Google Kubernetes Engine (GKE)
Deploy sophisticated applications using a secure and managed Kubernetes platform. GKE serves as a robust solution for running both stateful and stateless containerized applications, accommodating a wide range of needs from AI and ML to various web and backend services, whether they are simple or complex. Take advantage of innovative features, such as four-way auto-scaling and streamlined management processes. Enhance your setup with optimized provisioning for GPUs and TPUs, utilize built-in developer tools, and benefit from multi-cluster support backed by site reliability engineers. Quickly initiate your projects with single-click cluster deployment. Enjoy a highly available control plane with the option for multi-zonal and regional clusters to ensure reliability. Reduce operational burdens through automatic repairs, upgrades, and managed release channels. With security as a priority, the platform includes built-in vulnerability scanning for container images and robust data encryption. Benefit from integrated Cloud Monitoring that provides insights into infrastructure, applications, and Kubernetes-specific metrics, thereby accelerating application development without compromising on security. This comprehensive solution not only enhances efficiency but also fortifies the overall integrity of your deployments.
Learn more
JS7 JobScheduler
JS7 JobScheduler, an Open Source Workload Automation System, is designed for performance and resilience. JS7 implements state-of-the-art security standards. It offers unlimited performance for parallel executions of jobs and workflows.
JS7 provides cross-platform job execution and managed file transfer. It supports complex dependencies without the need for coding. The JS7 REST-API allows automation of inventory management and job control.
JS7 can operate thousands of Agents across any platform in parallel.
Platforms
- Cloud scheduling for Docker®, OpenShift®, Kubernetes® etc.
- True multi-platform scheduling on premises, for Windows®, Linux®, AIX®, Solaris®, macOS® etc.
- Hybrid cloud and on-premises use
User Interface
- Modern GUI with no-code approach for inventory management, monitoring, and control using web browsers
- Near-real-time information provides immediate visibility to status changes, log outputs of jobs and workflows.
- Multi-client functionality, role-based access management
- OIDC authentication and LDAP integration
High Availability
- Redundancy & Resilience based on asynchronous design and autonomous Agents
- Clustering of all JS7 Products, automatic fail-over and manual switch-over
Learn more
Kubernetes
Kubernetes (K8s) is a powerful open-source platform designed to automate the deployment, scaling, and management of applications that are containerized. By organizing containers into manageable groups, it simplifies the processes of application management and discovery. Drawing from over 15 years of experience in handling production workloads at Google, Kubernetes also incorporates the best practices and innovative ideas from the wider community. Built on the same foundational principles that enable Google to efficiently manage billions of containers weekly, it allows for scaling without necessitating an increase in operational personnel. Whether you are developing locally or operating a large-scale enterprise, Kubernetes adapts to your needs, providing reliable and seamless application delivery regardless of complexity. Moreover, being open-source, Kubernetes offers the flexibility to leverage on-premises, hybrid, or public cloud environments, facilitating easy migration of workloads to the most suitable infrastructure. This adaptability not only enhances operational efficiency but also empowers organizations to respond swiftly to changing demands in their environments.
Learn more
Bright Cluster Manager
Bright Cluster Manager offers a variety of machine learning frameworks including Torch, Tensorflow and Tensorflow to simplify your deep-learning projects.
Bright offers a selection the most popular Machine Learning libraries that can be used to access datasets. These include MLPython and NVIDIA CUDA Deep Neural Network Library (cuDNN), Deep Learning GPU Trainer System (DIGITS), CaffeOnSpark (a Spark package that allows deep learning), and MLPython.
Bright makes it easy to find, configure, and deploy all the necessary components to run these deep learning libraries and frameworks. There are over 400MB of Python modules to support machine learning packages. We also include the NVIDIA hardware drivers and CUDA (parallel computer platform API) drivers, CUB(CUDA building blocks), NCCL (library standard collective communication routines).
Learn more