Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
MongoDB Atlas
MongoDB Atlas stands out as the leading cloud database service available, offering unparalleled data distribution and seamless mobility across all major platforms, including AWS, Azure, and Google Cloud. Its built-in automation tools enhance resource management and workload optimization, making it the go-to choice for modern application deployment. As a fully managed service, it ensures best-in-class automation and adheres to established practices that support high availability, scalability, and compliance with stringent data security and privacy regulations. Furthermore, MongoDB Atlas provides robust security controls tailored for your data needs, allowing for the integration of enterprise-grade features that align with existing security protocols and compliance measures. With preconfigured elements for authentication, authorization, and encryption, you can rest assured that your data remains secure and protected at all times. Ultimately, MongoDB Atlas not only simplifies deployment and scaling in the cloud but also fortifies your data with comprehensive security features that adapt to evolving requirements.
Learn more
IBM watsonx.governance
Although not every model possesses the same quality, it is crucial for all models to have governance in place to promote responsible and ethical decision-making within an organization. The IBM® watsonx.governance™ toolkit for AI governance empowers you to oversee, manage, and track your organization's AI initiatives effectively. By utilizing software automation, it enhances your capacity to address risks, fulfill regulatory obligations, and tackle ethical issues related to both generative AI and machine learning (ML) models. This toolkit provides access to automated and scalable governance, risk, and compliance instruments that encompass aspects such as operational risk, policy management, compliance, financial oversight, IT governance, and both internal and external audits. You can proactively identify and mitigate model risks while converting AI regulations into actionable policies that can be enforced automatically, ensuring that your organization remains compliant and ethically sound in its AI endeavors. Furthermore, this comprehensive approach not only safeguards your operations but also fosters trust among stakeholders in the integrity of your AI systems.
Learn more
Sekura.ai
Sekura.ai specializes in cybersecurity solutions powered by artificial intelligence, aimed at improving both threat detection and response mechanisms. Their innovative applications utilize cutting-edge AI to promptly recognize and address security vulnerabilities, providing companies with strong defenses against cyber threats. By integrating these AI advancements, organizations can safeguard sensitive information, ensure compliance with regulations, and allow their engineering teams to concentrate on their primary products. Additionally, the safe deployment of advanced large language models can significantly enhance internal processes and customer interactions. Sensitive information can be rapidly detected and removed during all stages of LLM activities, including training and inference. Moreover, access to critical training data and prompts can be tightly controlled, allowing the use of external models while protecting confidential information. Organizations can establish detailed permissions for data access with time-limited controls, ensuring they remain compliant with changing data privacy regulations. Securely utilizing public LLMs eliminates the need for expensive internal model development, thereby optimizing resources while maintaining a high level of data security.
Learn more