Best NVIDIA Nemotron Alternatives in 2024

Find the top alternatives to NVIDIA Nemotron currently available. Compare ratings, reviews, pricing, and features of NVIDIA Nemotron alternatives in 2024. Slashdot lists the best NVIDIA Nemotron alternatives on the market that offer competing products that are similar to NVIDIA Nemotron. Sort through NVIDIA Nemotron alternatives below to make the best choice for your needs

  • 1
    Baichuan-13B Reviews

    Baichuan-13B

    Baichuan Intelligent Technology

    Free
    Baichuan-13B, a large-scale language model with 13 billion parameters that is open source and available commercially by Baichuan Intelligent, was developed following Baichuan -7B. It has the best results for a language model of the same size in authoritative Chinese and English benchmarks. This release includes two versions of pretraining (Baichuan-13B Base) and alignment (Baichuan-13B Chat). Baichuan-13B has more data and a larger size. It expands the number parameters to 13 billion based on Baichuan -7B, and trains 1.4 trillion coins on high-quality corpus. This is 40% more than LLaMA-13B. It is open source and currently the model with the most training data in 13B size. Support Chinese and English bi-lingual, use ALiBi code, context window is 4096.
  • 2
    Smaug-72B Reviews
    Smaug 72B is an open-source large-language model (LLM), which is known for its key features. High Performance: It is currently ranked first on the Hugging face Open LLM leaderboard. This model has surpassed models such as GPT-3.5 across a range of benchmarks. This means that it excels in tasks such as understanding, responding to and generating text similar to human speech. Open Source: Smaug-72B, unlike many other advanced LLMs is available to anyone for free use and modification, fostering collaboration, innovation, and creativity in the AI community. Focus on Math and Reasoning: It excels at handling mathematical and reasoning tasks. This is attributed to the unique fine-tuning technologies developed by Abacus, the creators Smaug 72B. Based on Qwen 72B: This is a finely tuned version of another powerful LLM, called Qwen 72B, released by Alibaba. It further improves its capabilities. Smaug-72B is a significant advance in open-source AI.
  • 3
    OpenGPT-X Reviews
    OpenGPT is a German initiative that focuses on developing large AI languages models tailored to European requirements, with an emphasis on versatility, trustworthiness and multilingual capabilities. It also emphasizes open-source accessibility. The project brings together partners to cover the whole generative AI value-chain, from scalable GPU-based infrastructure to data for training large language model to model design, practical applications, and prototypes and proofs-of concept. OpenGPT-X aims at advancing cutting-edge research, with a focus on business applications. This will accelerate the adoption of generative AI within the German economy. The project also stresses responsible AI development to ensure that the models are reliable and aligned with European values and laws. The project provides resources, such as the LLM Workbook and a three part reference guide with examples and resources to help users better understand the key features and characteristics of large AI language model.
  • 4
    IBM Granite Reviews
    IBM® Granite™ is an AI family that was designed from scratch for business applications. It helps to ensure trust and scalability of AI-driven apps. Granite models are open source and available today. We want to make AI accessible to as many developers as we can. We have made the core Granite Code, Time Series models, Language and GeoSpatial available on Hugging Face, under a permissive Apache 2.0 licence that allows for broad commercial use. Granite models are all trained using carefully curated data. The data used to train them is transparent at a level that is unmatched in the industry. We have also made the tools that we use available to ensure that the data is of high quality and meets the standards required by enterprise-grade applications.
  • 5
    GPT4All Reviews
    GPT4All provides an ecosystem for training and deploying large language models, which run locally on consumer CPUs. The goal is to be the best assistant-style language models that anyone or any enterprise can freely use and distribute. A GPT4All is a 3GB to 8GB file you can download and plug in the GPT4All ecosystem software. Nomic AI maintains and supports this software ecosystem in order to enforce quality and safety, and to enable any person or company to easily train and deploy large language models on the edge. Data is a key ingredient in building a powerful and general-purpose large-language model. The GPT4All Community has created the GPT4All Open Source Data Lake as a staging area for contributing instruction and assistance tuning data for future GPT4All Model Trains.
  • 6
    Qwen Reviews
    Qwen LLM is a family of large-language models (LLMs), developed by Damo Academy, an Alibaba Cloud subsidiary. These models are trained using a large dataset of text and codes, allowing them the ability to understand and generate text that is human-like, translate languages, create different types of creative content and answer your question in an informative manner. Here are some of the key features of Qwen LLMs. Variety of sizes: Qwen's series includes sizes ranging from 1.8 billion parameters to 72 billion, offering options that meet different needs and performance levels. Open source: Certain versions of Qwen have open-source code, which is available to anyone for use and modification. Qwen is multilingual and can translate multiple languages including English, Chinese and Japanese. Qwen models are capable of a wide range of tasks, including text summarization and code generation, as well as generation and translation.
  • 7
    GPT-5 Reviews

    GPT-5

    OpenAI

    $0.0200 per 1000 tokens
    GPT-5 is OpenAI's Generative Pretrained Transformer. It is a large-language model (LLM), which is still in development. LLMs have been trained to work with massive amounts of text and can generate realistic and coherent texts, translate languages, create different types of creative content and answer your question in a way that is informative. It's still not available to the public. OpenAI has not announced a release schedule, but some believe it could launch in 2024. It's expected that GPT-5 will be even more powerful. GPT-4 has already proven to be impressive. It is capable of writing creative content, translating languages and generating text of human-quality. GPT-5 will be expected to improve these abilities, with improved reasoning, factual accuracy and ability to follow directions.
  • 8
    PygmalionAI Reviews
    PygmalionAI, a community of open-source projects based upon EleutherAI’s GPT-J 6B models and Meta’s LLaMA model, was founded in 2009. Pygmalion AI is designed for roleplaying and chatting. The 7B variant of the Pygmalion AI is currently actively supported. It is based on Meta AI’s LLaMA AI model. Pygmalion's chat capabilities are superior to larger language models that require much more resources. Our curated datasets of high-quality data on roleplaying ensure that your bot is the best RP partner. The model weights as well as the code used to train the model are both open-source. You can modify/re-distribute them for any purpose you like. Pygmalion and other language models run on GPUs because they require fast memory and massive processing to produce coherent text at a reasonable speed.
  • 9
    NVIDIA NeMo Reviews
    NVIDIA NeMoLLM is a service that allows you to quickly customize and use large language models that have been trained on multiple frameworks. Developers can use NeMo LLM to deploy enterprise AI applications on both public and private clouds. They can also experiment with Megatron 530B, one of the most powerful language models, via the cloud API or the LLM service. You can choose from a variety of NVIDIA models or community-developed models to best suit your AI applications. You can get better answers in minutes to hours by using prompt learning techniques and providing context for specific use cases. Use the NeMo LLM Service and the cloud API to harness the power of NVIDIA megatron 530B, the largest language model, or NVIDIA Megatron 535B. Use models for drug discovery in the NVIDIA BioNeMo framework and the cloud API.
  • 10
    Cerebras-GPT Reviews
    The training of state-of-the art language models is extremely difficult. They require large compute budgets, complex distributed computing techniques and deep ML knowledge. Few organizations are able to train large language models from scratch. The number of organizations that do not open source their results is increasing, even though they have the expertise and resources to do so. We at Cerebras believe in open access to the latest models. Cerebras is proud to announce that Cerebras GPT, a family GPT models with 111 million to thirteen billion parameters, has been released to the open-source community. These models are trained using the Chinchilla Formula and provide the highest accuracy within a given computing budget. Cerebras GPT has faster training times and lower training costs. It also consumes less power than any other publicly available model.
  • 11
    Qwen-7B Reviews
    Qwen-7B, also known as Qwen-7B, is the 7B-parameter variant of the large language models series Qwen. Tongyi Qianwen, proposed by Alibaba Cloud. Qwen-7B, a Transformer-based language model, is pretrained using a large volume data, such as web texts, books, code, etc. Qwen-7B is also used to train Qwen-7B Chat, an AI assistant that uses large models and alignment techniques. The Qwen-7B features include: Pre-trained with high quality data. We have pretrained Qwen-7B using a large-scale, high-quality dataset that we constructed ourselves. The dataset contains over 2.2 trillion tokens. The dataset contains plain texts and codes and covers a wide range domains including general domain data as well as professional domain data. Strong performance. We outperform our competitors in a series benchmark datasets that evaluate natural language understanding, mathematics and coding. And more.
  • 12
    OLMo 2 Reviews
    OLMo 2 is an open language model family developed by the Allen Institute for AI. It provides researchers and developers with open-source code and reproducible training recipes. These models can be trained with up to 5 trillion tokens, and they are competitive against other open-weight models such as Llama 3.0 on English academic benchmarks. OLMo 2 focuses on training stability by implementing techniques that prevent loss spikes in long training runs. It also uses staged training interventions to address capability deficits during late pretraining. The models incorporate the latest post-training methods from AI2's Tulu 3 resulting in OLMo 2-Instruct. The Open Language Modeling Evaluation System, or OLMES, was created to guide improvements throughout the development stages. It consists of 20 evaluation benchmarks assessing key capabilities.
  • 13
    Llama 2 Reviews
    The next generation of the large language model. This release includes modelweights and starting code to pretrained and fine tuned Llama languages models, ranging from 7B-70B parameters. Llama 1 models have a context length of 2 trillion tokens. Llama 2 models have a context length double that of Llama 1. The fine-tuned Llama 2 models have been trained using over 1,000,000 human annotations. Llama 2, a new open-source language model, outperforms many other open-source language models in external benchmarks. These include tests of reasoning, coding and proficiency, as well as knowledge tests. Llama 2 has been pre-trained using publicly available online data sources. Llama-2 chat, a fine-tuned version of the model, is based on publicly available instruction datasets, and more than 1 million human annotations. We have a wide range of supporters in the world who are committed to our open approach for today's AI. These companies have provided early feedback and have expressed excitement to build with Llama 2
  • 14
    ChatGPT Reviews
    ChatGPT is an OpenAI language model. It can generate human-like responses to a variety prompts, and has been trained on a wide range of internet texts. ChatGPT can be used to perform natural language processing tasks such as conversation, question answering, and text generation. ChatGPT is a pretrained language model that uses deep-learning algorithms to generate text. It was trained using large amounts of text data. This allows it to respond to a wide variety of prompts with human-like ease. It has a transformer architecture that has been proven to be efficient in many NLP tasks. ChatGPT can generate text in addition to answering questions, text classification and language translation. This allows developers to create powerful NLP applications that can do specific tasks more accurately. ChatGPT can also process code and generate it.
  • 15
    Aya Reviews
    Aya is an open-source, state-of-the art, massively multilingual large language research model (LLM), which covers 101 different languages. This is more than twice the number of languages that are covered by open-source models. Aya helps researchers unlock LLMs' powerful potential for dozens of cultures and languages that are largely ignored by the most advanced models available today. We open-source both the Aya Model, as well as the most comprehensive multilingual instruction dataset with 513 million words covering 114 different languages. This data collection contains rare annotations by native and fluent speakers from around the world. This ensures that AI technology is able to effectively serve a global audience who have had limited access up until now.
  • 16
    OpenELM Reviews
    OpenELM is a family of open-source language models developed by Apple. It uses a layering strategy to allocate parameters efficiently within each layer of a transformer model. This leads to improved accuracy compared to other open language models. OpenELM was trained using publicly available datasets, and it achieves the best performance for its size.
  • 17
    RedPajama Reviews
    GPT-4 and other foundation models have accelerated AI's development. The most powerful models, however, are closed commercial models or partially open. RedPajama aims to create a set leading, open-source models. Today, we're excited to announce that the first phase of this project is complete: the reproduction of LLaMA's training dataset of more than 1.2 trillion tokens. The most capable foundations models are currently closed behind commercial APIs. This limits research, customization and their use with sensitive information. If the open community can bridge the quality gap between closed and open models, fully open-source models could be the answer to these limitations. Recent progress has been made in this area. AI is in many ways having its Linux moment. Stable Diffusion demonstrated that open-source software can not only compete with commercial offerings such as DALL-E, but also lead to incredible creative results from community participation.
  • 18
    Hermes 3 Reviews
    Hermes 3 contains advanced long-term context retention and multi-turn conversation capabilities, complex roleplaying and internal monologue abilities, and enhanced agentic function-calling. Hermes 3 has advanced long-term contextual retention, multi-turn conversation capabilities, complex roleplaying, internal monologue, and enhanced agentic functions-calling. Our training data encourages the model in a very aggressive way to follow the system prompts and instructions exactly and in a highly adaptive manner. Hermes 3 was developed by fine-tuning Llama 3.0 8B, 70B and 405B and training with a dataset primarily containing synthetic responses. The model has a performance that is comparable to Llama 3.1, but with deeper reasoning and creative abilities. Hermes 3 is an instruct and tool-use model series with strong reasoning and creativity abilities.
  • 19
    OPT Reviews
    The ability of large language models to learn in zero- and few shots, despite being trained for hundreds of thousands or even millions of days, has been remarkable. These models are expensive to replicate, due to their high computational cost. The few models that are available via APIs do not allow access to the full weights of the model, making it difficult to study. Open Pre-trained Transformers is a suite decoder-only pre-trained transforms with parameters ranging from 175B to 125M. We aim to share this fully and responsibly with interested researchers. We show that OPT-175B has a carbon footprint of 1/7th that of GPT-3. We will also release our logbook, which details the infrastructure challenges we encountered, as well as code for experimenting on all of the released model.
  • 20
    NLP Cloud Reviews

    NLP Cloud

    NLP Cloud

    $29 per month
    Production-ready AI models that are fast and accurate. High-availability inference API that leverages the most advanced NVIDIA GPUs. We have selected the most popular open-source natural language processing models (NLP) and deployed them for the community. You can fine-tune your models (including GPT-J) or upload your custom models. Then, deploy them to production. Upload your AI models, including GPT-J, to your dashboard and immediately use them in production.
  • 21
    Sarvam AI Reviews
    We are developing large language models that are efficient for India's diverse cultural diversity and enabling GenAI applications with bespoke enterprise models. We are building a platform for enterprise-grade apps that allows you to develop and evaluate them. We believe that open-source can accelerate AI innovation. We will be contributing open-source datasets and models, and leading efforts for large data curation projects in the public-good space. We are a dynamic team of AI experts, combining expertise in research, product design, engineering and business operations. Our diverse backgrounds are united by a commitment to excellence in science, and creating societal impact. We create an environment in which tackling complex tech problems is not only a job but a passion.
  • 22
    Llama 3.2 Reviews
    There are now more versions of the open-source AI model that you can refine, distill and deploy anywhere. Choose from 1B or 3B, or build with Llama 3. Llama 3.2 consists of a collection large language models (LLMs), which are pre-trained and fine-tuned. They come in sizes 1B and 3B, which are multilingual text only. Sizes 11B and 90B accept both text and images as inputs and produce text. Our latest release allows you to create highly efficient and performant applications. Use our 1B and 3B models to develop on-device applications, such as a summary of a conversation from your phone, or calling on-device features like calendar. Use our 11B and 90B models to transform an existing image or get more information from a picture of your surroundings.
  • 23
    GPT-4 Reviews

    GPT-4

    OpenAI

    $0.0200 per 1000 tokens
    1 Rating
    GPT-4 (Generative Pretrained Transformer 4) a large-scale, unsupervised language model that is yet to be released. GPT-4, which is the successor of GPT-3, is part of the GPT -n series of natural-language processing models. It was trained using a dataset of 45TB text to produce text generation and understanding abilities that are human-like. GPT-4 is not dependent on additional training data, unlike other NLP models. It can generate text and answer questions using its own context. GPT-4 has been demonstrated to be capable of performing a wide range of tasks without any task-specific training data, such as translation, summarization and sentiment analysis.
  • 24
    Gemma 2 Reviews
    Gemini models are a family of light-open, state-of-the art models that was created using the same research and technology as Gemini models. These models include comprehensive security measures, and help to ensure responsible and reliable AI through selected data sets. Gemma models have exceptional comparative results, even surpassing some larger open models, in their 2B and 7B sizes. Keras 3.0 offers seamless compatibility with JAX TensorFlow PyTorch and JAX. Gemma 2 has been redesigned to deliver unmatched performance and efficiency. It is optimized for inference on a variety of hardware. The Gemma models are available in a variety of models that can be customized to meet your specific needs. The Gemma models consist of large text-to text lightweight language models that have a decoder and are trained on a large set of text, code, or mathematical content.
  • 25
    NVIDIA NeMo Megatron Reviews
    NVIDIA NeMo megatron is an end to-end framework that can be used to train and deploy LLMs with billions or trillions of parameters. NVIDIA NeMo Megatron is part of the NVIDIAAI platform and offers an efficient, cost-effective, and cost-effective containerized approach to building and deploying LLMs. It is designed for enterprise application development and builds upon the most advanced technologies of NVIDIA research. It provides an end-to–end workflow for automated distributed processing, training large-scale customized GPT-3 and T5 models, and deploying models to infer at scale. The validation of converged recipes that allow for training and inference is a key to unlocking the power and potential of LLMs. The hyperparameter tool makes it easy to customize models. It automatically searches for optimal hyperparameter configurations, performance, and training/inference for any given distributed GPU cluster configuration.
  • 26
    Arcee-SuperNova Reviews
    Our new flagship model, the Small Language Model (SLM), has all the power and performance that you would expect from a leading LLM. Excels at generalized tasks, instruction-following, and human preferences. The best 70B model available. SuperNova is a generalized task-based AI that can be used for any generalized task. It's similar to Open AI's GPT4o and Claude Sonnet 3.5. SuperNova is trained with the most advanced optimization & learning techniques to generate highly accurate responses. It is the most flexible, cost-effective, and secure language model available. Customers can save up to 95% in total deployment costs when compared with traditional closed-source models. SuperNova can be used to integrate AI in apps and products, as well as for general chat and a variety of other uses. Update your models regularly with the latest open source tech to ensure you're not locked into a single solution. Protect your data using industry-leading privacy features.
  • 27
    Granite Code Reviews
    We introduce the Granite family of decoder only code models for code generation tasks (e.g. fixing bugs, explaining codes, documenting codes), trained with code in 116 programming language. The Granite Code family has been evaluated on a variety of tasks and demonstrates that the models are consistently at the top of their game among open source code LLMs. Granite Code models have a number of key advantages. Granite Code models are able to perform at a competitive level or even at the cutting edge of technology in a variety of code-related tasks including code generation, explanations, fixing, translation, editing, and more. Demonstrating the ability to solve a variety of coding tasks. IBM's Corporate Legal team guides all models for trustworthy enterprise use. All models are trained using license-permissible datasets collected according to IBM's AI Ethics Principles.
  • 28
    PanGu-α Reviews
    PanGu-a was developed under MindSpore, and trained on 2048 Ascend AI processors. The MindSpore Auto-parallel parallelism strategy was implemented to scale the training task efficiently to 2048 processors. This includes data parallelism as well as op-level parallelism. We pretrain PanGu-a with 1.1TB of high-quality Chinese data collected from a variety of domains in order to enhance its generalization ability. We test the generation abilities of PanGua in different scenarios, including text summarizations, question answering, dialog generation, etc. We also investigate the effects of model scaling on the few shot performances across a wide range of Chinese NLP task. The experimental results show that PanGu-a is superior in performing different tasks with zero-shot or few-shot settings.
  • 29
    Stable LM Reviews
    StableLM: Stability AI language models StableLM builds upon our experience with open-sourcing previous language models in collaboration with EleutherAI. This nonprofit research hub. These models include GPTJ, GPTNeoX and the Pythia Suite, which were all trained on The Pile dataset. Cerebras GPT and Dolly-2 are two recent open-source models that continue to build upon these efforts. StableLM was trained on a new dataset that is three times bigger than The Pile and contains 1.5 trillion tokens. We will provide more details about the dataset at a later date. StableLM's richness allows it to perform well in conversational and coding challenges, despite the small size of its dataset (3-7 billion parameters, compared to GPT-3's 175 billion). The development of Stable LM 3B broadens the range of applications that are viable on the edge or on home PCs. This means that individuals and companies can now develop cutting-edge technologies with strong conversational capabilities – like creative writing assistance – while keeping costs low and performance high.
  • 30
    EXAONE Reviews
    EXAONE, a large-scale language model developed by LG AI Research, aims to nurture "Expert AI" across multiple domains. The Expert AI alliance was formed by leading companies from various fields in order to advance EXAONE's capabilities. Partner companies in the alliance will act as mentors and provide EXAONE with skills, knowledge, data, and other resources to help it gain expertise in relevant fields. EXAONE is akin to an advanced college student who has taken elective courses in general. It requires intensive training to become a specialist in a specific area. LG AI Research has already demonstrated EXAONE’s abilities in real-world applications such as Tilda AI human artist, which debuted at New York Fashion Week. AI applications have also been developed to summarize customer service conversations, and extract information from complex academic documents.
  • 31
    InstructGPT Reviews

    InstructGPT

    OpenAI

    $0.0200 per 1000 tokens
    InstructGPT is an open source framework that trains language models to generate natural language instruction from visual input. It uses a generative, pre-trained transformer model (GPT) and the state of the art object detector Mask R-CNN to detect objects in images. Natural language sentences are then generated that describe the image. InstructGPT has been designed to be useful in all domains including robotics, gaming, and education. It can help robots navigate complex tasks using natural language instructions or it can help students learn by giving descriptive explanations of events or processes.
  • 32
    PanGu-Σ Reviews
    The expansion of large language model has led to significant advancements in natural language processing, understanding and generation. This study introduces a new system that uses Ascend 910 AI processing units and the MindSpore framework in order to train a language with over one trillion parameters, 1.085T specifically, called PanGu-Sigma. This model, which builds on the foundation laid down by PanGu-alpha transforms the traditional dense Transformer model into a sparse model using a concept called Random Routed Experts. The model was trained efficiently on a dataset consisting of 329 billion tokens, using a technique known as Expert Computation and Storage Separation. This led to a 6.3 fold increase in training performance via heterogeneous computer. The experiments show that PanGu-Sigma is a new standard for zero-shot learning in various downstream Chinese NLP tasks.
  • 33
    VideoPoet Reviews
    VideoPoet, a simple modeling technique, can convert any large language model or autoregressive model into a high quality video generator. It is composed of a few components. The autoregressive model learns from video, image, text, and audio modalities in order to predict the next audio or video token in the sequence. The LLM training framework introduces a mixture of multimodal generative objectives, including text to video, text to image, image-to video, video frame continuation and inpainting/outpainting, styled video, and video-to audio. Moreover, these tasks can be combined to provide additional zero-shot capabilities. This simple recipe shows how language models can edit and synthesize videos with a high level of temporal consistency.
  • 34
    Palmyra LLM Reviews
    Palmyra is an enterprise-ready suite of Large Language Models. These models are excellent at tasks like image analysis, question answering, and supporting over 30 languages. They can be fine-tuned for industries such as healthcare and finance. Palmyra models are notable for their top rankings in benchmarks such as Stanford HELM and PubMedQA. Palmyra Fin is the first model that passed the CFA Level III examination. Writer protects client data by not using it to train or modify models. They have a zero-data retention policy. Palmyra includes specialized models, such as Palmyra X 004, which has tool-calling abilities; Palmyra Med for healthcare; Palmyra Fin for finance; and Palmyra Vision for advanced image and video processing. These models are available via Writer's full stack generative AI platform which integrates graph based Retrieval augmented Generation (RAG).
  • 35
    Falcon-40B Reviews

    Falcon-40B

    Technology Innovation Institute (TII)

    Free
    Falcon-40B is a 40B parameter causal decoder model, built by TII. It was trained on 1,000B tokens from RefinedWeb enhanced by curated corpora. It is available under the Apache 2.0 licence. Why use Falcon-40B Falcon-40B is the best open source model available. Falcon-40B outperforms LLaMA, StableLM, RedPajama, MPT, etc. OpenLLM Leaderboard. It has an architecture optimized for inference with FlashAttention, multiquery and multiquery. It is available under an Apache 2.0 license that allows commercial use without any restrictions or royalties. This is a raw model that should be finetuned to fit most uses. If you're looking for a model that can take generic instructions in chat format, we suggest Falcon-40B Instruct.
  • 36
    CodeQwen Reviews
    CodeQwen, developed by the Qwen Team, Alibaba Cloud, is the code version. It is a transformer based decoder only language model that has been pre-trained with a large number of codes. A series of benchmarks shows that the code generation is strong and that it performs well. Supporting long context generation and understanding with a context length of 64K tokens. CodeQwen is a 92-language coding language that provides excellent performance for text-to SQL, bug fixes, and more. CodeQwen chat is as simple as writing a few lines of code using transformers. We build the tokenizer and model using pre-trained methods and use the generate method for chatting. The chat template is provided by the tokenizer. Following our previous practice, we apply the ChatML Template for chat models. The model will complete the code snippets in accordance with the prompts without any additional formatting.
  • 37
    GPT-J Reviews
    GPT-J, a cutting edge language model developed by EleutherAI, is a leading-edge language model. GPT-J's performance is comparable to OpenAI's GPT-3 model on a variety of zero-shot tasks. GPT-J, in particular, has shown that it can surpass GPT-3 at tasks relating to code generation. The latest version of this language model is GPT-J-6B and is built on a linguistic data set called The Pile. This dataset is publically available and contains 825 gibibytes worth of language data organized into 22 subsets. GPT-J has some similarities with ChatGPT. However, GPTJ is not intended to be a chatbot. Its primary function is to predict texts. Databricks made a major development in March 2023 when they introduced Dolly, an Apache-licensed model that follows instructions.
  • 38
    Vicuna Reviews
    Vicuna-13B, an open-source chatbot, is trained by fine-tuning LLaMA using user-shared conversations from ShareGPT. Vicuna-13B's preliminary evaluation using GPT-4, as a judge, shows that it achieves a quality of more than 90%* for OpenAI ChatGPT or Google Bard and outperforms other models such as LLaMA or Stanford Alpaca. Vicuna-13B costs around $300 to train. The online demo and the code, along with weights, are available to non-commercial users.
  • 39
    Codestral Reviews
    We are proud to introduce Codestral, the first code model we have ever created. Codestral is a generative AI model that is open-weight and specifically designed for code generation. It allows developers to interact and write code using a shared API endpoint for instructions and completion. It can be used for advanced AI applications by software developers as it is able to master both code and English. Codestral has been trained on a large dataset of 80+ languages, including some of the most popular, such as Python and Java. It also includes C, C++ JavaScript, Bash, C, C++. It also performs well with more specific ones, such as Swift and Fortran. Codestral's broad language base allows it to assist developers in a variety of coding environments and projects.
  • 40
    ChatGLM Reviews
    ChatGLM-6B, a Chinese-English bilingual dialogue model based on General Language Model architecture (GLM), has 6.2 billion parameters. Users can deploy model quantization locally on consumer-grade graphic cards (only 6GB video memory required at INT4 quantization levels). ChatGLM-6B is based on technology similar to ChatGPT and optimized for Chinese dialogue and Q&A. After approximately 1T identifiers for Chinese and English bilingual training and supplemented with supervision and fine-tuning as well as feedback self-help and human feedback reinforcement learning, ChatGLM-6B, with 6.2 billion parameters, has been able generate answers that are in line with human preference.
  • 41
    DataGemma Reviews
    DataGemma is a pioneering project by Google that aims to improve the accuracy and reliability large language models (LLMs), when dealing with numerical and statistical data. DataGemma, launched as a collection of open models, leverages Google's Data Commons - a vast repository for public statistical data - to ground its responses in actual facts. This initiative uses two innovative approaches, Retrieval Interleaved Generation and Retrieval Augmented Generation. RIG integrates real-time checks of data during the generation process, ensuring factual accuracy. RAG retrieves pertinent information before generating answers, reducing the likelihood that AI hallucinations will occur. DataGemma's goal is to provide users with factual and trustworthy answers. This marks a significant step in reducing the amount of misinformation that AI-generated content contains.
  • 42
    Giga ML Reviews
    We have just launched the X1 large model series. Giga ML’s most powerful model can be used for pre-training, fine-tuning and on-prem deployment. We are Open AI compliant, so your existing integrations, such as long chain, llama index, and others, will work seamlessly. You can continue to pre-train LLM's using domain-specific databooks or docs, or company documents. The world of large-scale language models (LLMs), which offer unprecedented opportunities for natural language process across different domains, is rapidly expanding. Despite this, there are still some critical challenges that remain unresolved. Giga ML proudly introduces the X1 Large model 32k, a pioneering LLM solution on-premise that addresses these critical challenges.
  • 43
    Jurassic-2 Reviews
    Jurassic-2 is the latest generation AI21 Studio foundation models. It's a game changer in the field AI, with new capabilities and top-tier quality. We're also releasing task-specific APIs with superior reading and writing capabilities. AI21 Studio's focus is to help businesses and developers leverage reading and writing AI in order to build real-world, tangible products. The release of Task-Specific and Jurassic-2 APIs marks two significant milestones. They will enable you to bring generative AI into production. Jurassic-2 (or J2, as we like to call it) is the next generation of our foundation models with significant improvements in quality and new capabilities including zero-shot instruction-following, reduced latency, and multi-language support. Task-specific APIs offer developers industry-leading APIs for performing specialized reading and/or writing tasks.
  • 44
    MPT-7B Reviews
    Introducing MPT-7B - the latest addition to our MosaicML Foundation Series. MPT-7B, a transformer that is trained from scratch using 1T tokens of code and text, is the latest entry in our MosaicML Foundation Series. It is open-source, available for commercial purposes, and has the same quality as LLaMA-7B. MPT-7B trained on the MosaicML Platform in 9.5 days, with zero human interaction at a cost $200k. You can now train, fine-tune and deploy your private MPT models. You can either start from one of our checkpoints, or you can start from scratch. For inspiration, we are also releasing three finetuned models in addition to the base MPT-7B: MPT-7B-Instruct, MPT-7B-Chat, and MPT-7B-StoryWriter-65k+, the last of which uses a context length of 65k tokens!
  • 45
    Dolly Reviews
    Dolly is an inexpensive LLM that demonstrates a surprising amount of the capabilities of ChatGPT. Whereas the work from the Alpaca team showed that state-of-the-art models could be coaxed into high quality instruction-following behavior, we find that even years-old open source models with much earlier architectures exhibit striking behaviors when fine tuned on a small corpus of instruction training data. Dolly uses an open source model with 6 billion parameters from EleutherAI, which is modified to include new capabilities like brainstorming and text creation that were not present in the original.
  • 46
    Samsung Gauss Reviews
    Samsung Gauss, a new AI-model developed by Samsung Electronics, is a powerful AI tool. It is a large-language model (LLM) which has been trained using a massive dataset. Samsung Gauss can generate text, translate different languages, create creative content and answer questions in a helpful way. Samsung Gauss, which is still in development, has already mastered many tasks, including Follow instructions and complete requests with care. Answering questions in an informative and comprehensive way, even when they are open-ended, challenging or strange. Creating different creative text formats such as poems, code, musical pieces, emails, letters, etc. Here are some examples to show what Samsung Gauss is capable of: Translation: Samsung Gauss is able to translate text between many languages, including English and German, as well as Spanish, Chinese, Japanese and Korean. Coding: Samsung Gauss can generate code.
  • 47
    YandexGPT Reviews
    Use generative language models for improving and optimizing your web services and applications. Get a consolidated result of textual data, whether it is information from chats at work, user reviews or other types. YandexGPT can help summarize and interpret information. Improve the quality and style of your text to speed up the creation process. Create templates for newsletters, product description for online stores, and other applications. Create a chatbot to help your customer service. Teach the bot how to answer common and complex questions. Use the API to automate processes and integrate the service into your applications.
  • 48
    LLaVA Reviews
    LLaVA is a multimodal model that combines a Vicuna language model with a vision encoder to facilitate comprehensive visual-language understanding. LLaVA's chat capabilities are impressive, emulating multimodal functionality of models such as GPT-4. LLaVA 1.5 has achieved the best performance in 11 benchmarks using publicly available data. It completed training on a single 8A100 node in about one day, beating methods that rely upon billion-scale datasets. The development of LLaVA involved the creation of a multimodal instruction-following dataset, generated using language-only GPT-4. This dataset comprises 158,000 unique language-image instruction-following samples, including conversations, detailed descriptions, and complex reasoning tasks. This data has been crucial in training LLaVA for a wide range of visual and linguistic tasks.
  • 49
    GPT-NeoX Reviews
    A model parallel autoregressive transformator implementation on GPUs based on the DeepSpeed Library. This repository contains EleutherAI’s library for training large language models on GPUs. Our current framework is based upon NVIDIA's Megatron Language Model, and has been enhanced with techniques from DeepSpeed, as well as some novel improvements. This repo is intended to be a central and accessible place for techniques to train large-scale autoregressive models and to accelerate research into large scale training.
  • 50
    Claude Pro Reviews
    Claude Pro is a large language model that can handle complex tasks with a friendly and accessible demeanor. It is trained on high-quality, extensive data and excels at understanding contexts, interpreting subtleties, and producing well structured, coherent responses to a variety of topics. Claude Pro is able to create detailed reports, write creative content, summarize long documents, and assist with coding tasks by leveraging its robust reasoning capabilities and refined knowledge base. Its adaptive algorithms constantly improve its ability learn from feedback. This ensures that its output is accurate, reliable and helpful. Whether Claude Pro is serving professionals looking for expert support or individuals seeking quick, informative answers - it delivers a versatile, productive conversational experience.