Best Modelbit Alternatives in 2024

Find the top alternatives to Modelbit currently available. Compare ratings, reviews, pricing, and features of Modelbit alternatives in 2024. Slashdot lists the best Modelbit alternatives on the market that offer competing products that are similar to Modelbit. Sort through Modelbit alternatives below to make the best choice for your needs

  • 1
    Amazon SageMaker Pipelines Reviews
    Amazon SageMaker Pipelines allows you to create ML workflows using a simple Python SDK. Then visualize and manage your workflow with Amazon SageMaker Studio. SageMaker Pipelines allows you to be more efficient and scale faster. You can store and reuse the workflow steps that you create. Built-in templates make it easy to quickly get started in CI/CD in your machine learning environment. Many customers have hundreds upon hundreds of workflows that each use a different version. SageMaker Pipelines model registry allows you to track all versions of the model in one central repository. This makes it easy to choose the right model to deploy based on your business needs. SageMaker Studio can be used to browse and discover models. Or, you can access them via the SageMaker Python SDK.
  • 2
    Amazon SageMaker Reviews
    Amazon SageMaker, a fully managed service, provides data scientists and developers with the ability to quickly build, train, deploy, and deploy machine-learning (ML) models. SageMaker takes the hard work out of each step in the machine learning process, making it easier to create high-quality models. Traditional ML development can be complex, costly, and iterative. This is made worse by the lack of integrated tools to support the entire machine learning workflow. It is tedious and error-prone to combine tools and workflows. SageMaker solves the problem by combining all components needed for machine learning into a single toolset. This allows models to be produced faster and with less effort. Amazon SageMaker Studio is a web-based visual interface that allows you to perform all ML development tasks. SageMaker Studio allows you to have complete control over each step and gives you visibility.
  • 3
    Amazon SageMaker Model Building Reviews
    Amazon SageMaker offers all the tools and libraries needed to build ML models. It allows you to iteratively test different algorithms and evaluate their accuracy to determine the best one for you. Amazon SageMaker allows you to choose from over 15 algorithms that have been optimized for SageMaker. You can also access over 150 pre-built models available from popular model zoos with just a few clicks. SageMaker offers a variety model-building tools, including RStudio and Amazon SageMaker Studio Notebooks. These allow you to run ML models on a small scale and view reports on their performance. This allows you to create high-quality working prototypes. Amazon SageMaker Studio Notebooks make it easier to build ML models and collaborate with your team. Amazon SageMaker Studio notebooks allow you to start working in seconds with Jupyter notebooks. Amazon SageMaker allows for one-click sharing of notebooks.
  • 4
    Amazon SageMaker Studio Reviews
    Amazon SageMaker Studio (IDE) is an integrated development environment that allows you to access purpose-built tools to execute all steps of machine learning (ML). This includes preparing data, building, training and deploying your models. It can improve data science team productivity up to 10x. Quickly upload data, create notebooks, tune models, adjust experiments, collaborate within your organization, and then deploy models to production without leaving SageMaker Studio. All ML development tasks can be performed in one web-based interface, including preparing raw data and monitoring ML models. You can quickly move between the various stages of the ML development lifecycle to fine-tune models. SageMaker Studio allows you to replay training experiments, tune model features, and other inputs, and then compare the results.
  • 5
    Hopsworks Reviews

    Hopsworks

    Logical Clocks

    $1 per month
    Hopsworks is an open source Enterprise platform that allows you to develop and operate Machine Learning (ML), pipelines at scale. It is built around the first Feature Store for ML in the industry. You can quickly move from data exploration and model building in Python with Jupyter notebooks. Conda is all you need to run production-quality end-to-end ML pipes. Hopsworks can access data from any datasources you choose. They can be in the cloud, on premise, IoT networks or from your Industry 4.0-solution. You can deploy on-premises using your hardware or your preferred cloud provider. Hopsworks will offer the same user experience in cloud deployments or the most secure air-gapped deployments.
  • 6
    Amazon SageMaker Autopilot Reviews
    Amazon SageMaker Autopilot takes out the tedious work of building ML models. SageMaker Autopilot simply needs a tabular data set and the target column to predict. It will then automatically search for the best model by using different solutions. The model can then be directly deployed to production in one click. You can also iterate on the suggested solutions to further improve its quality. Even if you don't have the correct data, Amazon SageMaker Autopilot can still be used. SageMaker Autopilot fills in missing data, provides statistical insights on columns in your dataset, extracts information from non-numeric column, such as date/time information from timestamps, and automatically fills in any gaps.
  • 7
    Mystic Reviews
    You can deploy Mystic in your own Azure/AWS/GCP accounts or in our shared GPU cluster. All Mystic features can be accessed directly from your cloud. In just a few steps, you can get the most cost-effective way to run ML inference. Our shared cluster of graphics cards is used by hundreds of users at once. Low cost, but performance may vary depending on GPU availability in real time. We solve the infrastructure problem. A Kubernetes platform fully managed that runs on your own cloud. Open-source Python API and library to simplify your AI workflow. You get a platform that is high-performance to serve your AI models. Mystic will automatically scale GPUs up or down based on the number API calls that your models receive. You can easily view and edit your infrastructure using the Mystic dashboard, APIs, and CLI.
  • 8
    Amazon SageMaker JumpStart Reviews
    Amazon SageMaker JumpStart can help you speed up your machine learning (ML). SageMaker JumpStart gives you access to pre-trained foundation models, pre-trained algorithms, and built-in algorithms to help you with tasks like article summarization or image generation. You can also access prebuilt solutions to common problems. You can also share ML artifacts within your organization, including notebooks and ML models, to speed up ML model building. SageMaker JumpStart offers hundreds of pre-trained models from model hubs such as TensorFlow Hub and PyTorch Hub. SageMaker Python SDK allows you to access the built-in algorithms. The built-in algorithms can be used to perform common ML tasks such as data classifications (images, text, tabular), and sentiment analysis.
  • 9
    Zepl Reviews
    All work can be synced, searched and managed across your data science team. Zepl's powerful search allows you to discover and reuse models, code, and other data. Zepl's enterprise collaboration platform allows you to query data from Snowflake or Athena and then build your models in Python. For enhanced interactions with your data, use dynamic forms and pivoting. Zepl creates new containers every time you open your notebook. This ensures that you have the same image each time your models are run. You can invite your team members to join you in a shared space, and they will be able to work together in real-time. Or they can simply leave comments on a notebook. You can share your work with fine-grained access controls. You can allow others to read, edit, run, and share your work. This will facilitate collaboration and distribution. All notebooks can be saved and versioned automatically. An easy-to-use interface allows you to name, manage, roll back, and roll back all versions. You can also export seamlessly into Github.
  • 10
    Amazon SageMaker Model Deployment Reviews
    Amazon SageMaker makes it easy for you to deploy ML models to make predictions (also called inference) at the best price and performance for your use case. It offers a wide range of ML infrastructure options and model deployment options to meet your ML inference requirements. It integrates with MLOps tools to allow you to scale your model deployment, reduce costs, manage models more efficiently in production, and reduce operational load. Amazon SageMaker can handle all your inference requirements, including low latency (a few seconds) and high throughput (hundreds upon thousands of requests per hour).
  • 11
    Pathway Reviews
    Scalable Python framework designed to build real-time intelligent applications, data pipelines, and integrate AI/ML models
  • 12
    Amazon SageMaker Clarify Reviews
    Amazon SageMaker Clarify is a machine learning (ML), development tool that provides purpose-built tools to help them gain more insight into their ML training data. SageMaker Clarify measures and detects potential bias using a variety metrics so that ML developers can address bias and explain model predictions. SageMaker Clarify detects potential bias in data preparation, model training, and in your model. You can, for example, check for bias due to age in your data or in your model. A detailed report will quantify the different types of possible bias. SageMaker Clarify also offers feature importance scores that allow you to explain how SageMaker Clarify makes predictions and generates explainability reports in bulk. These reports can be used to support internal or customer presentations and to identify potential problems with your model.
  • 13
    Kubeflow Reviews
    Kubeflow is a project that makes machine learning (ML), workflows on Kubernetes portable, scalable, and easy to deploy. Our goal is not create new services, but to make it easy to deploy the best-of-breed open source systems for ML to different infrastructures. Kubeflow can be run anywhere Kubernetes is running. Kubeflow offers a custom TensorFlow job operator that can be used to train your ML model. Kubeflow's job manager can handle distributed TensorFlow training jobs. You can configure the training controller to use GPUs or CPUs, and to adapt to different cluster sizes. Kubeflow provides services to create and manage interactive Jupyter Notebooks. You can adjust your notebook deployment and compute resources to meet your data science requirements. You can experiment with your workflows locally and then move them to the cloud when you are ready.
  • 14
    Deep Infra Reviews

    Deep Infra

    Deep Infra

    $0.70 per 1M input tokens
    Self-service machine learning platform that allows you to turn models into APIs with just a few mouse clicks. Sign up for a Deep Infra Account using GitHub, or login using GitHub. Choose from hundreds of popular ML models. Call your model using a simple REST API. Our serverless GPUs allow you to deploy models faster and cheaper than if you were to build the infrastructure yourself. Depending on the model, we have different pricing models. Some of our models have token-based pricing. The majority of models are charged by the time it takes to execute an inference. This pricing model allows you to only pay for the services you use. You can easily scale your business as your needs change. There are no upfront costs or long-term contracts. All models are optimized for low latency and inference performance on A100 GPUs. Our system will automatically scale up the model based on your requirements.
  • 15
    IBM Watson Studio Reviews
    You can build, run, and manage AI models and optimize decisions across any cloud. IBM Watson Studio allows you to deploy AI anywhere with IBM Cloud Pak®, the IBM data and AI platform. Open, flexible, multicloud architecture allows you to unite teams, simplify the AI lifecycle management, and accelerate time-to-value. ModelOps pipelines automate the AI lifecycle. AutoAI accelerates data science development. AutoAI allows you to create and programmatically build models. One-click integration allows you to deploy and run models. Promoting AI governance through fair and explicable AI. Optimizing decisions can improve business results. Open source frameworks such as PyTorch and TensorFlow can be used, as well as scikit-learn. You can combine the development tools, including popular IDEs and Jupyter notebooks. JupterLab and CLIs. This includes languages like Python, R, and Scala. IBM Watson Studio automates the management of the AI lifecycle to help you build and scale AI with trust.
  • 16
    Amazon SageMaker Data Wrangler Reviews
    Amazon SageMaker Data Wrangler cuts down the time it takes for data preparation and aggregation for machine learning (ML). This reduces the time taken from weeks to minutes. SageMaker Data Wrangler makes it easy to simplify the process of data preparation. It also allows you to complete every step of the data preparation workflow (including data exploration, cleansing, visualization, and scaling) using a single visual interface. SQL can be used to quickly select the data you need from a variety of data sources. The Data Quality and Insights Report can be used to automatically check data quality and detect anomalies such as duplicate rows or target leakage. SageMaker Data Wrangler has over 300 built-in data transforms that allow you to quickly transform data without having to write any code. After you've completed your data preparation workflow you can scale it up to your full datasets with SageMaker data processing jobs. You can also train, tune and deploy models using SageMaker data processing jobs.
  • 17
    Lambda GPU Cloud Reviews
    The most complex AI, ML, Deep Learning models can be trained. With just a few clicks, you can scale from a single machine up to a whole fleet of VMs. Lambda Cloud makes it easy to scale up or start your Deep Learning project. You can get started quickly, save compute costs, and scale up to hundreds of GPUs. Every VM is pre-installed with the most recent version of Lambda Stack. This includes major deep learning frameworks as well as CUDA®. drivers. You can access the cloud dashboard to instantly access a Jupyter Notebook development environment on each machine. You can connect directly via the Web Terminal or use SSH directly using one of your SSH keys. Lambda can make significant savings by building scaled compute infrastructure to meet the needs of deep learning researchers. Cloud computing allows you to be flexible and save money, even when your workloads increase rapidly.
  • 18
    Amazon SageMaker Studio Lab Reviews
    Amazon SageMaker Studio Lab provides a free environment for machine learning (ML), which includes storage up to 15GB and security. Anyone can use it to learn and experiment with ML. You only need a valid email address to get started. You don't have to set up infrastructure, manage access or even sign-up for an AWS account. SageMaker Studio Lab enables model building via GitHub integration. It comes preconfigured and includes the most popular ML tools and frameworks to get you started right away. SageMaker Studio Lab automatically saves all your work, so you don’t have to restart between sessions. It's as simple as closing your computer and returning later. Machine learning development environment free of charge that offers computing, storage, security, and the ability to learn and experiment using ML. Integration with GitHub and preconfigured to work immediately with the most popular ML frameworks, tools, and libraries.
  • 19
    Aporia Reviews
    Our easy-to-use monitor builder allows you to create customized monitors for your machinelearning models. Get alerts for issues such as concept drift, model performance degradation and bias. Aporia can seamlessly integrate with any ML infrastructure. It doesn't matter if it's a FastAPI server built on top of Kubernetes or an open-source deployment tool such as MLFlow, or a machine-learning platform like AWS Sagemaker. Zoom in on specific data segments to track the model's behavior. Unexpected biases, underperformance, drifting characteristics, and data integrity issues can be identified. You need the right tools to quickly identify the root cause of problems in your ML models. Our investigation toolbox allows you to go deeper than model monitoring and take a deep look at model performance, data segments or distribution.
  • 20
    Comet Reviews

    Comet

    Comet

    $179 per user per month
    Manage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders.
  • 21
    Google Cloud Datalab Reviews
    A simple-to-use interactive tool that allows data exploration, analysis, visualization and machine learning. Cloud Datalab is an interactive tool that allows you to analyze, transform, visualize, and create machine learning models on Google Cloud Platform. It runs on Compute Engine. It connects to multiple cloud services quickly so you can concentrate on data science tasks. Cloud Datalab is built using Jupyter (formerly IPython), a platform that boasts a rich ecosystem of modules and a solid knowledge base. Cloud Datalab allows you to analyze your data on BigQuery and AI Platform, Compute Engine and Cloud Storage using Python and SQL. JavaScript is also available (for BigQuery user defined functions). Cloud Datalab can handle megabytes and terabytes of data. Cloud Datalab allows you to query terabytes and run local analysis on samples of data, as well as run training jobs on terabytes in AI Platform.
  • 22
    Dataiku DSS Reviews
    Data analysts, engineers, scientists, and other scientists can be brought together. Automate self-service analytics and machine learning operations. Get results today, build for tomorrow. Dataiku DSS is a collaborative data science platform that allows data scientists, engineers, and data analysts to create, prototype, build, then deliver their data products more efficiently. Use notebooks (Python, R, Spark, Scala, Hive, etc.) You can also use a drag-and-drop visual interface or Python, R, Spark, Scala, Hive notebooks at every step of the predictive dataflow prototyping procedure - from wrangling to analysis and modeling. Visually profile the data at each stage of the analysis. Interactively explore your data and chart it using 25+ built in charts. Use 80+ built-in functions to prepare, enrich, blend, clean, and clean your data. Make use of Machine Learning technologies such as Scikit-Learn (MLlib), TensorFlow and Keras. In a visual UI. You can build and optimize models in Python or R, and integrate any external library of ML through code APIs.
  • 23
    Anaconda Reviews
    Top Pick
    A fully-featured machine learning platform empowers enterprises to conduct real data science at scale and speed. You can spend less time managing infrastructure and tools so that you can concentrate on building machine learning applications to propel your business forward. Anaconda Enterprise removes the hassle from ML operations and puts open-source innovation at the fingertips. It provides the foundation for serious machine learning and data science production without locking you into any specific models, templates, workflows, or models. AE allows data scientists and software developers to work together to create, test, debug and deploy models using their preferred languages. AE gives developers and data scientists access to both notebooks as well as IDEs, allowing them to work more efficiently together. They can also choose between preconfigured projects and example projects. AE projects can be easily moved from one environment to the next by being automatically packaged.
  • 24
    Chalk Reviews
    Data engineering workflows that are powerful, but without the headaches of infrastructure. Simple, reusable Python is used to define complex streaming, scheduling and data backfill pipelines. Fetch all your data in real time, no matter how complicated. Deep learning and LLMs can be used to make decisions along with structured business data. Don't pay vendors for data that you won't use. Instead, query data right before online predictions. Experiment with Jupyter and then deploy into production. Create new data workflows and prevent train-serve skew in milliseconds. Instantly monitor your data workflows and track usage and data quality. You can see everything you have computed, and the data will replay any information. Integrate with your existing tools and deploy it to your own infrastructure. Custom hold times and withdrawal limits can be set.
  • 25
    MindsDB Reviews
    Open-Source AI layer for databases. Machine Learning capabilities can be integrated directly into your data domain to increase efficiency and productivity. MindsDB makes it easy to create, train, and then test ML models. Then publish them as virtual AI tables into databases. Integrate seamlessly with all major databases. SQL queries can be used to manipulate ML models. You can increase model training speed using GPU without affecting the performance of your database. Learn how the ML model arrived at its conclusions and what factors affect prediction confidence. Visual tools that allow you to analyze model performance. SQL and Python queries that return explanation insights in a single code. You can use What-if analysis to determine confidence based upon different inputs. Automate the process for applying machine learning using the state-of the-art Lightwood AutoML library. Machine Learning can be used to create custom solutions in your preferred programming language.
  • 26
    Baseten Reviews
    It is a frustratingly slow process that requires development resources and know-how. Most models will never see the light of day. In minutes, you can ship full-stack applications. You can deploy models immediately, automatically generate API endpoints and quickly create UI using drag-and-drop components. To put models into production, you don't have to be a DevOps Engineer. Baseten allows you to instantly manage, monitor, and serve models using just a few lines Python. You can build business logic around your model, and sync data sources without any infrastructure headaches. Start with sensible defaults and scale infinitely with fine-grained controls as needed. You can read and write to your existing data sources or our built-in Postgres databases. Use headings, callouts and dividers to create engaging interfaces for business users.
  • 27
    Iterative Reviews
    AI teams are faced with challenges that require new technologies. These technologies are built by us. Existing data lakes and data warehouses do not work with unstructured data like text, images, or videos. AI and software development go hand in hand. Built with data scientists, ML experts, and data engineers at heart. Don't reinvent your wheel! Production is fast and cost-effective. All your data is stored by you. Your machines are used to train your models. Existing data lakes and data warehouses do not work with unstructured data like text, images, or videos. New technologies are required for AI teams. These technologies are built by us. Studio is an extension to BitBucket, GitLab, and GitHub. Register for the online SaaS version, or contact us to start an on-premise installation
  • 28
    Azure Notebooks Reviews
    Jupyter notebooks for Azure allow you to develop and run code anywhere. Get started free. Azure Subscriptions are a great way to get a better user experience. This subscription is ideal for data scientists, students, and developers. No matter your industry or skill set, you can develop and run code from your browser. More languages supported than any other platform, including Python 2, Python 3 and R. Microsoft Azure: Always accessible and available from any browser anywhere in the world.
  • 29
    Arize AI Reviews
    Arize's machine-learning observability platform automatically detects and diagnoses problems and improves models. Machine learning systems are essential for businesses and customers, but often fail to perform in real life. Arize is an end to-end platform for observing and solving issues in your AI models. Seamlessly enable observation for any model, on any platform, in any environment. SDKs that are lightweight for sending production, validation, or training data. You can link real-time ground truth with predictions, or delay. You can gain confidence in your models' performance once they are deployed. Identify and prevent any performance or prediction drift issues, as well as quality issues, before they become serious. Even the most complex models can be reduced in time to resolution (MTTR). Flexible, easy-to use tools for root cause analysis are available.
  • 30
    Gradient Reviews
    Explore a new library and dataset in a notebook. A 2orkflow automates preprocessing, training, and testing. A deployment brings your application to life. You can use notebooks, workflows, or deployments separately. Compatible with all. Gradient is compatible with all major frameworks. Gradient is powered with Paperspace's top-of-the-line GPU instances. Source control integration makes it easier to move faster. Connect to GitHub to manage your work and compute resources using git. In seconds, you can launch a GPU-enabled Jupyter Notebook directly from your browser. Any library or framework is possible. Invite collaborators and share a link. This cloud workspace runs on free GPUs. A notebook environment that is easy to use and share can be set up in seconds. Perfect for ML developers. This environment is simple and powerful with lots of features that just work. You can either use a pre-built template, or create your own. Get a free GPU
  • 31
    Amazon SageMaker Canvas Reviews
    Amazon SageMaker Canvas provides business analysts with a visual interface to help them generate accurate ML predictions. They don't need any ML experience nor to write a single line code. A visual interface that allows users to connect, prepare, analyze and explore data in order to build ML models and generate accurate predictions. Automate the creation of ML models in just a few clicks. By sharing, reviewing, updating, and revising ML models across tools, you can increase collaboration between data scientists and business analysts. Import ML models anywhere and instantly generate predictions in Amazon SageMaker Canvas. Amazon SageMaker Canvas allows you to import data from different sources, select the values you wish to predict, prepare and explore data, then quickly and easily build ML models. The model can then be analyzed and used to make accurate predictions.
  • 32
    Amazon SageMaker Model Training Reviews
    Amazon SageMaker Model training reduces the time and costs of training and tuning machine learning (ML), models at scale, without the need for infrastructure management. SageMaker automatically scales infrastructure up or down from one to thousands of GPUs. This allows you to take advantage of the most performant ML compute infrastructure available. You can control your training costs better because you only pay for what you use. SageMaker distributed libraries can automatically split large models across AWS GPU instances. You can also use third-party libraries like DeepSpeed, Horovod or Megatron to speed up deep learning models. You can efficiently manage your system resources using a variety of GPUs and CPUs, including P4d.24xl instances. These are the fastest training instances available in the cloud. Simply specify the location of the data and indicate the type of SageMaker instances to get started.
  • 33
    Google Cloud Vertex AI Workbench Reviews
    One development environment for all data science workflows. Natively analyze your data without the need to switch between services. Data to training at scale Models can be built and trained 5X faster than traditional notebooks. Scale up model development using simple connectivity to Vertex AI Services. Access to data is simplified and machine learning is made easier with BigQuery Dataproc, Spark and Vertex AI integration. Vertex AI training allows you to experiment and prototype at scale. Vertex AI Workbench allows you to manage your training and deployment workflows for Vertex AI all from one location. Fully managed, scalable and enterprise-ready, Jupyter-based, fully managed, scalable, and managed compute infrastructure with security controls. Easy connections to Google Cloud's Big Data Solutions allow you to explore data and train ML models.
  • 34
    Edge Impulse Reviews
    Advanced embedded machine learning applications can be built without a PhD. To create custom datasets, collect sensor, audio, and camera data directly from devices, files or cloud integrations. Automated labeling tools, from object detection to audio segmentation, are available. Our cloud infrastructure allows you to set up and execute reusable scripted tasks that transform large amounts of input data. Integrate custom data sources, CI/CD tool, and deployment pipelines using open APIs. With ready-to-use DSPs and ML algorithms, you can accelerate the development of custom ML pipelines. Every step of the process, hardware decisions are made based on flash/RAM and device performance. Keras APIs allow you to customize DSP feature extraction algorithms. You can also create custom machine learning models. Visualized insights on model performance, memory, and datasets can fine-tune your production model. Find the right balance between DSP configurations and model architecture. All this is budgeted against memory constraints and latency constraints.
  • 35
    Sagify Reviews
    Sagify is a complement to AWS Sagemaker. It hides all low-level details so you can focus 100% of Machine Learning. Sagemaker is the ML engine, and Sagify the data science-friendly interface. To train, tune, and deploy hundreds ML models, you only need to implement two functions, a train AND a predict. You can manage all your ML models from one location without having to deal with low-level engineering tasks. No more sloppy ML pipelines. Sagify offers 100% reliable AWS training and deployment. Only 2 functions are required to train, tune and deploy hundreds ML models.
  • 36
    Amazon SageMaker Model Monitor Reviews
    Amazon SageMaker Model Monitor allows you to select the data you want to monitor and analyze, without having to write any code. SageMaker Model monitor lets you choose data from a variety of options, such as prediction output. It also captures metadata such a timestamp, model name and endpoint so that you can analyze model predictions based upon the metadata. In the case of high volume real time predictions, you can specify the sampling rate as a percentage. The data is stored in an Amazon S3 bucket. This data can be encrypted, configured fine-grained security and defined data retention policies. Access control mechanisms can be implemented for secure access. Amazon SageMaker Model Monitor provides built-in analysis, in the form statistical rules, to detect data drifts and improve model quality. You can also create custom rules and set thresholds for each one.
  • 37
    Oracle Machine Learning Reviews
    Machine learning uncovers hidden patterns in enterprise data and generates new value for businesses. Oracle Machine Learning makes it easier to create and deploy machine learning models for data scientists by using AutoML technology and reducing data movement. It also simplifies deployment. Apache Zeppelin notebook technology, which is open-source-based, can increase developer productivity and decrease their learning curve. Notebooks are compatible with SQL, PL/SQL and Python. Users can also use markdown interpreters for Oracle Autonomous Database to create models in their preferred language. No-code user interface that supports AutoML on Autonomous Database. This will increase data scientist productivity as well as non-expert users' access to powerful in-database algorithms to classify and regression. Data scientists can deploy integrated models using the Oracle Machine Learning AutoML User Interface.
  • 38
    Amazon SageMaker Edge Reviews
    SageMaker Edge Agent allows for you to capture metadata and data based on triggers you set. This allows you to retrain existing models with real-world data, or create new models. This data can also be used for your own analysis such as model drift analysis. There are three options available for deployment. GGv2 (size 100MB) is an integrated AWS IoT deployment method. SageMaker Edge has a smaller, built-in deployment option for customers with limited device capacities. Customers who prefer a third-party deployment mechanism can plug into our user flow. Amazon SageMaker Edge Manager offers a dashboard that allows you to see the performance of all models across your fleet. The dashboard allows you to visually assess your fleet health and identify problematic models using a dashboard within the console.
  • 39
    Valohai Reviews

    Valohai

    Valohai

    $560 per month
    Pipelines are permanent, models are temporary. Train, Evaluate, Deploy, Repeat. Valohai is the only MLOps platform to automate everything, from data extraction to model deployment. Automate everything, from data extraction to model installation. Automatically store every model, experiment, and artifact. Monitor and deploy models in a Kubernetes cluster. Just point to your code and hit "run". Valohai launches workers and runs your experiments. Then, Valohai shuts down the instances. You can create notebooks, scripts, or shared git projects using any language or framework. Our API allows you to expand endlessly. Track each experiment and trace back to the original training data. All data can be audited and shared.
  • 40
    Apache PredictionIO Reviews
    Apache PredictionIO®, an open-source machine-learning server, is built on top a state of the art open-source stack that allows data scientists and developers to create predictive engines for any type of machine learning task. It allows you to quickly create and deploy an engine as web service on production using customizable templates. Once deployed as a web-service, it can respond to dynamic queries immediately, evaluate and tune multiple engine variations systematically, unify data from multiple platforms either in batch or real-time for comprehensive predictive analysis. Machine learning modeling can be speeded up with pre-built evaluation methods and systematic processes. These measures also support machine learning and data processing libraries like Spark MLLib or OpenNLP. You can create your own machine learning models and integrate them seamlessly into your engine. Data infrastructure management simplified. Apache PredictionIO®, a complete machine learning stack, can be installed together with Apache Spark, MLlib and HBase.
  • 41
    Rasgo Reviews
    PyRasgo, an open-source Python library, allows you to install Rasgo into your Python environment. Or, use our powerful, beautifully designed UI to get the Rasgo experience. You can create intuitive and detailed feature profiles in your panda's Rasgo UI or in its dataframe. Analyze key data statistics, quality issues, data drift, value distribution, and other data. Select features can be pruned to create a final set for modeling. Our extensive library of feature transformation functions can transform your raw data into useful features. Before you spend time training your model, visualize critical insights such as feature importance, explainability, and correlation. Collaborate with colleagues to create feature collection or duplicate existing feature collection to tailor for your model.
  • 42
    Gradio Reviews
    Create & Share Delightful Apps for Machine Learning. Gradio allows you to quickly and easily demo your machine-learning model. It has a friendly interface that anyone can use, anywhere. Installing Gradio is easy with pip. It only takes a few lines of code to create a Gradio Interface. You can choose between a variety interface types to interface with your function. Gradio is available as a webpage or embedded into Python notebooks. Gradio can generate a link that you can share publicly with colleagues to allow them to interact with your model remotely using their own devices. Once you have created an interface, it can be permanently hosted on Hugging Face. Hugging Face Spaces hosts the interface on their servers and provides you with a shareable link.
  • 43
    Xilinx Reviews
    The Xilinx AI development platform for AI Inference on Xilinx hardware platforms consists optimized IP, tools and libraries, models, examples, and models. It was designed to be efficient and easy-to-use, allowing AI acceleration on Xilinx FPGA or ACAP. Supports mainstream frameworks as well as the most recent models that can perform diverse deep learning tasks. A comprehensive collection of pre-optimized models is available for deployment on Xilinx devices. Find the closest model to your application and begin retraining! This powerful open-source quantizer supports model calibration, quantization, and fine tuning. The AI profiler allows you to analyze layers in order to identify bottlenecks. The AI library provides open-source high-level Python and C++ APIs that allow maximum portability from the edge to the cloud. You can customize the IP cores to meet your specific needs for many different applications.
  • 44
    Zerve AI Reviews
    With a fully automated cloud infrastructure, experts can explore data and write stable codes at the same time. Zerve’s data science environment gives data scientists and ML teams a unified workspace to explore, collaborate and build data science & AI project like never before. Zerve provides true language interoperability. Users can use Python, R SQL or Markdown in the same canvas and connect these code blocks. Zerve offers unlimited parallelization, allowing for code blocks and containers to run in parallel at any stage of development. Analysis artifacts can be automatically serialized, stored and preserved. This allows you to change a step without having to rerun previous steps. Selecting compute resources and memory in a fine-grained manner for complex data transformation.
  • 45
    Seldon Reviews
    Machine learning models can be deployed at scale with greater accuracy. With more models in production, R&D can be turned into ROI. Seldon reduces time to value so models can get to work quicker. Scale with confidence and minimize risks through transparent model performance and interpretable results. Seldon Deploy cuts down on time to production by providing production-grade inference servers that are optimized for the popular ML framework and custom language wrappers to suit your use cases. Seldon Core Enterprise offers enterprise-level support and access to trusted, global-tested MLOps software. Seldon Core Enterprise is designed for organizations that require: - Coverage for any number of ML models, plus unlimited users Additional assurances for models involved in staging and production - You can be confident that their ML model deployments will be supported and protected.
  • 46
    Striveworks Chariot Reviews
    Make AI an integral part of your business. With the flexibility and power of a cloud native platform, you can build better, deploy faster and audit easier. Import models and search cataloged model from across your organization. Save time by quickly annotating data with model-in the-loop hinting. Flyte's integration with Chariot allows you to quickly create and launch custom workflows. Understand the full origin of your data, models and workflows. Deploy models wherever you need them. This includes edge and IoT applications. Data scientists are not the only ones who can get valuable insights from their data. With Chariot's low code interface, teams can collaborate effectively.
  • 47
    ElectrifAi Reviews
    High-value use cases across all major verticals, with proven commercial value in just weeks ElectrifAi's largest library of pre-built machine intelligence models seamlessly integrates into existing workflows to deliver reliable and fast results. Our domain expertise is available through pre-trained, prestructured, or new models. Building machine learning is risky. ElectrifAi delivers superior results that are fast, reliable and accurate. We have over 1,000 machine learning models ready to deploy. They seamlessly integrate into existing workflows. We have the ability to quickly deploy proven ML models and provide solutions. We create the machine learning models, clean up the data, and insinuate the data. Our domain experts use your data to train the model that is most appropriate for your case.
  • 48
    TrueFoundry Reviews

    TrueFoundry

    TrueFoundry

    $5 per month
    TrueFoundry provides data scientists and ML engineers with the fastest framework to support the post-model pipeline. With the best DevOps practices, we enable instant monitored endpoints to models in just 15 minutes! You can save, version, and monitor ML models and artifacts. With one command, you can create an endpoint for your ML Model. WebApps can be created without any frontend knowledge or exposure to other users as per your choice. Social swag! Our mission is to make machine learning fast and scalable, which will bring positive value! TrueFoundry is enabling this transformation by automating parts of the ML pipeline that are automated and empowering ML Developers with the ability to test and launch models quickly and with as much autonomy possible. Our inspiration comes from the products that Platform teams have created in top tech companies such as Facebook, Google, Netflix, and others. These products allow all teams to move faster and deploy and iterate independently.
  • 49
    MLflow Reviews
    MLflow is an open-source platform that manages the ML lifecycle. It includes experimentation, reproducibility and deployment. There is also a central model registry. MLflow currently has four components. Record and query experiments: data, code, config, results. Data science code can be packaged in a format that can be reproduced on any platform. Machine learning models can be deployed in a variety of environments. A central repository can store, annotate and discover models, as well as manage them. The MLflow Tracking component provides an API and UI to log parameters, code versions and metrics. It can also be used to visualize the results later. MLflow Tracking allows you to log and query experiments using Python REST, R API, Java API APIs, and REST. An MLflow Project is a way to package data science code in a reusable, reproducible manner. It is based primarily upon conventions. The Projects component also includes an API and command line tools to run projects.
  • 50
    NVIDIA Triton Inference Server Reviews
    NVIDIA Triton™, an inference server, delivers fast and scalable AI production-ready. Open-source inference server software, Triton inference servers streamlines AI inference. It allows teams to deploy trained AI models from any framework (TensorFlow or NVIDIA TensorRT®, PyTorch or ONNX, XGBoost or Python, custom, and more on any GPU or CPU-based infrastructure (cloud or data center, edge, or edge). Triton supports concurrent models on GPUs to maximize throughput. It also supports x86 CPU-based inferencing and ARM CPUs. Triton is a tool that developers can use to deliver high-performance inference. It integrates with Kubernetes to orchestrate and scale, exports Prometheus metrics and supports live model updates. Triton helps standardize model deployment in production.