Best Modzy Alternatives in 2024

Find the top alternatives to Modzy currently available. Compare ratings, reviews, pricing, and features of Modzy alternatives in 2024. Slashdot lists the best Modzy alternatives on the market that offer competing products that are similar to Modzy. Sort through Modzy alternatives below to make the best choice for your needs

  • 1
    BentoML Reviews
    Your ML model can be served in minutes in any cloud. Unified model packaging format that allows online and offline delivery on any platform. Our micro-batching technology allows for 100x more throughput than a regular flask-based server model server. High-quality prediction services that can speak the DevOps language, and seamlessly integrate with common infrastructure tools. Unified format for deployment. High-performance model serving. Best practices in DevOps are incorporated. The service uses the TensorFlow framework and the BERT model to predict the sentiment of movie reviews. DevOps-free BentoML workflow. This includes deployment automation, prediction service registry, and endpoint monitoring. All this is done automatically for your team. This is a solid foundation for serious ML workloads in production. Keep your team's models, deployments and changes visible. You can also control access via SSO and RBAC, client authentication and auditing logs.
  • 2
    Immuta Reviews
    Immuta's Data Access Platform is built to give data teams secure yet streamlined access to data. Every organization is grappling with complex data policies as rules and regulations around that data are ever-changing and increasing in number. Immuta empowers data teams by automating the discovery and classification of new and existing data to speed time to value; orchestrating the enforcement of data policies through Policy-as-code (PaC), data masking, and Privacy Enhancing Technologies (PETs) so that any technical or business owner can manage and keep it secure; and monitoring/auditing user and policy activity/history and how data is accessed through automation to ensure provable compliance. Immuta integrates with all of the leading cloud data platforms, including Snowflake, Databricks, Starburst, Trino, Amazon Redshift, Google BigQuery, and Azure Synapse. Our platform is able to transparently secure data access without impacting performance. With Immuta, data teams are able to speed up data access by 100x, decrease the number of policies required by 75x, and achieve provable compliance goals.
  • 3
    Hopsworks Reviews

    Hopsworks

    Logical Clocks

    $1 per month
    Hopsworks is an open source Enterprise platform that allows you to develop and operate Machine Learning (ML), pipelines at scale. It is built around the first Feature Store for ML in the industry. You can quickly move from data exploration and model building in Python with Jupyter notebooks. Conda is all you need to run production-quality end-to-end ML pipes. Hopsworks can access data from any datasources you choose. They can be in the cloud, on premise, IoT networks or from your Industry 4.0-solution. You can deploy on-premises using your hardware or your preferred cloud provider. Hopsworks will offer the same user experience in cloud deployments or the most secure air-gapped deployments.
  • 4
    SquareFactory Reviews
    A platform that manages model, project, and hosting. This platform allows companies to transform data and algorithms into comprehensive, execution-ready AI strategies. Securely build, train, and manage models. You can create products that use AI models from anywhere and at any time. Reduce the risks associated with AI investments while increasing strategic flexibility. Fully automated model testing, evaluation deployment and scaling. From real-time, low latency, high-throughput, inference to batch-running inference. Pay-per-second-of-use model, with an SLA, and full governance, monitoring and auditing tools. A user-friendly interface that serves as a central hub for managing projects, visualizing data, and training models through collaborative and reproducible workflows.
  • 5
    ClearML Reviews
    ClearML is an open-source MLOps platform that enables data scientists, ML engineers, and DevOps to easily create, orchestrate and automate ML processes at scale. Our frictionless and unified end-to-end MLOps Suite allows users and customers to concentrate on developing ML code and automating their workflows. ClearML is used to develop a highly reproducible process for end-to-end AI models lifecycles by more than 1,300 enterprises, from product feature discovery to model deployment and production monitoring. You can use all of our modules to create a complete ecosystem, or you can plug in your existing tools and start using them. ClearML is trusted worldwide by more than 150,000 Data Scientists, Data Engineers and ML Engineers at Fortune 500 companies, enterprises and innovative start-ups.
  • 6
    Domino Enterprise MLOps Platform Reviews
    The Domino Enterprise MLOps Platform helps data science teams improve the speed, quality, and impact of data science at scale. Domino is open and flexible, empowering professional data scientists to use their preferred tools and infrastructure. Data science models get into production fast and are kept operating at peak performance with integrated workflows. Domino also delivers the security, governance and compliance that enterprises expect. The Self-Service Infrastructure Portal makes data science teams become more productive with easy access to their preferred tools, scalable compute, and diverse data sets. By automating time-consuming and tedious DevOps tasks, data scientists can focus on the tasks at hand. The Integrated Model Factory includes a workbench, model and app deployment, and integrated monitoring to rapidly experiment, deploy the best models in production, ensure optimal performance, and collaborate across the end-to-end data science lifecycle. The System of Record has a powerful reproducibility engine, search and knowledge management, and integrated project management. Teams can easily find, reuse, reproduce, and build on any data science work to amplify innovation.
  • 7
    cnvrg.io Reviews
    An end-to-end solution gives you all the tools your data science team needs to scale your machine learning development, from research to production. cnvrg.io, the world's leading data science platform for MLOps (model management) is a leader in creating cutting-edge machine-learning development solutions that allow you to build high-impact models in half the time. In a collaborative and clear machine learning management environment, bridge science and engineering teams. Use interactive workspaces, dashboards and model repositories to communicate and reproduce results. You should be less concerned about technical complexity and more focused on creating high-impact ML models. The Cnvrg.io container based infrastructure simplifies engineering heavy tasks such as tracking, monitoring and configuration, compute resource management, server infrastructure, feature extraction, model deployment, and serving infrastructure.
  • 8
    Comet Reviews

    Comet

    Comet

    $179 per user per month
    Manage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders.
  • 9
    Seldon Reviews
    Machine learning models can be deployed at scale with greater accuracy. With more models in production, R&D can be turned into ROI. Seldon reduces time to value so models can get to work quicker. Scale with confidence and minimize risks through transparent model performance and interpretable results. Seldon Deploy cuts down on time to production by providing production-grade inference servers that are optimized for the popular ML framework and custom language wrappers to suit your use cases. Seldon Core Enterprise offers enterprise-level support and access to trusted, global-tested MLOps software. Seldon Core Enterprise is designed for organizations that require: - Coverage for any number of ML models, plus unlimited users Additional assurances for models involved in staging and production - You can be confident that their ML model deployments will be supported and protected.
  • 10
    Fiddler Reviews
    Fiddler is a pioneer in enterprise Model Performance Management. Data Science, MLOps, and LOB teams use Fiddler to monitor, explain, analyze, and improve their models and build trust into AI. The unified environment provides a common language, centralized controls, and actionable insights to operationalize ML/AI with trust. It addresses the unique challenges of building in-house stable and secure MLOps systems at scale. Unlike observability solutions, Fiddler seamlessly integrates deep XAI and analytics to help you grow into advanced capabilities over time and build a framework for responsible AI practices. Fortune 500 organizations use Fiddler across training and production models to accelerate AI time-to-value and scale and increase revenue.
  • 11
    Censius AI Observability Platform Reviews
    Censius, an innovative startup in machine learning and AI, is a pioneering company. We provide AI observability for enterprise ML teams. With the extensive use machine learning models, it is essential to ensure that ML models perform well. Censius, an AI Observability platform, helps organizations of all sizes to make their machine-learning models in production. The company's flagship AI observability platform, Censius, was launched to help bring accountability and explanation to data science projects. Comprehensive ML monitoring solutions can be used to monitor all ML pipelines and detect and fix ML problems such as drift, skew and data integrity. After integrating Censius you will be able to: 1. Keep track of the model vitals and log them 2. By detecting problems accurately, you can reduce the time it takes to recover. 3. Stakeholders should be able to understand the issues and recovery strategies. 4. Explain model decisions 5. Reduce downtime for end-users 6. Building customer trust
  • 12
    KServe Reviews
    Kubernetes is a highly scalable platform for model inference that uses standards-based models. Trusted AI. KServe, a Kubernetes standard model inference platform, is designed for highly scalable applications. Provides a standardized, performant inference protocol that works across all ML frameworks. Modern serverless inference workloads supported by autoscaling, including a scale up to zero on GPU. High scalability, density packing, intelligent routing with ModelMesh. Production ML serving is simple and pluggable. Pre/post-processing, monitoring and explainability are all possible. Advanced deployments using the canary rollout, experiments and ensembles as well as transformers. ModelMesh was designed for high-scale, high density, and often-changing model use cases. ModelMesh intelligently loads, unloads and transfers AI models to and fro memory. This allows for a smart trade-off between user responsiveness and computational footprint.
  • 13
    Grace Enterprise AI Platform Reviews
    The Grace Enterprise AI Platform is an AI platform that supports Governance, Risk, and Compliance (GRC), for AI. Grace allows for a secure, efficient, and robust AI implementation in any organization. It standardizes processes and workflows across all your AI projects. Grace provides the rich functionality that your organization requires to become fully AI-aware. It also helps to ensure regulatory excellence for AI to avoid compliance requirements slowing down or stopping implementation. Grace lowers entry barriers for AI users in all operational and technical roles within your organization. It also offers efficient workflows for data scientists and engineers who are experienced. Ensure that all activities are tracked, explained, and enforced. This covers all areas of the data science model development, including data used for model training, development, bias, and other activities.
  • 14
    Google Cloud Vertex AI Workbench Reviews
    One development environment for all data science workflows. Natively analyze your data without the need to switch between services. Data to training at scale Models can be built and trained 5X faster than traditional notebooks. Scale up model development using simple connectivity to Vertex AI Services. Access to data is simplified and machine learning is made easier with BigQuery Dataproc, Spark and Vertex AI integration. Vertex AI training allows you to experiment and prototype at scale. Vertex AI Workbench allows you to manage your training and deployment workflows for Vertex AI all from one location. Fully managed, scalable and enterprise-ready, Jupyter-based, fully managed, scalable, and managed compute infrastructure with security controls. Easy connections to Google Cloud's Big Data Solutions allow you to explore data and train ML models.
  • 15
    PredictSense Reviews
    PredictSense is an AI-powered machine learning platform that uses AutoML to power its end-to-end Machine Learning platform. Accelerating machine intelligence will fuel the technological revolution of tomorrow. AI is key to unlocking the value of enterprise data investments. PredictSense allows businesses to quickly create AI-driven advanced analytical solutions that can help them monetize their technology investments and critical data infrastructure. Data science and business teams can quickly develop and deploy robust technology solutions at scale. Integrate AI into your existing product ecosystem and quickly track GTM for new AI solution. AutoML's complex ML models allow you to save significant time, money and effort.
  • 16
    NVIDIA Triton Inference Server Reviews
    NVIDIA Triton™, an inference server, delivers fast and scalable AI production-ready. Open-source inference server software, Triton inference servers streamlines AI inference. It allows teams to deploy trained AI models from any framework (TensorFlow or NVIDIA TensorRT®, PyTorch or ONNX, XGBoost or Python, custom, and more on any GPU or CPU-based infrastructure (cloud or data center, edge, or edge). Triton supports concurrent models on GPUs to maximize throughput. It also supports x86 CPU-based inferencing and ARM CPUs. Triton is a tool that developers can use to deliver high-performance inference. It integrates with Kubernetes to orchestrate and scale, exports Prometheus metrics and supports live model updates. Triton helps standardize model deployment in production.
  • 17
    Oracle Data Science Reviews
    Data science platform that increases productivity and has unparalleled capabilities. Create and evaluate machine learning (ML), models of higher quality. Easy deployment of ML models can help increase business flexibility and enable enterprise-trusted data work faster. Cloud-based platforms can be used to uncover new business insights. Iterative processes are necessary to build a machine-learning model. This ebook will explain how machine learning models are constructed and break down the process. Use notebooks to build and test machine learning algorithms. AutoML will show you the results of data science. It is easier and faster to create high-quality models. Automated machine-learning capabilities quickly analyze the data and recommend the best data features and algorithms. Automated machine learning also tunes the model and explains its results.
  • 18
    Lightning AI Reviews

    Lightning AI

    Lightning AI

    $10 per credit
    Our platform allows you to create AI products, train, fine-tune, and deploy models on the cloud. You don't have to worry about scaling, infrastructure, cost management, or other technical issues. Prebuilt, fully customizable modular components make it easy to train, fine tune, and deploy models. The science, not the engineering, should be your focus. Lightning components organize code to run on the cloud and manage its own infrastructure, cloud cost, and other details. 50+ optimizations to lower cloud cost and deliver AI in weeks, not months. Enterprise-grade control combined with consumer-level simplicity allows you to optimize performance, reduce costs, and take on less risk. Get more than a demo. In days, not months, you can launch your next GPT startup, diffusion startup or cloud SaaSML service.
  • 19
    IBM watsonx Reviews
    Watsonx is a new enterprise-ready AI platform that will multiply the impact of AI in your business. The platform consists of three powerful components, including the watsonx.ai Studio for new foundation models, machine learning, and generative AI; the watsonx.data Fit-for-Purpose Store for the flexibility and performance of a warehouse; and the watsonx.governance Toolkit to enable AI workflows built with responsibility, transparency, and explainability. The foundation models allow AI to be fine-tuned to the unique data and domain expertise of an enterprise with a specificity previously impossible. Use all your data, no matter where it is located. Take advantage of a hybrid cloud infrastructure that provides the foundation data for extending AI into your business. Improve data access, implement governance, reduce costs, and put quality models into production quicker.
  • 20
    Valohai Reviews

    Valohai

    Valohai

    $560 per month
    Pipelines are permanent, models are temporary. Train, Evaluate, Deploy, Repeat. Valohai is the only MLOps platform to automate everything, from data extraction to model deployment. Automate everything, from data extraction to model installation. Automatically store every model, experiment, and artifact. Monitor and deploy models in a Kubernetes cluster. Just point to your code and hit "run". Valohai launches workers and runs your experiments. Then, Valohai shuts down the instances. You can create notebooks, scripts, or shared git projects using any language or framework. Our API allows you to expand endlessly. Track each experiment and trace back to the original training data. All data can be audited and shared.
  • 21
    Amazon SageMaker Model Deployment Reviews
    Amazon SageMaker makes it easy for you to deploy ML models to make predictions (also called inference) at the best price and performance for your use case. It offers a wide range of ML infrastructure options and model deployment options to meet your ML inference requirements. It integrates with MLOps tools to allow you to scale your model deployment, reduce costs, manage models more efficiently in production, and reduce operational load. Amazon SageMaker can handle all your inference requirements, including low latency (a few seconds) and high throughput (hundreds upon thousands of requests per hour).
  • 22
    Datatron Reviews
    Datatron provides tools and features that are built from scratch to help you make machine learning in production a reality. Many teams realize that there is more to deploying models than just the manual task. Datatron provides a single platform that manages all your ML, AI and Data Science models in production. We can help you automate, optimize and accelerate your ML model production to ensure they run smoothly and efficiently. Data Scientists can use a variety frameworks to create the best models. We support any framework you use to build a model (e.g. TensorFlow and H2O, Scikit-Learn and SAS are supported. Explore models that were created and uploaded by your data scientists, all from one central repository. In just a few clicks, you can create scalable model deployments. You can deploy models using any language or framework. Your model performance will help you make better decisions.
  • 23
    MosaicML Reviews
    With a single command, you can train and serve large AI models in scale. You can simply point to your S3 bucket. We take care of the rest: orchestration, efficiency and node failures. Simple and scalable. MosaicML allows you to train and deploy large AI model on your data in a secure environment. Keep up with the latest techniques, recipes, and foundation models. Our research team has developed and rigorously tested these recipes. In just a few easy steps, you can deploy your private cloud. Your data and models will never leave the firewalls. You can start in one cloud and continue in another without missing a beat. Own the model trained on your data. Model decisions can be better explained by examining them. Filter content and data according to your business needs. Integrate seamlessly with your existing data pipelines and experiment trackers. We are cloud-agnostic and enterprise-proven.
  • 24
    navio Reviews
    Easy management, deployment and monitoring of machine learning models for supercharging MLOps. Available for all organizations on the best AI platform. You can use navio for various machine learning operations across your entire artificial intelligence landscape. Machine learning can be integrated into your business workflow to make a tangible, measurable impact on your business. navio offers various Machine Learning Operations (MLOps), which can be used to support you from the initial model development phase to the production run of your model. Automatically create REST endspoints and keep track the clients or machines that interact with your model. To get the best results, you should focus on exploring and training your models. You can also stop wasting time and resources setting up infrastructure. Let navio manage all aspects of product ionization so you can go live quickly with your machine-learning models.
  • 25
    Wallaroo.AI Reviews
    Wallaroo is the last mile of your machine-learning journey. It helps you integrate ML into your production environment and improve your bottom line. Wallaroo was designed from the ground up to make it easy to deploy and manage ML production-wide, unlike Apache Spark or heavy-weight containers. ML that costs up to 80% less and can scale to more data, more complex models, and more models at a fraction of the cost. Wallaroo was designed to allow data scientists to quickly deploy their ML models against live data. This can be used for testing, staging, and prod environments. Wallaroo supports the most extensive range of machine learning training frameworks. The platform will take care of deployment and inference speed and scale, so you can focus on building and iterating your models.
  • 26
    IBM Watson OpenScale Reviews
    IBM Watson OpenScale provides visibility into the creation and use of AI-powered applications in an enterprise-scale environment. It also allows businesses to see how ROI is delivered. IBM Watson OpenScale provides visibility to companies about how AI is created, used, and how ROI is delivered at business level. You can create and deploy trusted AI using the IDE you prefer, and provide data insights to your business and support team about how AI affects business results. Capture payload data, deployment output, and alerts to monitor the health of business applications. You can also access an open data warehouse for custom reporting and access to operations dashboards. Based on business-determined fairness attributes, automatically detects when artificial Intelligence systems produce incorrect results at runtime. Smart recommendations of new data to improve model training can reduce bias.
  • 27
    IBM Watson Studio Reviews
    You can build, run, and manage AI models and optimize decisions across any cloud. IBM Watson Studio allows you to deploy AI anywhere with IBM Cloud Pak®, the IBM data and AI platform. Open, flexible, multicloud architecture allows you to unite teams, simplify the AI lifecycle management, and accelerate time-to-value. ModelOps pipelines automate the AI lifecycle. AutoAI accelerates data science development. AutoAI allows you to create and programmatically build models. One-click integration allows you to deploy and run models. Promoting AI governance through fair and explicable AI. Optimizing decisions can improve business results. Open source frameworks such as PyTorch and TensorFlow can be used, as well as scikit-learn. You can combine the development tools, including popular IDEs and Jupyter notebooks. JupterLab and CLIs. This includes languages like Python, R, and Scala. IBM Watson Studio automates the management of the AI lifecycle to help you build and scale AI with trust.
  • 28
    Striveworks Chariot Reviews
    Make AI an integral part of your business. With the flexibility and power of a cloud native platform, you can build better, deploy faster and audit easier. Import models and search cataloged model from across your organization. Save time by quickly annotating data with model-in the-loop hinting. Flyte's integration with Chariot allows you to quickly create and launch custom workflows. Understand the full origin of your data, models and workflows. Deploy models wherever you need them. This includes edge and IoT applications. Data scientists are not the only ones who can get valuable insights from their data. With Chariot's low code interface, teams can collaborate effectively.
  • 29
    vishwa.ai Reviews

    vishwa.ai

    vishwa.ai

    $39 per month
    Vishwa.ai, an AutoOps Platform for AI and ML Use Cases. It offers expert delivery, fine-tuning and monitoring of Large Language Models. Features: Expert Prompt Delivery : Tailored prompts tailored to various applications. Create LLM Apps without Coding: Create LLM workflows with our drag-and-drop UI. Advanced Fine-Tuning : Customization AI models. LLM Monitoring: Comprehensive monitoring of model performance. Integration and Security Cloud Integration: Supports Google Cloud (AWS, Azure), Azure, and Google Cloud. Secure LLM Integration - Safe connection with LLM providers Automated Observability for efficient LLM Management Managed Self Hosting: Dedicated hosting solutions. Access Control and Audits - Ensure secure and compliant operations.
  • 30
    Emly Labs Reviews
    Emly Labs, an AI framework, is designed to make AI accessible to users of all technical levels via a user-friendly interface. It offers AI project-management with tools that automate workflows for faster execution. The platform promotes team collaboration, innovation, and data preparation without code. It also integrates external data to create robust AI models. Emly AutoML automates model evaluation and data processing, reducing the need for human input. It prioritizes transparency with AI features that are easily explained and robust auditing to ensure compliance. Data isolation, role-based accessibility, and secure integrations are all security measures. Emly's cost effective infrastructure allows for on-demand resource provisioning, policy management and risk reduction.
  • 31
    KitOps Reviews
    KitOps, a packaging, versioning and sharing system, is designed for AI/ML project. It uses open standards, so it can be used with your existing AI/ML, DevOps, and development tools. It can also be stored in the enterprise container registry. It is the preferred solution of AI/ML platform engineers for packaging and versioning assets. KitOps creates an AI/ML ModelKit that includes everything you need to replicate it locally or deploy it in production. You can unpack a ModelKit selectively so that different team members can save storage space and time by only taking what they need to complete a task. ModelKits are easy to track, control and audit because they're immutable, signed and reside in your existing container registry.
  • 32
    VESSL AI Reviews

    VESSL AI

    VESSL AI

    $100 + compute/month
    Fully managed infrastructure, tools and workflows allow you to build, train and deploy models faster. Scale inference and deploy custom AI & LLMs in seconds on any infrastructure. Schedule batch jobs to handle your most demanding tasks, and only pay per second. Optimize costs by utilizing GPUs, spot instances, and automatic failover. YAML simplifies complex infrastructure setups by allowing you to train with a single command. Automate the scaling up of workers during periods of high traffic, and scaling down to zero when inactive. Deploy cutting edge models with persistent endpoints within a serverless environment to optimize resource usage. Monitor system and inference metrics, including worker counts, GPU utilization, throughput, and latency in real-time. Split traffic between multiple models to evaluate.
  • 33
    Baseten Reviews
    It is a frustratingly slow process that requires development resources and know-how. Most models will never see the light of day. In minutes, you can ship full-stack applications. You can deploy models immediately, automatically generate API endpoints and quickly create UI using drag-and-drop components. To put models into production, you don't have to be a DevOps Engineer. Baseten allows you to instantly manage, monitor, and serve models using just a few lines Python. You can build business logic around your model, and sync data sources without any infrastructure headaches. Start with sensible defaults and scale infinitely with fine-grained controls as needed. You can read and write to your existing data sources or our built-in Postgres databases. Use headings, callouts and dividers to create engaging interfaces for business users.
  • 34
    Alegion Reviews
    A powerful labeling platform for all stages and types of ML development. We leverage a suite of industry-leading computer vision algorithms to automatically detect and classify the content of your images and videos. Creating detailed segmentation information is a time-consuming process. Machine assistance speeds up task completion by as much as 70%, saving you both time and money. We leverage ML to propose labels that accelerate human labeling. This includes computer vision models to automatically detect, localize, and classify entities in your images and videos before handing off the task to our workforce. Automatic labelling reduces workforce costs and allows annotators to spend their time on the more complicated steps of the annotation process. Our video annotation tool is built to handle 4K resolution and long-running videos natively and provides innovative features like interpolation, object proposal, and entity resolution.
  • 35
    Anaconda Reviews
    Top Pick
    A fully-featured machine learning platform empowers enterprises to conduct real data science at scale and speed. You can spend less time managing infrastructure and tools so that you can concentrate on building machine learning applications to propel your business forward. Anaconda Enterprise removes the hassle from ML operations and puts open-source innovation at the fingertips. It provides the foundation for serious machine learning and data science production without locking you into any specific models, templates, workflows, or models. AE allows data scientists and software developers to work together to create, test, debug and deploy models using their preferred languages. AE gives developers and data scientists access to both notebooks as well as IDEs, allowing them to work more efficiently together. They can also choose between preconfigured projects and example projects. AE projects can be easily moved from one environment to the next by being automatically packaged.
  • 36
    Azure Machine Learning Reviews
    Accelerate the entire machine learning lifecycle. Developers and data scientists can have more productive experiences building, training, and deploying machine-learning models faster by empowering them. Accelerate time-to-market and foster collaboration with industry-leading MLOps -DevOps machine learning. Innovate on a trusted platform that is secure and trustworthy, which is designed for responsible ML. Productivity for all levels, code-first and drag and drop designer, and automated machine-learning. Robust MLOps capabilities integrate with existing DevOps processes to help manage the entire ML lifecycle. Responsible ML capabilities – understand models with interpretability, fairness, and protect data with differential privacy, confidential computing, as well as control the ML cycle with datasheets and audit trials. Open-source languages and frameworks supported by the best in class, including MLflow and Kubeflow, ONNX and PyTorch. TensorFlow and Python are also supported.
  • 37
    Mystic Reviews
    You can deploy Mystic in your own Azure/AWS/GCP accounts or in our shared GPU cluster. All Mystic features can be accessed directly from your cloud. In just a few steps, you can get the most cost-effective way to run ML inference. Our shared cluster of graphics cards is used by hundreds of users at once. Low cost, but performance may vary depending on GPU availability in real time. We solve the infrastructure problem. A Kubernetes platform fully managed that runs on your own cloud. Open-source Python API and library to simplify your AI workflow. You get a platform that is high-performance to serve your AI models. Mystic will automatically scale GPUs up or down based on the number API calls that your models receive. You can easily view and edit your infrastructure using the Mystic dashboard, APIs, and CLI.
  • 38
    Google Cloud TPU Reviews
    Machine learning has led to business and research breakthroughs in everything from network security to medical diagnosis. To make similar breakthroughs possible, we created the Tensor Processing unit (TPU). Cloud TPU is a custom-designed machine learning ASIC which powers Google products such as Translate, Photos and Search, Assistant, Assistant, and Gmail. Here are some ways you can use the TPU and machine-learning to accelerate your company's success, especially when it comes to scale. Cloud TPU is designed for cutting-edge machine learning models and AI services on Google Cloud. Its custom high-speed network provides over 100 petaflops performance in a single pod. This is enough computational power to transform any business or create the next breakthrough in research. It is similar to compiling code to train machine learning models. You need to update frequently and you want to do it as efficiently as possible. As apps are built, deployed, and improved, ML models must be trained repeatedly.
  • 39
    Simplismart Reviews
    Simplismart’s fastest inference engine allows you to fine-tune and deploy AI model with ease. Integrate with AWS/Azure/GCP, and many other cloud providers, for simple, scalable and cost-effective deployment. Import open-source models from popular online repositories, or deploy your custom model. Simplismart can host your model or you can use your own cloud resources. Simplismart allows you to go beyond AI model deployment. You can train, deploy and observe any ML models and achieve increased inference speed at lower costs. Import any dataset to fine-tune custom or open-source models quickly. Run multiple training experiments efficiently in parallel to speed up your workflow. Deploy any model to our endpoints, or your own VPC/premises and enjoy greater performance at lower cost. Now, streamlined and intuitive deployments are a reality. Monitor GPU utilization, and all of your node clusters on one dashboard. On the move, detect any resource constraints or model inefficiencies.
  • 40
    FinetuneFast Reviews
    FinetuneFast allows you to fine-tune AI models, deploy them quickly and start making money online. Here are some of the features that make FinetuneFast unique: - Fine tune your ML models within days, not weeks - The ultimate ML boilerplate, including text-to-images, LLMs and more - Build your AI app to start earning online quickly - Pre-configured scripts for efficient training of models - Efficient data load pipelines for streamlined processing Hyperparameter optimization tools to improve model performance - Multi-GPU Support out of the Box for enhanced processing power - No-Code AI Model fine-tuning for simple customization - Model deployment with one-click for quick and hassle free deployment - Auto-scaling Infrastructure for seamless scaling of your models as they grow - API endpoint creation for easy integration with other system - Monitoring and logging for real-time performance monitoring
  • 41
    Deeploy Reviews
    Deeploy allows you to maintain control over your ML models. You can easily deploy your models to our responsible AI platform without compromising transparency, control and compliance. Transparency, explainability and security of AI models are more important today than ever. You can monitor the performance of your models with confidence and accountability if you use a safe, secure environment. Over the years, our experience has shown us the importance of human interaction with machine learning. Only when machine-learning systems are transparent and accountable can experts and consumers provide feedback, overrule their decisions when necessary, and grow their trust. We created Deeploy for this reason.
  • 42
    Oracle Machine Learning Reviews
    Machine learning uncovers hidden patterns in enterprise data and generates new value for businesses. Oracle Machine Learning makes it easier to create and deploy machine learning models for data scientists by using AutoML technology and reducing data movement. It also simplifies deployment. Apache Zeppelin notebook technology, which is open-source-based, can increase developer productivity and decrease their learning curve. Notebooks are compatible with SQL, PL/SQL and Python. Users can also use markdown interpreters for Oracle Autonomous Database to create models in their preferred language. No-code user interface that supports AutoML on Autonomous Database. This will increase data scientist productivity as well as non-expert users' access to powerful in-database algorithms to classify and regression. Data scientists can deploy integrated models using the Oracle Machine Learning AutoML User Interface.
  • 43
    Aporia Reviews
    Our easy-to-use monitor builder allows you to create customized monitors for your machinelearning models. Get alerts for issues such as concept drift, model performance degradation and bias. Aporia can seamlessly integrate with any ML infrastructure. It doesn't matter if it's a FastAPI server built on top of Kubernetes or an open-source deployment tool such as MLFlow, or a machine-learning platform like AWS Sagemaker. Zoom in on specific data segments to track the model's behavior. Unexpected biases, underperformance, drifting characteristics, and data integrity issues can be identified. You need the right tools to quickly identify the root cause of problems in your ML models. Our investigation toolbox allows you to go deeper than model monitoring and take a deep look at model performance, data segments or distribution.
  • 44
    Ametnes Cloud Reviews
    Ametnes: A Streamlined Data App Deployment Management Ametnes is the future of data applications deployment. Our cutting-edge solution will revolutionize the way you manage data applications in your private environments. Manual deployment is a complex process that can be a security concern. Ametnes tackles these challenges by automating the whole process. This ensures a seamless, secure experience for valued customers. Our intuitive platform makes it easy to deploy and manage data applications. Ametnes unlocks the full potential of any private environment. Enjoy efficiency, security and simplicity in a way you've never experienced before. Elevate your data management game - choose Ametnes today!
  • 45
    TrueFoundry Reviews

    TrueFoundry

    TrueFoundry

    $5 per month
    TrueFoundry provides data scientists and ML engineers with the fastest framework to support the post-model pipeline. With the best DevOps practices, we enable instant monitored endpoints to models in just 15 minutes! You can save, version, and monitor ML models and artifacts. With one command, you can create an endpoint for your ML Model. WebApps can be created without any frontend knowledge or exposure to other users as per your choice. Social swag! Our mission is to make machine learning fast and scalable, which will bring positive value! TrueFoundry is enabling this transformation by automating parts of the ML pipeline that are automated and empowering ML Developers with the ability to test and launch models quickly and with as much autonomy possible. Our inspiration comes from the products that Platform teams have created in top tech companies such as Facebook, Google, Netflix, and others. These products allow all teams to move faster and deploy and iterate independently.
  • 46
    Qwak Reviews
    Qwak build system allows data scientists to create an immutable, tested production-grade artifact by adding "traditional" build processes. Qwak build system standardizes a ML project structure that automatically versions code, data, and parameters for each model build. Different configurations can be used to build different builds. It is possible to compare builds and query build data. You can create a model version using remote elastic resources. Each build can be run with different parameters, different data sources, and different resources. Builds create deployable artifacts. Artifacts built can be reused and deployed at any time. Sometimes, however, it is not enough to deploy the artifact. Qwak allows data scientists and engineers to see how a build was made and then reproduce it when necessary. Models can contain multiple variables. The data models were trained using the hyper parameter and different source code.
  • 47
    ScoopML Reviews
    It's easy to build advanced predictive models with no math or coding in just a few clicks. The Complete Experience We provide everything you need, from cleaning data to building models to forecasting, and everything in between. Trustworthy. Learn the "why" behind AI decisions to drive business with actionable insight. Data Analytics in minutes without having to write code. In one click, you can complete the entire process of building ML algorithms, explaining results and predicting future outcomes. Machine Learning in 3 Steps You can go from raw data to actionable insights without writing a single line code. Upload your data. Ask questions in plain English Find the best model for your data. Share your results. Increase customer productivity We assist companies to use no code Machine Learning to improve their Customer Experience.
  • 48
    IBM Watson Machine Learning Accelerator Reviews
    Your deep learning workload can be accelerated. AI model training and inference can speed up your time to value. Deep learning is becoming more popular as enterprises adopt it to gain and scale insight through speech recognition and natural language processing. Deep learning can read text, images and video at scale and generate patterns for recommendation engines. It can also model financial risk and detect anomalies. Due to the sheer number of layers and volumes of data required to train neural networks, it has been necessary to use high computational power. Businesses are finding it difficult to demonstrate results from deep learning experiments that were implemented in silos.
  • 49
    TruEra Reviews
    This machine learning monitoring tool allows you to easily monitor and troubleshoot large model volumes. Data scientists can avoid false alarms and dead ends by using an unrivaled explainability accuracy and unique analyses that aren't available anywhere else. This allows them to quickly and effectively address critical problems. So that your business runs at its best, machine learning models are optimized. TruEra's explainability engine is the result of years of dedicated research and development. It is significantly more accurate that current tools. TruEra's enterprise-class AI explainability tech is unrivalled. The core diagnostic engine is built on six years of research by Carnegie Mellon University. It outperforms all competitors. The platform performs sophisticated sensitivity analyses quickly, allowing data scientists, business users, risk and compliance teams to understand how and why a model makes predictions.
  • 50
    Amazon SageMaker Pipelines Reviews
    Amazon SageMaker Pipelines allows you to create ML workflows using a simple Python SDK. Then visualize and manage your workflow with Amazon SageMaker Studio. SageMaker Pipelines allows you to be more efficient and scale faster. You can store and reuse the workflow steps that you create. Built-in templates make it easy to quickly get started in CI/CD in your machine learning environment. Many customers have hundreds upon hundreds of workflows that each use a different version. SageMaker Pipelines model registry allows you to track all versions of the model in one central repository. This makes it easy to choose the right model to deploy based on your business needs. SageMaker Studio can be used to browse and discover models. Or, you can access them via the SageMaker Python SDK.