Best Modular Alternatives in 2025
Find the top alternatives to Modular currently available. Compare ratings, reviews, pricing, and features of Modular alternatives in 2025. Slashdot lists the best Modular alternatives on the market that offer competing products that are similar to Modular. Sort through Modular alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
713 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
2
LM-Kit
16 RatingsLM-Kit.NET is an enterprise-grade toolkit designed for seamlessly integrating generative AI into your .NET applications, fully supporting Windows, Linux, and macOS. Empower your C# and VB.NET projects with a flexible platform that simplifies the creation and orchestration of dynamic AI agents. Leverage efficient Small Language Models for on‑device inference, reducing computational load, minimizing latency, and enhancing security by processing data locally. Experience the power of Retrieval‑Augmented Generation (RAG) to boost accuracy and relevance, while advanced AI agents simplify complex workflows and accelerate development. Native SDKs ensure smooth integration and high performance across diverse platforms. With robust support for custom AI agent development and multi‑agent orchestration, LM‑Kit.NET streamlines prototyping, deployment, and scalability—enabling you to build smarter, faster, and more secure solutions trusted by professionals worldwide. -
3
RunPod
RunPod
133 RatingsRunPod provides a cloud infrastructure that enables seamless deployment and scaling of AI workloads with GPU-powered pods. By offering access to a wide array of NVIDIA GPUs, such as the A100 and H100, RunPod supports training and deploying machine learning models with minimal latency and high performance. The platform emphasizes ease of use, allowing users to spin up pods in seconds and scale them dynamically to meet demand. With features like autoscaling, real-time analytics, and serverless scaling, RunPod is an ideal solution for startups, academic institutions, and enterprises seeking a flexible, powerful, and affordable platform for AI development and inference. -
4
Mistral AI
Mistral AI
Free 1 RatingMistral AI stands out as an innovative startup in the realm of artificial intelligence, focusing on open-source generative solutions. The company provides a diverse array of customizable, enterprise-level AI offerings that can be implemented on various platforms, such as on-premises, cloud, edge, and devices. Among its key products are "Le Chat," a multilingual AI assistant aimed at boosting productivity in both personal and professional settings, and "La Plateforme," a platform for developers that facilitates the creation and deployment of AI-driven applications. With a strong commitment to transparency and cutting-edge innovation, Mistral AI has established itself as a prominent independent AI laboratory, actively contributing to the advancement of open-source AI and influencing policy discussions. Their dedication to fostering an open AI ecosystem underscores their role as a thought leader in the industry. -
5
Pinecone
Pinecone
The AI Knowledge Platform. The Pinecone Database, Inference, and Assistant make building high-performance vector search apps easy. Fully managed and developer-friendly, the database is easily scalable without any infrastructure problems. Once you have vector embeddings created, you can search and manage them in Pinecone to power semantic searches, recommenders, or other applications that rely upon relevant information retrieval. Even with billions of items, ultra-low query latency Provide a great user experience. You can add, edit, and delete data via live index updates. Your data is available immediately. For more relevant and quicker results, combine vector search with metadata filters. Our API makes it easy to launch, use, scale, and scale your vector searching service without worrying about infrastructure. It will run smoothly and securely. -
6
Xilinx
Xilinx
Xilinx's AI development platform for inference on its hardware includes a suite of optimized intellectual property (IP), tools, libraries, models, and example designs, all crafted to maximize efficiency and user-friendliness. This platform unlocks the capabilities of AI acceleration on Xilinx’s FPGAs and ACAPs, accommodating popular frameworks and the latest deep learning models for a wide array of tasks. It features an extensive collection of pre-optimized models that can be readily deployed on Xilinx devices, allowing users to quickly identify the most suitable model and initiate re-training for specific applications. Additionally, it offers a robust open-source quantizer that facilitates the quantization, calibration, and fine-tuning of both pruned and unpruned models. Users can also take advantage of the AI profiler, which performs a detailed layer-by-layer analysis to identify and resolve performance bottlenecks. Furthermore, the AI library provides open-source APIs in high-level C++ and Python, ensuring maximum portability across various environments, from edge devices to the cloud. Lastly, the efficient and scalable IP cores can be tailored to accommodate a diverse range of application requirements, making this platform a versatile solution for developers. -
7
OpenVINO
Intel
FreeThe Intel® Distribution of OpenVINO™ toolkit serves as an open-source AI development resource that speeds up inference on various Intel hardware platforms. This toolkit is crafted to enhance AI workflows, enabling developers to implement refined deep learning models tailored for applications in computer vision, generative AI, and large language models (LLMs). Equipped with integrated model optimization tools, it guarantees elevated throughput and minimal latency while decreasing the model size without sacrificing accuracy. OpenVINO™ is an ideal choice for developers aiming to implement AI solutions in diverse settings, spanning from edge devices to cloud infrastructures, thereby assuring both scalability and peak performance across Intel architectures. Ultimately, its versatile design supports a wide range of AI applications, making it a valuable asset in modern AI development. -
8
Businesses now have numerous options to efficiently train their deep learning and machine learning models without breaking the bank. AI accelerators cater to various scenarios, providing solutions that range from economical inference to robust training capabilities. Getting started is straightforward, thanks to an array of services designed for both development and deployment purposes. Custom-built ASICs known as Tensor Processing Units (TPUs) are specifically designed to train and run deep neural networks with enhanced efficiency. With these tools, organizations can develop and implement more powerful and precise models at a lower cost, achieving faster speeds and greater scalability. A diverse selection of NVIDIA GPUs is available to facilitate cost-effective inference or to enhance training capabilities, whether by scaling up or by expanding out. Furthermore, by utilizing RAPIDS and Spark alongside GPUs, users can execute deep learning tasks with remarkable efficiency. Google Cloud allows users to run GPU workloads while benefiting from top-tier storage, networking, and data analytics technologies that improve overall performance. Additionally, when initiating a VM instance on Compute Engine, users can leverage CPU platforms, which offer a variety of Intel and AMD processors to suit different computational needs. This comprehensive approach empowers businesses to harness the full potential of AI while managing costs effectively.
-
9
Stochastic
Stochastic
An AI system designed for businesses that facilitates local training on proprietary data and enables deployment on your chosen cloud infrastructure, capable of scaling to accommodate millions of users without requiring an engineering team. You can create, customize, and launch your own AI-driven chat interface, such as a finance chatbot named xFinance, which is based on a 13-billion parameter model fine-tuned on an open-source architecture using LoRA techniques. Our objective was to demonstrate that significant advancements in financial NLP tasks can be achieved affordably. Additionally, you can have a personal AI assistant that interacts with your documents, handling both straightforward and intricate queries across single or multiple documents. This platform offers a seamless deep learning experience for enterprises, featuring hardware-efficient algorithms that enhance inference speed while reducing costs. It also includes real-time monitoring and logging of resource use and cloud expenses associated with your deployed models. Furthermore, xTuring serves as open-source personalization software for AI, simplifying the process of building and managing large language models (LLMs) by offering an intuitive interface to tailor these models to your specific data and application needs, ultimately fostering greater efficiency and customization. With these innovative tools, companies can harness the power of AI to streamline their operations and enhance user engagement. -
10
Simplismart
Simplismart
Enhance and launch AI models using Simplismart's ultra-fast inference engine. Seamlessly connect with major cloud platforms like AWS, Azure, GCP, and others for straightforward, scalable, and budget-friendly deployment options. Easily import open-source models from widely-used online repositories or utilize your personalized custom model. You can opt to utilize your own cloud resources or allow Simplismart to manage your model hosting. With Simplismart, you can go beyond just deploying AI models; you have the capability to train, deploy, and monitor any machine learning model, achieving improved inference speeds while minimizing costs. Import any dataset for quick fine-tuning of both open-source and custom models. Efficiently conduct multiple training experiments in parallel to enhance your workflow, and deploy any model on our endpoints or within your own VPC or on-premises to experience superior performance at reduced costs. The process of streamlined and user-friendly deployment is now achievable. You can also track GPU usage and monitor all your node clusters from a single dashboard, enabling you to identify any resource limitations or model inefficiencies promptly. This comprehensive approach to AI model management ensures that you can maximize your operational efficiency and effectiveness. -
11
Intel Open Edge Platform
Intel
The Intel Open Edge Platform streamlines the process of developing, deploying, and scaling AI and edge computing solutions using conventional hardware while achieving cloud-like efficiency. It offers a carefully selected array of components and workflows designed to expedite the creation, optimization, and development of AI models. Covering a range of applications from vision models to generative AI and large language models, the platform equips developers with the necessary tools to facilitate seamless model training and inference. By incorporating Intel’s OpenVINO toolkit, it guarantees improved performance across Intel CPUs, GPUs, and VPUs, enabling organizations to effortlessly implement AI applications at the edge. This comprehensive approach not only enhances productivity but also fosters innovation in the rapidly evolving landscape of edge computing. -
12
Fireworks AI
Fireworks AI
$0.20 per 1M tokensFireworks collaborates with top generative AI researchers to provide the most efficient models at unparalleled speeds. It has been independently assessed and recognized as the fastest among all inference providers. You can leverage powerful models specifically selected by Fireworks, as well as our specialized multi-modal and function-calling models developed in-house. As the second most utilized open-source model provider, Fireworks impressively generates over a million images each day. Our API, which is compatible with OpenAI, simplifies the process of starting your projects with Fireworks. We ensure dedicated deployments for your models, guaranteeing both uptime and swift performance. Fireworks takes pride in its compliance with HIPAA and SOC2 standards while also providing secure VPC and VPN connectivity. You can meet your requirements for data privacy, as you retain ownership of your data and models. With Fireworks, serverless models are seamlessly hosted, eliminating the need for hardware configuration or model deployment. In addition to its rapid performance, Fireworks.ai is committed to enhancing your experience in serving generative AI models effectively. Ultimately, Fireworks stands out as a reliable partner for innovative AI solutions. -
13
Steamship
Steamship
Accelerate your AI deployment with fully managed, cloud-based AI solutions that come with comprehensive support for GPT-4, eliminating the need for API tokens. Utilize our low-code framework to streamline your development process, as built-in integrations with all major AI models simplify your workflow. Instantly deploy an API and enjoy the ability to scale and share your applications without the burden of infrastructure management. Transform a smart prompt into a sharable published API while incorporating logic and routing capabilities using Python. Steamship seamlessly connects with your preferred models and services, allowing you to avoid the hassle of learning different APIs for each provider. The platform standardizes model output for consistency and makes it easy to consolidate tasks such as training, inference, vector search, and endpoint hosting. You can import, transcribe, or generate text while taking advantage of multiple models simultaneously, querying the results effortlessly with ShipQL. Each full-stack, cloud-hosted AI application you create not only provides an API but also includes a dedicated space for your private data, enhancing your project's efficiency and security. With an intuitive interface and powerful features, you can focus on innovation rather than technical complexities. -
14
Qubrid AI
Qubrid AI
$0.68/hour/ GPU Qubrid AI stands out as a pioneering company in the realm of Artificial Intelligence (AI), dedicated to tackling intricate challenges across various sectors. Their comprehensive software suite features AI Hub, a centralized destination for AI models, along with AI Compute GPU Cloud and On-Prem Appliances, and the AI Data Connector. Users can develop both their own custom models and utilize industry-leading inference models, all facilitated through an intuitive and efficient interface. The platform allows for easy testing and refinement of models, followed by a smooth deployment process that enables users to harness the full potential of AI in their initiatives. With AI Hub, users can commence their AI journey, transitioning seamlessly from idea to execution on a robust platform. The cutting-edge AI Compute system maximizes efficiency by leveraging the capabilities of GPU Cloud and On-Prem Server Appliances, making it easier to innovate and execute next-generation AI solutions. The dedicated Qubrid team consists of AI developers, researchers, and partnered experts, all committed to continually enhancing this distinctive platform to propel advancements in scientific research and applications. Together, they aim to redefine the future of AI technology across multiple domains. -
15
Substrate
Substrate
$30 per monthSubstrate serves as the foundation for agentic AI, featuring sophisticated abstractions and high-performance elements, including optimized models, a vector database, a code interpreter, and a model router. It stands out as the sole compute engine crafted specifically to handle complex multi-step AI tasks. By merely describing your task and linking components, Substrate can execute it at remarkable speed. Your workload is assessed as a directed acyclic graph, which is then optimized; for instance, it consolidates nodes that are suitable for batch processing. The Substrate inference engine efficiently organizes your workflow graph, employing enhanced parallelism to simplify the process of integrating various inference APIs. Forget about asynchronous programming—just connect the nodes and allow Substrate to handle the parallelization of your workload seamlessly. Our robust infrastructure ensures that your entire workload operates within the same cluster, often utilizing a single machine, thereby eliminating delays caused by unnecessary data transfers and cross-region HTTP requests. This streamlined approach not only enhances efficiency but also significantly accelerates task execution times. -
16
Striveworks Chariot
Striveworks
Integrate AI seamlessly into your business to enhance trust and efficiency. Accelerate development and streamline deployment with the advantages of a cloud-native platform that allows for versatile deployment options. Effortlessly import models and access a well-organized model catalog from various departments within your organization. Save valuable time by quickly annotating data through model-in-the-loop hinting. Gain comprehensive insights into the origins and history of your data, models, workflows, and inferences, ensuring transparency at every step. Deploy models precisely where needed, including in edge and IoT scenarios, bridging gaps between technology and real-world applications. Valuable insights can be harnessed by all team members, not just data scientists, thanks to Chariot’s intuitive low-code interface that fosters collaboration across different teams. Rapidly train models using your organization’s production data and benefit from the convenience of one-click deployment, all while maintaining the ability to monitor model performance at scale to ensure ongoing efficacy. This comprehensive approach not only improves operational efficiency but also empowers teams to make informed decisions based on data-driven insights. -
17
SuperDuperDB
SuperDuperDB
Effortlessly create and oversee AI applications without transferring your data through intricate pipelines or specialized vector databases. You can seamlessly connect AI and vector search directly with your existing database, allowing for real-time inference and model training. With a single, scalable deployment of all your AI models and APIs, you will benefit from automatic updates as new data flows in without the hassle of managing an additional database or duplicating your data for vector search. SuperDuperDB facilitates vector search within your current database infrastructure. You can easily integrate and merge models from Sklearn, PyTorch, and HuggingFace alongside AI APIs like OpenAI, enabling the development of sophisticated AI applications and workflows. Moreover, all your AI models can be deployed to compute outputs (inference) directly in your datastore using straightforward Python commands, streamlining the entire process. This approach not only enhances efficiency but also reduces the complexity usually involved in managing multiple data sources. -
18
Together AI
Together AI
$0.0001 per 1k tokensBe it prompt engineering, fine-tuning, or extensive training, we are fully equipped to fulfill your business needs. Seamlessly incorporate your newly developed model into your application with the Together Inference API, which offers unparalleled speed and flexible scaling capabilities. Together AI is designed to adapt to your evolving requirements as your business expands. You can explore the training processes of various models and the datasets used to enhance their accuracy while reducing potential risks. It's important to note that the ownership of the fine-tuned model lies with you, not your cloud service provider, allowing for easy transitions if you decide to switch providers for any reason, such as cost adjustments. Furthermore, you can ensure complete data privacy by opting to store your data either locally or within our secure cloud environment. The flexibility and control we offer empower you to make decisions that best suit your business. -
19
NVIDIA AI Foundations
NVIDIA
Generative AI is transforming nearly every sector by opening up vast new avenues for knowledge and creative professionals to tackle some of the most pressing issues of our time. NVIDIA is at the forefront of this transformation, providing a robust array of cloud services, pre-trained foundation models, and leading-edge frameworks, along with optimized inference engines and APIs, to integrate intelligence into enterprise applications seamlessly. The NVIDIA AI Foundations suite offers cloud services that enhance generative AI capabilities at the enterprise level, allowing for tailored solutions in diverse fields such as text processing (NVIDIA NeMo™), visual content creation (NVIDIA Picasso), and biological research (NVIDIA BioNeMo™). By leveraging the power of NeMo, Picasso, and BioNeMo through NVIDIA DGX™ Cloud, organizations can fully realize the potential of generative AI. This technology is not just limited to creative endeavors; it also finds applications in generating marketing content, crafting narratives, translating languages globally, and synthesizing information from various sources, such as news articles and meeting notes. By harnessing these advanced tools, businesses can foster innovation and stay ahead in an ever-evolving digital landscape. -
20
Nscale
Nscale
Nscale is a specialized hyperscaler designed specifically for artificial intelligence, delivering high-performance computing that is fine-tuned for training, fine-tuning, and demanding workloads. Our vertically integrated approach in Europe spans from data centers to software solutions, ensuring unmatched performance, efficiency, and sustainability in all our offerings. Users can tap into thousands of customizable GPUs through our advanced AI cloud platform, enabling significant cost reductions and revenue growth while optimizing AI workload management. The platform is crafted to facilitate a smooth transition from development to production, whether employing Nscale's internal AI/ML tools or integrating your own. Users can also explore the Nscale Marketplace, which provides access to a wide array of AI/ML tools and resources that support effective and scalable model creation and deployment. Additionally, our serverless architecture allows for effortless and scalable AI inference, eliminating the hassle of infrastructure management. This system dynamically adjusts to demand, guaranteeing low latency and economical inference for leading generative AI models, ultimately enhancing user experience and operational efficiency. With Nscale, organizations can focus on innovation while we handle the complexities of AI infrastructure. -
21
Neysa Nebula
Neysa
$0.12 per hourNebula provides a streamlined solution for deploying and scaling AI projects quickly, efficiently, and at a lower cost on highly reliable, on-demand GPU infrastructure. With Nebula’s cloud, powered by cutting-edge Nvidia GPUs, you can securely train and infer your models while managing your containerized workloads through an intuitive orchestration layer. The platform offers MLOps and low-code/no-code tools that empower business teams to create and implement AI use cases effortlessly, enabling the fast deployment of AI-driven applications with minimal coding required. You have the flexibility to choose between the Nebula containerized AI cloud, your own on-premises setup, or any preferred cloud environment. With Nebula Unify, organizations can develop and scale AI-enhanced business applications in just weeks, rather than the traditional months, making AI adoption more accessible than ever. This makes Nebula an ideal choice for businesses looking to innovate and stay ahead in a competitive marketplace. -
22
VESSL AI
VESSL AI
$100 + compute/month Accelerate the building, training, and deployment of models at scale through a fully managed infrastructure that provides essential tools and streamlined workflows. Launch personalized AI and LLMs on any infrastructure in mere seconds, effortlessly scaling inference as required. Tackle your most intensive tasks with batch job scheduling, ensuring you only pay for what you use on a per-second basis. Reduce costs effectively by utilizing GPU resources, spot instances, and a built-in automatic failover mechanism. Simplify complex infrastructure configurations by deploying with just a single command using YAML. Adjust to demand by automatically increasing worker capacity during peak traffic periods and reducing it to zero when not in use. Release advanced models via persistent endpoints within a serverless architecture, maximizing resource efficiency. Keep a close eye on system performance and inference metrics in real-time, tracking aspects like worker numbers, GPU usage, latency, and throughput. Additionally, carry out A/B testing with ease by distributing traffic across various models for thorough evaluation, ensuring your deployments are continually optimized for performance. -
23
NeuReality
NeuReality
NeuReality enhances the potential of artificial intelligence by providing an innovative solution that simplifies complexity, reduces costs, and minimizes power usage. Although several companies are working on Deep Learning Accelerators (DLAs) for implementation, NeuReality stands out by integrating a software platform specifically designed to optimize the management of distinct hardware infrastructures. It uniquely connects the AI inference infrastructure with the MLOps ecosystem, creating a seamless interaction. The organization has introduced a novel architectural design that harnesses the capabilities of DLAs effectively. This new architecture facilitates inference via hardware utilizing AI-over-fabric, an AI hypervisor, and AI-pipeline offload, paving the way for more efficient AI processing. By doing so, NeuReality not only addresses current challenges in AI deployment but also sets a new standard for future advancements in the field. -
24
Prem AI
Prem Labs
Introducing a user-friendly desktop application that simplifies the deployment and self-hosting of open-source AI models while safeguarding your sensitive information from external parties. Effortlessly integrate machine learning models using the straightforward interface provided by OpenAI's API. Navigate the intricacies of inference optimizations with ease, as Prem is here to assist you. You can develop, test, and launch your models in a matter of minutes, maximizing efficiency. Explore our extensive resources to enhance your experience with Prem. Additionally, you can make transactions using Bitcoin and other cryptocurrencies. This infrastructure operates without restrictions, empowering you to take control. With complete ownership of your keys and models, we guarantee secure end-to-end encryption for your peace of mind, allowing you to focus on innovation. -
25
Langbase
Langbase
FreeLangbase offers a comprehensive platform for large language models, emphasizing an exceptional experience for developers alongside a sturdy infrastructure. It enables the creation, deployment, and management of highly personalized, efficient, and reliable generative AI applications. As an open-source alternative to OpenAI, Langbase introduces a novel inference engine and various AI tools tailored for any LLM. Recognized as the most "developer-friendly" platform, it allows for the rapid delivery of customized AI applications in just moments. With its robust features, Langbase is set to transform how developers approach AI application development. -
26
EdgeCortix
EdgeCortix
Pushing the boundaries of AI processors and accelerating edge AI inference is essential in today’s technological landscape. In scenarios where rapid AI inference is crucial, demands for increased TOPS, reduced latency, enhanced area and power efficiency, and scalability are paramount, and EdgeCortix AI processor cores deliver precisely that. While general-purpose processing units like CPUs and GPUs offer a degree of flexibility for various applications, they often fall short when faced with the specific demands of deep neural network workloads. EdgeCortix was founded with a vision: to completely transform edge AI processing from its foundations. By offering a comprehensive AI inference software development environment, adaptable edge AI inference IP, and specialized edge AI chips for hardware integration, EdgeCortix empowers designers to achieve cloud-level AI performance directly at the edge. Consider the profound implications this advancement has for a myriad of applications, including threat detection, enhanced situational awareness, and the creation of more intelligent vehicles, ultimately leading to smarter and safer environments. -
27
kluster.ai
kluster.ai
$0.15per inputKluster.ai is an AI cloud platform tailored for developers, enabling quick deployment, scaling, and fine-tuning of large language models (LLMs) with remarkable efficiency. Crafted by developers with a focus on developer needs, it features Adaptive Inference, a versatile service that dynamically adjusts to varying workload demands, guaranteeing optimal processing performance and reliable turnaround times. This Adaptive Inference service includes three unique processing modes: real-time inference for tasks requiring minimal latency, asynchronous inference for budget-friendly management of tasks with flexible timing, and batch inference for the streamlined processing of large volumes of data. It accommodates an array of innovative multimodal models for various applications such as chat, vision, and coding, featuring models like Meta's Llama 4 Maverick and Scout, Qwen3-235B-A22B, DeepSeek-R1, and Gemma 3. Additionally, Kluster.ai provides an OpenAI-compatible API, simplifying the integration of these advanced models into developers' applications, and thereby enhancing their overall capabilities. This platform ultimately empowers developers to harness the full potential of AI technologies in their projects. -
28
Baseten
Baseten
FreeBaseten is a cloud-native platform focused on delivering robust and scalable AI inference solutions for businesses requiring high reliability. It enables deployment of custom, open-source, and fine-tuned AI models with optimized performance across any cloud or on-premises infrastructure. The platform boasts ultra-low latency, high throughput, and automatic autoscaling capabilities tailored to generative AI tasks like transcription, text-to-speech, and image generation. Baseten’s inference stack includes advanced caching, custom kernels, and decoding techniques to maximize efficiency. Developers benefit from a smooth experience with integrated tooling and seamless workflows, supported by hands-on engineering assistance from the Baseten team. The platform supports hybrid deployments, enabling overflow between private and Baseten clouds for maximum performance. Baseten also emphasizes security, compliance, and operational excellence with 99.99% uptime guarantees. This makes it ideal for enterprises aiming to deploy mission-critical AI products at scale. -
29
WebLLM
WebLLM
FreeWebLLM serves as a robust inference engine for language models that operates directly in web browsers, utilizing WebGPU technology to provide hardware acceleration for efficient LLM tasks without needing server support. This platform is fully compatible with the OpenAI API, which allows for smooth incorporation of features such as JSON mode, function-calling capabilities, and streaming functionalities. With native support for a variety of models, including Llama, Phi, Gemma, RedPajama, Mistral, and Qwen, WebLLM proves to be adaptable for a wide range of artificial intelligence applications. Users can easily upload and implement custom models in MLC format, tailoring WebLLM to fit particular requirements and use cases. The integration process is made simple through package managers like NPM and Yarn or via CDN, and it is enhanced by a wealth of examples and a modular architecture that allows for seamless connections with user interface elements. Additionally, the platform's ability to support streaming chat completions facilitates immediate output generation, making it ideal for dynamic applications such as chatbots and virtual assistants, further enriching user interaction. This versatility opens up new possibilities for developers looking to enhance their web applications with advanced AI capabilities. -
30
CentML
CentML
CentML enhances the performance of Machine Learning tasks by fine-tuning models for better use of hardware accelerators such as GPUs and TPUs, all while maintaining model accuracy. Our innovative solutions significantly improve both the speed of training and inference, reduce computation expenses, elevate the profit margins of your AI-driven products, and enhance the efficiency of your engineering team. The quality of software directly reflects the expertise of its creators. Our team comprises top-tier researchers and engineers specializing in machine learning and systems. Concentrate on developing your AI solutions while our technology ensures optimal efficiency and cost-effectiveness for your operations. By leveraging our expertise, you can unlock the full potential of your AI initiatives without compromising on performance. -
31
ONNX
ONNX
ONNX provides a standardized collection of operators that serve as the foundational elements for machine learning and deep learning models, along with a unified file format that allows AI developers to implement models across a range of frameworks, tools, runtimes, and compilers. You can create in your desired framework without being concerned about the implications for inference later on. With ONNX, you have the flexibility to integrate your chosen inference engine seamlessly with your preferred framework. Additionally, ONNX simplifies the process of leveraging hardware optimizations to enhance performance. By utilizing ONNX-compatible runtimes and libraries, you can achieve maximum efficiency across various hardware platforms. Moreover, our vibrant community flourishes within an open governance model that promotes transparency and inclusivity, inviting you to participate and make meaningful contributions. Engaging with this community not only helps you grow but also advances the collective knowledge and resources available to all. -
32
Zebra by Mipsology
Mipsology
Mipsology's Zebra acts as the perfect Deep Learning compute engine specifically designed for neural network inference. It efficiently replaces or enhances existing CPUs and GPUs, enabling faster computations with reduced power consumption and cost. The deployment process of Zebra is quick and effortless, requiring no specialized knowledge of the hardware, specific compilation tools, or modifications to the neural networks, training processes, frameworks, or applications. With its capability to compute neural networks at exceptional speeds, Zebra establishes a new benchmark for performance in the industry. It is adaptable, functioning effectively on both high-throughput boards and smaller devices. This scalability ensures the necessary throughput across various environments, whether in data centers, on the edge, or in cloud infrastructures. Additionally, Zebra enhances the performance of any neural network, including those defined by users, while maintaining the same level of accuracy as CPU or GPU-based trained models without requiring any alterations. Furthermore, this flexibility allows for a broader range of applications across diverse sectors, showcasing its versatility as a leading solution in deep learning technology. -
33
UbiOps
UbiOps
UbiOps serves as a robust AI infrastructure platform designed to enable teams to efficiently execute their AI and ML workloads as dependable and secure microservices, all while maintaining their current workflows. In just a few minutes, you can integrate UbiOps effortlessly into your data science environment, thereby eliminating the tedious task of establishing and overseeing costly cloud infrastructure. Whether you're a start-up aiming to develop an AI product or part of a larger organization's data science unit, UbiOps provides a solid foundation for any AI or ML service you wish to implement. The platform allows you to scale your AI workloads in response to usage patterns, ensuring you only pay for what you use without incurring costs for time spent idle. Additionally, it accelerates both model training and inference by offering immediate access to powerful GPUs, complemented by serverless, multi-cloud workload distribution that enhances operational efficiency. By choosing UbiOps, teams can focus on innovation rather than infrastructure management, paving the way for groundbreaking AI solutions. -
34
Oblivus
Oblivus
$0.29 per hourOur infrastructure is designed to fulfill all your computing needs, whether you require a single GPU or thousands, or just one vCPU to a vast array of tens of thousands of vCPUs; we have you fully covered. Our resources are always on standby to support your requirements, anytime you need them. With our platform, switching between GPU and CPU instances is incredibly simple. You can easily deploy, adjust, and scale your instances to fit your specific needs without any complications. Enjoy exceptional machine learning capabilities without overspending. We offer the most advanced technology at a much more affordable price. Our state-of-the-art GPUs are engineered to handle the demands of your workloads efficiently. Experience computational resources that are specifically designed to accommodate the complexities of your models. Utilize our infrastructure for large-scale inference and gain access to essential libraries through our OblivusAI OS. Furthermore, enhance your gaming experience by taking advantage of our powerful infrastructure, allowing you to play games in your preferred settings while optimizing performance. This flexibility ensures that you can adapt to changing requirements seamlessly. -
35
DeepCube
DeepCube
DeepCube is dedicated to advancing deep learning technologies, enhancing the practical application of AI systems in various environments. Among its many patented innovations, the company has developed techniques that significantly accelerate and improve the accuracy of training deep learning models while also enhancing inference performance. Their unique framework is compatible with any existing hardware, whether in data centers or edge devices, achieving over tenfold improvements in speed and memory efficiency. Furthermore, DeepCube offers the sole solution for the effective deployment of deep learning models on intelligent edge devices, overcoming a significant barrier in the field. Traditionally, after completing the training phase, deep learning models demand substantial processing power and memory, which has historically confined their deployment primarily to cloud environments. This innovation by DeepCube promises to revolutionize how deep learning models can be utilized, making them more accessible and efficient across diverse platforms. -
36
Tenstorrent DevCloud
Tenstorrent
We created Tenstorrent DevCloud to enable users to experiment with their models on our servers without the need to invest in our hardware. By developing Tenstorrent AI in the cloud, we allow developers to explore our AI offerings easily. The initial login is complimentary, after which users can connect with our dedicated team to better understand their specific requirements. Our team at Tenstorrent consists of highly skilled and enthusiastic individuals united in their goal to create the ultimate computing platform for AI and software 2.0. As a forward-thinking computing company, Tenstorrent is committed to meeting the increasing computational needs of software 2.0. Based in Toronto, Canada, Tenstorrent gathers specialists in computer architecture, foundational design, advanced systems, and neural network compilers. Our processors are specifically designed for efficient neural network training and inference while also capable of handling various types of parallel computations. These processors feature a network of cores referred to as Tensix cores, which enhance performance and scalability. With a focus on innovation and cutting-edge technology, Tenstorrent aims to set new standards in the computing landscape. -
37
Nendo
Nendo
Nendo is an innovative suite of AI audio tools designed to simplify the creation and utilization of audio applications, enhancing both efficiency and creativity throughout the audio production process. Gone are the days of dealing with tedious challenges related to machine learning and audio processing code. The introduction of AI heralds a significant advancement for audio production, boosting productivity and inventive exploration in fields where sound plays a crucial role. Nevertheless, developing tailored AI audio solutions and scaling them effectively poses its own set of difficulties. The Nendo cloud facilitates developers and businesses in effortlessly launching Nendo applications, accessing high-quality AI audio models via APIs, and managing workloads efficiently on a larger scale. Whether it's batch processing, model training, inference, or library organization, Nendo cloud stands out as the comprehensive answer for audio professionals. By leveraging this powerful platform, users can harness the full potential of AI in their audio projects. -
38
AWS Neuron
Amazon Web Services
It enables efficient training on Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances powered by AWS Trainium. Additionally, for model deployment, it facilitates both high-performance and low-latency inference utilizing AWS Inferentia-based Amazon EC2 Inf1 instances along with AWS Inferentia2-based Amazon EC2 Inf2 instances. With the Neuron SDK, users can leverage widely-used frameworks like TensorFlow and PyTorch to effectively train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal alterations to their code and no reliance on vendor-specific tools. The integration of the AWS Neuron SDK with these frameworks allows for seamless continuation of existing workflows, requiring only minor code adjustments to get started. For those involved in distributed model training, the Neuron SDK also accommodates libraries such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP), enhancing its versatility and scalability for various ML tasks. By providing robust support for these frameworks and libraries, it significantly streamlines the process of developing and deploying advanced machine learning solutions. -
39
Beam Cloud
Beam Cloud
Beam is an innovative serverless GPU platform tailored for developers to effortlessly deploy AI workloads with minimal setup and swift iteration. It allows for the execution of custom models with container start times of less than a second and eliminates idle GPU costs, meaning users can focus on their code while Beam takes care of the underlying infrastructure. With the ability to launch containers in just 200 milliseconds through a specialized runc runtime, it enhances parallelization and concurrency by distributing workloads across numerous containers. Beam prioritizes an exceptional developer experience, offering features such as hot-reloading, webhooks, and job scheduling, while also supporting workloads that scale to zero by default. Additionally, it presents various volume storage solutions and GPU capabilities, enabling users to run on Beam's cloud with powerful GPUs like the 4090s and H100s or even utilize their own hardware. The platform streamlines Python-native deployment, eliminating the need for YAML or configuration files, ultimately making it a versatile choice for modern AI development. Furthermore, Beam's architecture ensures that developers can rapidly iterate and adapt their models, fostering innovation in AI applications. -
40
Cerebras
Cerebras
Our team has developed the quickest AI accelerator, utilizing the most extensive processor available in the market, and have ensured its user-friendliness. With Cerebras, you can experience rapid training speeds, extremely low latency for inference, and an unprecedented time-to-solution that empowers you to reach your most daring AI objectives. Just how bold can these objectives be? We not only make it feasible but also convenient to train language models with billions or even trillions of parameters continuously, achieving nearly flawless scaling from a single CS-2 system to expansive Cerebras Wafer-Scale Clusters like Andromeda, which stands as one of the largest AI supercomputers ever constructed. This capability allows researchers and developers to push the boundaries of AI innovation like never before. -
41
Vertesia
Vertesia
Vertesia serves as a comprehensive, low-code platform for generative AI that empowers enterprise teams to swiftly design, implement, and manage GenAI applications and agents on a large scale. Tailored for both business users and IT professionals, it facilitates a seamless development process, enabling a transition from initial prototype to final production without the need for lengthy timelines or cumbersome infrastructure. The platform accommodates a variety of generative AI models from top inference providers, granting users flexibility and reducing the risk of vendor lock-in. Additionally, Vertesia's agentic retrieval-augmented generation (RAG) pipeline boosts the precision and efficiency of generative AI by automating the content preparation process, which encompasses advanced document processing and semantic chunking techniques. With robust enterprise-level security measures, adherence to SOC2 compliance, and compatibility with major cloud services like AWS, GCP, and Azure, Vertesia guarantees safe and scalable deployment solutions. By simplifying the complexities of AI application development, Vertesia significantly accelerates the path to innovation for organizations looking to harness the power of generative AI. -
42
NVIDIA DGX Cloud Serverless Inference provides a cutting-edge, serverless AI inference framework designed to expedite AI advancements through automatic scaling, efficient GPU resource management, multi-cloud adaptability, and effortless scalability. This solution enables users to reduce instances to zero during idle times, thereby optimizing resource use and lowering expenses. Importantly, there are no additional charges incurred for cold-boot startup durations, as the system is engineered to keep these times to a minimum. The service is driven by NVIDIA Cloud Functions (NVCF), which includes extensive observability capabilities, allowing users to integrate their choice of monitoring tools, such as Splunk, for detailed visibility into their AI operations. Furthermore, NVCF supports versatile deployment methods for NIM microservices, granting the ability to utilize custom containers, models, and Helm charts, thus catering to diverse deployment preferences and enhancing user flexibility. This combination of features positions NVIDIA DGX Cloud Serverless Inference as a powerful tool for organizations seeking to optimize their AI inference processes.
-
43
Ollama
Ollama
FreeOllama stands out as a cutting-edge platform that prioritizes the delivery of AI-driven tools and services, aimed at facilitating user interaction and the development of AI-enhanced applications. It allows users to run AI models directly on their local machines. By providing a diverse array of solutions, such as natural language processing capabilities and customizable AI functionalities, Ollama enables developers, businesses, and organizations to seamlessly incorporate sophisticated machine learning technologies into their operations. With a strong focus on user-friendliness and accessibility, Ollama seeks to streamline the AI experience, making it an attractive choice for those eager to leverage the power of artificial intelligence in their initiatives. This commitment to innovation not only enhances productivity but also opens doors for creative applications across various industries. -
44
NVIDIA Triton Inference Server
NVIDIA
FreeThe NVIDIA Triton™ inference server provides efficient and scalable AI solutions for production environments. This open-source software simplifies the process of AI inference, allowing teams to deploy trained models from various frameworks, such as TensorFlow, NVIDIA TensorRT®, PyTorch, ONNX, XGBoost, Python, and more, across any infrastructure that relies on GPUs or CPUs, whether in the cloud, data center, or at the edge. By enabling concurrent model execution on GPUs, Triton enhances throughput and resource utilization, while also supporting inferencing on both x86 and ARM architectures. It comes equipped with advanced features such as dynamic batching, model analysis, ensemble modeling, and audio streaming capabilities. Additionally, Triton is designed to integrate seamlessly with Kubernetes, facilitating orchestration and scaling, while providing Prometheus metrics for effective monitoring and supporting live updates to models. This software is compatible with all major public cloud machine learning platforms and managed Kubernetes services, making it an essential tool for standardizing model deployment in production settings. Ultimately, Triton empowers developers to achieve high-performance inference while simplifying the overall deployment process. -
45
Exafunction
Exafunction
Exafunction enhances the efficiency of your deep learning inference tasks, achieving up to a tenfold increase in resource utilization and cost savings. This allows you to concentrate on developing your deep learning application rather than juggling cluster management and performance tuning. In many deep learning scenarios, limitations in CPU, I/O, and network capacities can hinder the optimal use of GPU resources. With Exafunction, GPU code is efficiently migrated to high-utilization remote resources, including cost-effective spot instances, while the core logic operates on a low-cost CPU instance. Proven in demanding applications such as large-scale autonomous vehicle simulations, Exafunction handles intricate custom models, guarantees numerical consistency, and effectively manages thousands of GPUs working simultaneously. It is compatible with leading deep learning frameworks and inference runtimes, ensuring that models and dependencies, including custom operators, are meticulously versioned, so you can trust that you're always obtaining accurate results. This comprehensive approach not only enhances performance but also simplifies the deployment process, allowing developers to focus on innovation instead of infrastructure.