUs are fast at transferring data, but they have very limited locality of reference due to their small caches. They are designed to apply a lot compute to little data, and not a lot compute to a lot data. They are designed to run full layers of computation in order to fully fill their computational pipeline. (See Figure 1 below). Because large models have small memory sizes (tens to gigabytes), GPUs are placed together and models are distributed across them. This creates a complicated and painful software stack. It also requires synchronization and communication between multiple machines. The CPUs on the other side have much larger caches than GPUs and a lot of memory (terabytes). A typical CPU server may have memory equivalent to hundreds or even tens of GPUs. The CPU is ideal for a brain-like ML environment in which pieces of a large network are executed as needed.
  • 6
    Automaton AI Reviews
    Automaton AI's Automaton AI's DNN model and training data management tool, ADVIT, allows you to create, manage, and maintain high-quality models and training data in one place. Automated optimization of data and preparation for each stage of the computer vision pipeline. Automate data labeling and streamline data pipelines in house Automate the management of structured and unstructured video/image/text data and perform automated functions to refine your data before each step in the deep learning pipeline. You can train your own model with accurate data labeling and quality assurance. DNN training requires hyperparameter tuning such as batch size, learning rate, and so on. To improve accuracy, optimize and transfer the learning from trained models. After training, the model can be put into production. ADVIT also does model versioning. Run-time can track model development and accuracy parameters. A pre-trained DNN model can be used to increase the accuracy of your model for auto-labeling.
  • 7
    ChatGPT Pro Reviews
    AI will become more sophisticated as it advances, and will solve increasingly complex problems. These capabilities require a lot more computing power. ChatGPT Pro, a $200/month plan, gives you access to OpenAI's best models and tools. This plan gives you unlimited access to OpenAI o1, our smartest model. It also includes o1-mini and Advanced Voice. It also includes the o1 pro version, a version that uses more computation to think harder and give even better answers to difficult problems. We expect to add to this plan in the future more powerful and compute-intensive productivity features. ChatGPT Pro gives you access to our most intelligent model, which thinks longer and more thoroughly for the most reliable answers. According to external expert testers' evaluations, the o1 pro mode consistently produces more accurate and comprehensive answers, especially in areas such as data science, programming and case law analysis.
  • 8
    NeuroIntelligence Reviews
    NeuroIntelligence, a software application for neural networks, is designed to help experts in data mining, predictive modeling, pattern recognition, and neural network design in solving real-world problems. NeuroIntelligence uses only proven neural net modeling algorithms and techniques. It is easy to use and fast. Visualized architecture search, training and testing of neural networks. Neural network architecture search. Fitness bars. Network training graphs comparison. Training graphs, dataset error and network error, weights distribution, neural network input importance, and errors distribution Testing, actual vs. output graph, scatter plot and response graph, ROC curve and confusion matrix. NeuroIntelligence's interface is optimized to solve data mining and forecasting, classification, and pattern recognition problems. The tool's intuitive GUI and time-saving features make it easy to create a better solution faster.
  • 9
    MindsDB Reviews
    Open-Source AI layer for databases. Machine Learning capabilities can be integrated directly into your data domain to increase efficiency and productivity. MindsDB makes it easy to create, train, and then test ML models. Then publish them as virtual AI tables into databases. Integrate seamlessly with all major databases. SQL queries can be used to manipulate ML models. You can increase model training speed using GPU without affecting the performance of your database. Learn how the ML model arrived at its conclusions and what factors affect prediction confidence. Visual tools that allow you to analyze model performance. SQL and Python queries that return explanation insights in a single code. You can use What-if analysis to determine confidence based upon different inputs. Automate the process for applying machine learning using the state-of the-art Lightwood AutoML library. Machine Learning can be used to create custom solutions in your preferred programming language.
  • 10
    Profet AI Reviews
    Profet AI’s No-Code AutoML Platform, which is end-to-end and can be used by manufacturers as their Virtual Data Scientist, provides a complete solution for data analysis. It allows IT/domain experts to quickly build high-quality predictive models and deploy Industrial AI apps to solve their daily production and digitalization challenges. Profet AI AutoML Platform has been widely adopted by leading companies in the world across industries. These include leading EMS, Semi OSAT, PCB design houses, IC design houses, display panel and material solution providers. We use the successful cases of industry leading companies to benefit our customers and implement AI within a week.
  • 11
    Neuri Reviews
    We conduct cutting-edge research in artificial intelligence and implement it to give financial investors an advantage. Transforming the financial market through groundbreaking neuro-prediction. Our algorithms combine graph-based learning and deep reinforcement learning algorithms to model and predict time series. Neuri aims to generate synthetic data that mimics the global financial markets and test it with complex simulations. Quantum optimization is the future of supercomputing. Our simulations will be able to exceed the limits of classical supercomputing. Financial markets are dynamic and change over time. We develop AI algorithms that learn and adapt continuously to discover the connections between different financial assets, classes, and markets. The application of neuroscience-inspired models, quantum algorithms and machine learning to systematic trading at this point is underexplored.
  • 12
    Kraken Reviews

    Kraken

    Big Squid

    $100 per month
    Kraken is suitable for all data scientists and analysts. It is designed to be easy-to-use and no-code automated machine-learning platform. The Kraken no code automated machine learning platform (AutoML), simplifies and automates data science tasks such as data prep, data cleaning and algorithm selection. It also allows for model training and deployment. Kraken was designed with engineers and analysts in mind. If you've done data analysis before, you're ready! Kraken's intuitive interface and integrated SONAR(c), training make it easy for citizens to become data scientists. Data scientists can work more efficiently and faster with advanced features. You can use Excel or flat files for daily reporting, or just ad-hoc analysis. With Kraken's drag-and-drop CSV upload feature and the Amazon S3 connector, you can quickly start building models. Kraken's Data Connectors allow you to connect with your favorite data warehouse, business intelligence tool, or cloud storage.
  • 13
    NVIDIA Modulus Reviews
    NVIDIA Modulus, a neural network framework, combines the power of Physics in the form of governing partial differential equations (PDEs), with data to create high-fidelity surrogate models with near real-time latency. NVIDIA Modulus is a tool that can help you solve complex, nonlinear, multiphysics problems using AI. This tool provides the foundation for building physics machine learning surrogate models that combine physics and data. This framework can be applied to many domains and uses, including engineering simulations and life sciences. It can also be used to solve forward and inverse/data assimilation issues. Parameterized system representation that solves multiple scenarios in near real-time, allowing you to train once offline and infer in real-time repeatedly.
  • 14
    NeuralTools Reviews

    NeuralTools

    Palisade

    $199 one-time payment
    NeuralTools is a data mining program that makes accurate predictions based on patterns in your data. It uses neural networks in Microsoft Excel to create sophisticated predictions. NeuralTools mimics brain functions to "learn" structure and make intelligent predictions. NeuralTools allows your spreadsheet to "think" for yourself like never before. A Neural Networks analysis involves three steps: training the network using your data, testing it for accuracy and making predictions using new data. NeuralTools automates all of this in a single step. NeuralTools updates your predictions automatically when input data changes. This means you don't need to manually run predictions each time you get new data. Combine NeuralTools with Excel's Solver or Palisade’s Evolver to optimize difficult decisions and reach your goals like no other Neural Networks packages can.
  • 15
    NVIDIA GPU-Optimized AMI Reviews
    The NVIDIA GPU Optimized AMI is a virtual image that accelerates your GPU-accelerated Machine Learning and Deep Learning workloads. This AMI allows you to spin up a GPU accelerated EC2 VM in minutes, with a preinstalled Ubuntu OS and GPU driver. Docker, NVIDIA container toolkit, and Docker are also included. This AMI provides access to NVIDIA’s NGC Catalog. It is a hub of GPU-optimized software for pulling and running performance-tuned docker containers that have been tested and certified by NVIDIA. The NGC Catalog provides free access to containerized AI and HPC applications. It also includes pre-trained AI models, AI SDKs, and other resources. This GPU-optimized AMI comes free, but you can purchase enterprise support through NVIDIA Enterprise. Scroll down to the 'Support information' section to find out how to get support for AMI.
  • 16
    GPT-4 Reviews

    GPT-4

    OpenAI

    $0.0200 per 1000 tokens
    1 Rating
    GPT-4 (Generative Pretrained Transformer 4) a large-scale, unsupervised language model that is yet to be released. GPT-4, which is the successor of GPT-3, is part of the GPT -n series of natural-language processing models. It was trained using a dataset of 45TB text to produce text generation and understanding abilities that are human-like. GPT-4 is not dependent on additional training data, unlike other NLP models. It can generate text and answer questions using its own context. GPT-4 has been demonstrated to be capable of performing a wide range of tasks without any task-specific training data, such as translation, summarization and sentiment analysis.
  • 17
    ChatGPT Reviews
    ChatGPT is an OpenAI language model. It can generate human-like responses to a variety prompts, and has been trained on a wide range of internet texts. ChatGPT can be used to perform natural language processing tasks such as conversation, question answering, and text generation. ChatGPT is a pretrained language model that uses deep-learning algorithms to generate text. It was trained using large amounts of text data. This allows it to respond to a wide variety of prompts with human-like ease. It has a transformer architecture that has been proven to be efficient in many NLP tasks. ChatGPT can generate text in addition to answering questions, text classification and language translation. This allows developers to create powerful NLP applications that can do specific tasks more accurately. ChatGPT can also process code and generate it.
  • 18
    JADBio AutoML Reviews
    JADBio is an automated machine learning platform that uses JADBio's state-of-the art technology without any programming. It solves many open problems in machine-learning with its innovative algorithms. It is easy to use and can perform sophisticated and accurate machine learning analyses, even if you don't know any math, statistics or coding. It was specifically designed for life science data, particularly molecular data. It can handle the unique molecular data issues such as low sample sizes and high numbers of measured quantities, which could reach into the millions. It is essential for life scientists to identify the biomarkers and features that are predictive and important. They also need to know their roles and how they can help them understand the molecular mechanisms. Knowledge discovery is often more important that a predictive model. JADBio focuses on feature selection, and its interpretation.
  • 19
    Oracle Machine Learning Reviews
    Machine learning uncovers hidden patterns in enterprise data and generates new value for businesses. Oracle Machine Learning makes it easier to create and deploy machine learning models for data scientists by using AutoML technology and reducing data movement. It also simplifies deployment. Apache Zeppelin notebook technology, which is open-source-based, can increase developer productivity and decrease their learning curve. Notebooks are compatible with SQL, PL/SQL and Python. Users can also use markdown interpreters for Oracle Autonomous Database to create models in their preferred language. No-code user interface that supports AutoML on Autonomous Database. This will increase data scientist productivity as well as non-expert users' access to powerful in-database algorithms to classify and regression. Data scientists can deploy integrated models using the Oracle Machine Learning AutoML User Interface.
  • 20
    ChatGPT Enterprise Reviews
    ChatGPT Enterprise is the most powerful version yet, with enterprise-grade security and privacy. 1. Training models do not use customer prompts or data 2. Data encryption in transit and at rest (TLS 1.2+). 3. SOC 2 compliant 4. Easy bulk member management and dedicated admin console 5. SSO and Domain Verification 6. Use the analytics dashboard to understand usage 7. Access to GPT-4 Advanced Data Analysis and GPT-4 at high speed is unlimited 8. 32k token context window for 4X longer inputs, memory and inputs 9. Shareable chat templates to help your company collaborate
  • 21
    Whisper Reviews
    We have developed and are open-sourcing Whisper, a neural network that approximates human-level robustness in English speech recognition. Whisper is an automated speech recognition (ASR), system that was trained using 680,000 hours of multilingual, multitask supervised data from the internet. The use of such a diverse dataset results in a better resistance to accents, background noise, technical language, and other linguistic issues. It also allows transcription in multiple languages and translation from these languages into English. We provide inference code and open-sourcing models to help you build useful applications and further research on robust speech processing. The Whisper architecture is an end-to-end, simple approach that can be used as an encoder/decoder Transformer. The input audio is divided into 30-second chunks and converted into a log Mel spectrogram. This then goes into an encoder.
  • 22
    DataMelt Reviews
    DataMelt, or "DMelt", is an environment for numeric computations, data analysis, data mining and computational statistics. DataMelt allows you to plot functions and data in 2D or 3D, perform statistical testing, data mining, data analysis, numeric computations and function minimization. It also solves systems of linear and differential equations. There are also options for symbolic, non-linear, and linear regression. Java API integrates neural networks and data-manipulation techniques using various data-manipulation algorithms. Support is provided for elements of symbolic computations using Octave/Matlab programming. DataMelt provides a Java platform-based computational environment. It can be used on different operating systems and programming languages. It is not limited to one programming language, unlike other statistical programs. This software combines Java, the most widely used enterprise language in the world, with the most popular data science scripting languages, Jython (Python), Groovy and JRuby.
  • 23
    Altair Knowledge Studio Reviews
    Altair is used by data scientists and business analysts to extract actionable insights from their data. Knowledge Studio is a market-leading, easy-to-use machine learning and predictive analytics tool that quickly visualizes data and generates explainable results. It doesn't require a single line code. Knowledge Studio, a recognized leader in analytics, brings transparency and automation into machine learning with features like AutoML and explainable AI. You have complete control over how models are built and configured. Knowledge Studio is designed for collaboration across the business. Complex projects can be completed by data scientists and business analysts in minutes, hours, or even days. Results are easy to understand and explain. Data scientists can quickly create machine learning models using less time than coding or using other tools because of the ease of use and automation of modeling steps.
  • 24
    Cogniac Reviews
    Cogniac's no code solution allows organizations to take advantage of the latest developments in Artificial Intelligence and convolutional neural network technology to deliver extraordinary operational performance. Cogniac's AI platform for machine vision enables enterprises to reach Industry 4.0 standards via visual data management and automated automation. Cogniac helps organizations' operations divisions deliver smart continuous improvement. Cogniac's user interface was designed to be used by non-technical users. The Cogniac platform's drag-and-drop nature allows subject matter experts and other specialists to concentrate on the tasks that are most important. Cogniac can detect defects in as few as 100 images. After being trained with 25 approved images and 75 deficient images, Cogniac AI can deliver results comparable to human subject matter experts within hours.
  • 25
    PredictSense Reviews
    PredictSense is an AI-powered machine learning platform that uses AutoML to power its end-to-end Machine Learning platform. Accelerating machine intelligence will fuel the technological revolution of tomorrow. AI is key to unlocking the value of enterprise data investments. PredictSense allows businesses to quickly create AI-driven advanced analytical solutions that can help them monetize their technology investments and critical data infrastructure. Data science and business teams can quickly develop and deploy robust technology solutions at scale. Integrate AI into your existing product ecosystem and quickly track GTM for new AI solution. AutoML's complex ML models allow you to save significant time, money and effort.
  • 26
    Oracle Data Science Reviews
    Data science platform that increases productivity and has unparalleled capabilities. Create and evaluate machine learning (ML), models of higher quality. Easy deployment of ML models can help increase business flexibility and enable enterprise-trusted data work faster. Cloud-based platforms can be used to uncover new business insights. Iterative processes are necessary to build a machine-learning model. This ebook will explain how machine learning models are constructed and break down the process. Use notebooks to build and test machine learning algorithms. AutoML will show you the results of data science. It is easier and faster to create high-quality models. Automated machine-learning capabilities quickly analyze the data and recommend the best data features and algorithms. Automated machine learning also tunes the model and explains its results.
  • 27
    Emly Labs Reviews
    Emly Labs, an AI framework, is designed to make AI accessible to users of all technical levels via a user-friendly interface. It offers AI project-management with tools that automate workflows for faster execution. The platform promotes team collaboration, innovation, and data preparation without code. It also integrates external data to create robust AI models. Emly AutoML automates model evaluation and data processing, reducing the need for human input. It prioritizes transparency with AI features that are easily explained and robust auditing to ensure compliance. Data isolation, role-based accessibility, and secure integrations are all security measures. Emly's cost effective infrastructure allows for on-demand resource provisioning, policy management and risk reduction.
  • 28
    Dataiku DSS Reviews
    Data analysts, engineers, scientists, and other scientists can be brought together. Automate self-service analytics and machine learning operations. Get results today, build for tomorrow. Dataiku DSS is a collaborative data science platform that allows data scientists, engineers, and data analysts to create, prototype, build, then deliver their data products more efficiently. Use notebooks (Python, R, Spark, Scala, Hive, etc.) You can also use a drag-and-drop visual interface or Python, R, Spark, Scala, Hive notebooks at every step of the predictive dataflow prototyping procedure - from wrangling to analysis and modeling. Visually profile the data at each stage of the analysis. Interactively explore your data and chart it using 25+ built in charts. Use 80+ built-in functions to prepare, enrich, blend, clean, and clean your data. Make use of Machine Learning technologies such as Scikit-Learn (MLlib), TensorFlow and Keras. In a visual UI. You can build and optimize models in Python or R, and integrate any external library of ML through code APIs.
  • 29
    SquareML Reviews
    SquareML is an advanced machine learning platform that does not require any coding. It was designed to make predictive modeling and advanced data analytics more accessible to everyone, especially in the healthcare industry. It allows users to harness machine-learning capabilities without extensive coding expertise, regardless of their technical expertise. The platform is specialized in data ingestion, including electronic health records and claims databases. It also includes medical devices and health information exchanges. The platform's key features include a data science lifecycle that requires no coding, generative AI for healthcare, unstructured conversion of data, diverse machine learning algorithms for predicting disease progression and patient outcomes, a library with pre-built models, and seamless integration to various healthcare data sources. SquareML's AI-powered insights are designed to streamline data processes, improve diagnostic accuracy, and improve the outcomes of patient care.
  • 30
    ScoopML Reviews
    It's easy to build advanced predictive models with no math or coding in just a few clicks. The Complete Experience We provide everything you need, from cleaning data to building models to forecasting, and everything in between. Trustworthy. Learn the "why" behind AI decisions to drive business with actionable insight. Data Analytics in minutes without having to write code. In one click, you can complete the entire process of building ML algorithms, explaining results and predicting future outcomes. Machine Learning in 3 Steps You can go from raw data to actionable insights without writing a single line code. Upload your data. Ask questions in plain English Find the best model for your data. Share your results. Increase customer productivity We assist companies to use no code Machine Learning to improve their Customer Experience.
  • 31
    Arize AI Reviews
    Arize's machine-learning observability platform automatically detects and diagnoses problems and improves models. Machine learning systems are essential for businesses and customers, but often fail to perform in real life. Arize is an end to-end platform for observing and solving issues in your AI models. Seamlessly enable observation for any model, on any platform, in any environment. SDKs that are lightweight for sending production, validation, or training data. You can link real-time ground truth with predictions, or delay. You can gain confidence in your models' performance once they are deployed. Identify and prevent any performance or prediction drift issues, as well as quality issues, before they become serious. Even the most complex models can be reduced in time to resolution (MTTR). Flexible, easy-to use tools for root cause analysis are available.
  • 32
    KuantSol Reviews
    E2E modeling that combines Business perspective and subject matter expertise with Data science (Statistical Models +ML + Business context & objectives). This combination is vital to the health and competitive advantage for the BFSI. • Models created on KuantSol can be used for long periods of times and are stable, optimal, and standardized. • Submission-ready standardized model documentation for federal regulators • Executives can easily understand the end model thanks to purpose-built configuration options at each decision step. For example, the top ML/AI vendors offer a few model options as well as selection criteria. While consulting firms may offer more, it would take more time and expertise. KuantSol offers 150+ • KuantSol advanced configuration enables auto model development.
  • 33
    SensiML Analytics Studio Reviews
    Sensiml analytics toolkit. Create smart iot sensor devices rapidly reduce data science complexity. Compact algorithms can be created that run on small IoT devices and not in the cloud. Collect precise, traceable, and version-controlled datasets. Advanced AutoML code-gen is used to quickly create autonomous working device code. You can choose your interface and level of AI expertise. All aspects of your algorithm will remain accessible to you. Edge tuning models can be built that adapt to the data they receive. SensiML Analytics Toolkit suite automates every step of the process to create optimized AI IoT sensor recognition codes. The workflow employs a growing number of advanced ML algorithms and AI algorithms to generate code that can learn new data, either in the development phase or once it is deployed. The key tools for healthcare decision support are non-invasive, rapid screening applications that use intelligent classification of one or several bio-sensing inputs.
  • 34
    Amazon SageMaker Model Monitor Reviews
    Amazon SageMaker Model Monitor allows you to select the data you want to monitor and analyze, without having to write any code. SageMaker Model monitor lets you choose data from a variety of options, such as prediction output. It also captures metadata such a timestamp, model name and endpoint so that you can analyze model predictions based upon the metadata. In the case of high volume real time predictions, you can specify the sampling rate as a percentage. The data is stored in an Amazon S3 bucket. This data can be encrypted, configured fine-grained security and defined data retention policies. Access control mechanisms can be implemented for secure access. Amazon SageMaker Model Monitor provides built-in analysis, in the form statistical rules, to detect data drifts and improve model quality. You can also create custom rules and set thresholds for each one.
  • 35
    Metacoder Reviews

    Metacoder

    Wazoo Mobile Technologies LLC

    $89 per user/month
    Metacoder makes data processing faster and more efficient. Metacoder provides data analysts with the flexibility and tools they need to make data analysis easier. Metacoder automates data preparation steps like cleaning, reducing the time it takes to inspect your data before you can get up and running. It is a good company when compared to other companies. Metacoder is cheaper than similar companies and our management is actively developing based upon our valued customers' feedback. Metacoder is primarily used to support predictive analytics professionals in their work. We offer interfaces for database integrations, data cleaning, preprocessing, modeling, and display/interpretation of results. We make it easy to manage the machine learning pipeline and help organizations share their work. Soon, we will offer code-free solutions for image, audio and video as well as biomedical data.
  • 36
    Google Cloud AutoML Reviews
    Cloud AutoML is a set of machine learning products that allows developers with limited machine-learning expertise to create high-quality models tailored to their business needs. It uses Google's state of the art neural architecture and transfer learning search technology. Cloud AutoML uses more than 10 years' of Google Research technology to help machine learning models achieve faster performance, better predictions, and more accurate predictions. Cloud AutoML's graphical user interface makes it easy to build, evaluate, improve, deploy, and test models based upon your data. Only a few clicks away is your custom machine learning model. Google's human-labeling service can assign a team to clean and annotate your labels. This will ensure that your models are trained with high-quality data.
  • 37
    Zepl Reviews
    All work can be synced, searched and managed across your data science team. Zepl's powerful search allows you to discover and reuse models, code, and other data. Zepl's enterprise collaboration platform allows you to query data from Snowflake or Athena and then build your models in Python. For enhanced interactions with your data, use dynamic forms and pivoting. Zepl creates new containers every time you open your notebook. This ensures that you have the same image each time your models are run. You can invite your team members to join you in a shared space, and they will be able to work together in real-time. Or they can simply leave comments on a notebook. You can share your work with fine-grained access controls. You can allow others to read, edit, run, and share your work. This will facilitate collaboration and distribution. All notebooks can be saved and versioned automatically. An easy-to-use interface allows you to name, manage, roll back, and roll back all versions. You can also export seamlessly into Github.
  • 38
    Snitch AI Reviews

    Snitch AI

    Snitch AI

    $1,995 per year
    Simplified quality assurance for machine learning. Snitch eliminates all noise so you can find the most relevant information to improve your models. With powerful dashboards and analysis, you can track your model's performance beyond accuracy. Identify potential problems in your data pipeline or distribution shifts and fix them before they impact your predictions. Once you've deployed, stay in production and have visibility to your models and data throughout the entire cycle. You can keep your data safe, whether it's cloud, on-prem or private cloud. Use the tools you love to integrate Snitch into your MLops process! We make it easy to get up and running quickly. Sometimes accuracy can be misleading. Before you deploy your models, make sure to assess their robustness and importance. Get actionable insights that will help you improve your models. Compare your models against historical metrics.
  • 39
    Sixgill Sense Reviews
    The platform is easy to use and quick to implement machine learning and computer vision workflows. Sense makes it easy to create and deploy AI IoT solutions on any cloud, edge or on-premise. Learn how Sense makes it easy for AI/ML teams to create and deploy AI IoT solutions to any cloud, the edge or on-premise. It is powerful enough for ML engineers but simple enough for subject matter experts. Sense Data Annotation maximizes the success of your machine-learning models by making it the easiest and fastest way to label image and video data for high-quality training datasets. The Sense platform provides one-touch labeling integration to enable continuous machine learning at edge for simplified management.
  • 40
    Key Ward Reviews

    Key Ward

    Key Ward

    €9,000 per year
    Easily extract, transform, manage & process CAD data, FE data, CFD and test results. Create automatic data pipelines to support machine learning, deep learning, and ROM. Data science barriers can be removed without coding. Key Ward's platform, the first engineering no-code end-to-end solution, redefines how engineers work with their data. Our software allows engineers to handle multi-source data with ease, extract direct value using our built-in advanced analytical tools, and build custom machine and deep learning model with just a few clicks. Automatically centralize, update and extract your multi-source data, then sort, clean and prepare it for analysis, machine and/or deep learning. Use our advanced analytics tools to correlate, identify patterns, and find dependencies in your experimental & simulator data.
  • 41
    Orange Reviews

    Orange

    University of Ljubljana

    Open source machine learning and data visualization. With a wide range of tools, you can create data analysis workflows visually. Simple data analysis can be done with data visualization. Explore statistical distributions, box and scatter plots. Or dive deeper with decision trees and hierarchical clustering, heatmaps and MDS. Smart attribute ranking and selections can make multidimensional data more sensible in 2D. Interactive data exploration allows for qualitative analysis in a quick and efficient manner. The graphic user interface allows you focus on exploratory data analysis and not coding. Smart defaults make prototyping a data analysis workflow very easy. Connect widgets to the canvas, place them on the screen, and then load your data. We like to show data mining rather than just explain it. Orange excels at this.
  • 42
    Salford Predictive Modeler (SPM) Reviews
    The Salford Predictive Modeler® (SPM), software suite, is highly accurate and extremely fast for developing predictive, descriptive, or analytical models. Salford Predictive Modeler®, which includes the CART®, TreeNet®, Random Forests® engines, and powerful new automation capabilities and modeling capabilities that are not available elsewhere, is a software suite that includes the MARS®, CART®, TreeNet[r], and TreeNet®. The SPM software suite's data mining technologies span classification, regression, survival analysis, missing value analysis, data binning and clustering/segmentation. SPM algorithms are essential in advanced data science circles. Automation of model building is made easier by the SPM software suite. It automates significant portions of the model exploration, refinement, and refinement process for analysts. We combine all results from different modeling strategies into one package for easy review.
  • 43
    NVIDIA DIGITS Reviews
    NVIDIA DeepLearning GPU Training System (DIGITS), puts deep learning in the hands of data scientists and engineers. DIGITS is a fast and accurate way to train deep neural networks (DNNs), for image classification, segmentation, and object detection tasks. DIGITS makes it easy to manage data, train neural networks on multi-GPU platforms, monitor performance with advanced visualizations and select the best model from the results browser for deployment. DIGITS is interactive, so data scientists can concentrate on designing and training networks and not programming and debugging. TensorFlow allows you to interactively train models and TensorBoard lets you visualize the model architecture. Integrate custom plugs to import special data formats, such as DICOM, used in medical imaging.
  • 44
    expoze.io Reviews

    expoze.io

    expoze.io

    €19.99/month
    We are bad at predicting what will capture our attention. Eye-tracking is helpful, but it is expensive and time-consuming. That’s why we created expoze.io. An online attention prediction platform that validates designs in real-time. Built by leading neuro- and data scientists from Alpha.One. We believe creators make better decisions if they can predict what grabs attention.
  • 45
    ConvNetJS Reviews
    ConvNetJS is a Javascript library that allows you to train deep learning models (neural network) in your browser. You can train by simply opening a tab. No software requirements, no compilers, no installations, no GPUs, no sweat. The library was originally created by @karpathy and allows you to create and solve neural networks using Javascript. The library has been greatly expanded by the community, and new contributions are welcome. If you don't want to develop, this link to convnet.min.js will allow you to download the library as a plug-and play. You can also download the latest version of the library from Github. The file you are probably most interested in is build/convnet-min.js, which contains the entire library. To use it, create an index.html file with no content and copy build/convnet.min.js to that folder.
  • 46
    TruEra Reviews
    This machine learning monitoring tool allows you to easily monitor and troubleshoot large model volumes. Data scientists can avoid false alarms and dead ends by using an unrivaled explainability accuracy and unique analyses that aren't available anywhere else. This allows them to quickly and effectively address critical problems. So that your business runs at its best, machine learning models are optimized. TruEra's explainability engine is the result of years of dedicated research and development. It is significantly more accurate that current tools. TruEra's enterprise-class AI explainability tech is unrivalled. The core diagnostic engine is built on six years of research by Carnegie Mellon University. It outperforms all competitors. The platform performs sophisticated sensitivity analyses quickly, allowing data scientists, business users, risk and compliance teams to understand how and why a model makes predictions.
  • 47
    Daria Reviews
    Daria's advanced automated features enable users to quickly and easily create predictive models. This significantly reduces the time and effort required to build them. Eliminate technological and financial barriers to building AI systems from scratch for businesses. Automated machine learning for data professionals can streamline and speed up workflows, reducing the amount of iterative work required. An intuitive GUI for data science beginners gives you hands-on experience with machine learning. Daria offers various data transformation functions that allow you to quickly create multiple feature sets. Daria automatically searches through millions of combinations of algorithms, modeling techniques, and hyperparameters in order to find the best predictive model. Daria's RESTful API allows you to deploy predictive models directly into production.
  • 48
    Amazon SageMaker Canvas Reviews
    Amazon SageMaker Canvas provides business analysts with a visual interface to help them generate accurate ML predictions. They don't need any ML experience nor to write a single line code. A visual interface that allows users to connect, prepare, analyze and explore data in order to build ML models and generate accurate predictions. Automate the creation of ML models in just a few clicks. By sharing, reviewing, updating, and revising ML models across tools, you can increase collaboration between data scientists and business analysts. Import ML models anywhere and instantly generate predictions in Amazon SageMaker Canvas. Amazon SageMaker Canvas allows you to import data from different sources, select the values you wish to predict, prepare and explore data, then quickly and easily build ML models. The model can then be analyzed and used to make accurate predictions.
  • 49
    Neuralhub Reviews
    Neuralhub is an AI system that simplifies the creation, experimentation, and innovation of neural networks. It helps AI enthusiasts, researchers, engineers, and other AI professionals. Our mission goes beyond just providing tools. We're creating a community where people can share and collaborate. We want to simplify deep learning by bringing together all the tools, models, and research into a collaborative space. This will make AI research, development, and learning more accessible. Create a neural network by starting from scratch, or use our library to experiment and create something new. Construct your neural networks with just one click. Visualize and interact with each component of the network. Tune hyperparameters like epochs and features, labels, and more.
  • 50
    Caffe Reviews
    Caffe is a deep-learning framework that focuses on expression, speed and modularity. It was developed by Berkeley AI Research (BAIR), and community contributors. The project was created by Yangqing Jia during his PhD at UC Berkeley. Caffe is available under the BSD 2-Clause License. Check out our web image classification demo! Expressive architecture encourages innovation and application. Configuration is all that is required to define models and optimize them. You can switch between CPU and GPU by setting one flag to train on a GPU, then deploy to commodity clusters of mobile devices. Extensible code fosters active development. Caffe was forked by more than 1,000 developers in its first year. Many significant changes were also made back. These contributors helped to track the state of the art in code and models. Caffe's speed makes it ideal for industry deployment and research experiments. Caffe can process more than 60M images per hour using a single NVIDIA GPU K40.