Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
Ango Hub
Ango Hub is an all-in-one, quality-oriented data annotation platform that AI teams can use. Ango Hub is available on-premise and in the cloud. It allows AI teams and their data annotation workforces to quickly and efficiently annotate their data without compromising quality.
Ango Hub is the only data annotation platform that focuses on quality. It features features that enhance the quality of your annotations. These include a centralized labeling system, a real time issue system, review workflows and sample label libraries. There is also consensus up to 30 on the same asset.
Ango Hub is versatile as well. It supports all data types that your team might require, including image, audio, text and native PDF. There are nearly twenty different labeling tools that you can use to annotate data. Some of these tools are unique to Ango hub, such as rotated bounding box, unlimited conditional questions, label relations and table-based labels for more complicated labeling tasks.
Learn more
Langfuse
Langfuse is a free and open-source LLM engineering platform that helps teams to debug, analyze, and iterate their LLM Applications.
Observability: Incorporate Langfuse into your app to start ingesting traces.
Langfuse UI : inspect and debug complex logs, user sessions and user sessions
Langfuse Prompts: Manage versions, deploy prompts and manage prompts within Langfuse
Analytics: Track metrics such as cost, latency and quality (LLM) to gain insights through dashboards & data exports
Evals: Calculate and collect scores for your LLM completions
Experiments: Track app behavior and test it before deploying new versions
Why Langfuse?
- Open source
- Models and frameworks are agnostic
- Built for production
- Incrementally adaptable - Start with a single LLM or integration call, then expand to the full tracing for complex chains/agents
- Use GET to create downstream use cases and export the data
Learn more
Vivgrid
Vivgrid serves as a comprehensive development platform tailored for AI agents, focusing on critical aspects such as observability, debugging, safety, and a robust global deployment framework. It provides complete transparency into agent activities by logging prompts, memory retrievals, tool interactions, and reasoning processes, allowing developers to identify and address any points of failure or unexpected behavior. Furthermore, it enables the testing and enforcement of safety protocols, including refusal rules and filters, while facilitating human-in-the-loop oversight prior to deployment. Vivgrid also manages the orchestration of multi-agent systems equipped with stateful memory, dynamically assigning tasks across various agent workflows. On the deployment front, it utilizes a globally distributed inference network to guarantee low-latency execution, achieving response times under 50 milliseconds, and offers real-time metrics on latency, costs, and usage. By integrating debugging, evaluation, safety, and deployment into a single coherent framework, Vivgrid aims to streamline the process of delivering resilient AI systems without the need for disparate components in observability, infrastructure, and orchestration, ultimately enhancing efficiency for developers. This holistic approach empowers teams to focus on innovation rather than the complexities of system integration.
Learn more