LM-Kit.NET
LM-Kit.NET is an enterprise-grade toolkit designed for seamlessly integrating generative AI into your .NET applications, fully supporting Windows, Linux, and macOS. Empower your C# and VB.NET projects with a flexible platform that simplifies the creation and orchestration of dynamic AI agents.
Leverage efficient Small Language Models for on‑device inference, reducing computational load, minimizing latency, and enhancing security by processing data locally. Experience the power of Retrieval‑Augmented Generation (RAG) to boost accuracy and relevance, while advanced AI agents simplify complex workflows and accelerate development.
Native SDKs ensure smooth integration and high performance across diverse platforms. With robust support for custom AI agent development and multi‑agent orchestration, LM‑Kit.NET streamlines prototyping, deployment, and scalability—enabling you to build smarter, faster, and more secure solutions trusted by professionals worldwide.
Learn more
Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
Phi-3
Introducing a remarkable family of compact language models (SLMs) that deliver exceptional performance while being cost-effective and low in latency. These models are designed to enhance AI functionalities, decrease resource consumption, and promote budget-friendly generative AI applications across various platforms. They improve response times in real-time interactions, navigate autonomous systems, and support applications that demand low latency, all critical to user experience. Phi-3 can be deployed in cloud environments, edge computing, or directly on devices, offering unparalleled flexibility for deployment and operations. Developed in alignment with Microsoft AI principles—such as accountability, transparency, fairness, reliability, safety, privacy, security, and inclusiveness—these models ensure ethical AI usage. They also excel in offline environments where data privacy is essential or where internet connectivity is sparse. With an expanded context window, Phi-3 generates outputs that are more coherent, accurate, and contextually relevant, making it an ideal choice for various applications. Ultimately, deploying at the edge not only enhances speed but also ensures that users receive timely and effective responses.
Learn more
Command R
The outputs generated by Command’s model are accompanied by precise citations that help reduce the chances of misinformation while providing additional context drawn from the original sources. Command is capable of creating product descriptions, assisting in email composition, proposing sample press releases, and much more. You can engage Command with multiple inquiries about a document to categorize it, retrieve specific information, or address general questions pertaining to the content. While answering a handful of questions about a single document can save valuable time, applying this process to thousands of documents can lead to significant time savings for a business. This suite of scalable models achieves a remarkable balance between high efficiency and robust accuracy, empowering organizations to transition from experimental stages to fully operational AI solutions. By leveraging these capabilities, companies can enhance their productivity and streamline their workflows effectively.
Learn more