Best MaxCompute Alternatives in 2025
Find the top alternatives to MaxCompute currently available. Compare ratings, reviews, pricing, and features of MaxCompute alternatives in 2025. Slashdot lists the best MaxCompute alternatives on the market that offer competing products that are similar to MaxCompute. Sort through MaxCompute alternatives below to make the best choice for your needs
-
1
Teradata VantageCloud
Teradata
975 RatingsTeradata VantageCloud: Open, Scalable Cloud Analytics for AI VantageCloud is Teradata’s cloud-native analytics and data platform designed for performance and flexibility. It unifies data from multiple sources, supports complex analytics at scale, and makes it easier to deploy AI and machine learning models in production. With built-in support for multi-cloud and hybrid deployments, VantageCloud lets organizations manage data across AWS, Azure, Google Cloud, and on-prem environments without vendor lock-in. Its open architecture integrates with modern data tools and standard formats, giving developers and data teams freedom to innovate while keeping costs predictable. -
2
BigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises. Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently.
-
3
AnalyticsCreator
AnalyticsCreator
46 RatingsAccelerate your data journey with AnalyticsCreator—a metadata-driven data warehouse automation solution purpose-built for the Microsoft data ecosystem. AnalyticsCreator simplifies the design, development, and deployment of modern data architectures, including dimensional models, data marts, data vaults, or blended modeling approaches tailored to your business needs. Seamlessly integrate with Microsoft SQL Server, Azure Synapse Analytics, Microsoft Fabric (including OneLake and SQL Endpoint Lakehouse environments), and Power BI. AnalyticsCreator automates ELT pipeline creation, data modeling, historization, and semantic layer generation—helping reduce tool sprawl and minimizing manual SQL coding. Designed to support CI/CD pipelines, AnalyticsCreator connects easily with Azure DevOps and GitHub for version-controlled deployments across development, test, and production environments. This ensures faster, error-free releases while maintaining governance and control across your entire data engineering workflow. Key features include automated documentation, end-to-end data lineage tracking, and adaptive schema evolution—enabling teams to manage change, reduce risk, and maintain auditability at scale. AnalyticsCreator empowers agile data engineering by enabling rapid prototyping and production-grade deployments for Microsoft-centric data initiatives. By eliminating repetitive manual tasks and deployment risks, AnalyticsCreator allows your team to focus on delivering actionable business insights—accelerating time-to-value for your data products and analytics initiatives. -
4
Snowflake offers a unified AI Data Cloud platform that transforms how businesses store, analyze, and leverage data by eliminating silos and simplifying architectures. It features interoperable storage that enables seamless access to diverse datasets at massive scale, along with an elastic compute engine that delivers leading performance for a wide range of workloads. Snowflake Cortex AI integrates secure access to cutting-edge large language models and AI services, empowering enterprises to accelerate AI-driven insights. The platform’s cloud services automate and streamline resource management, reducing complexity and cost. Snowflake also offers Snowgrid, which securely connects data and applications across multiple regions and cloud providers for a consistent experience. Their Horizon Catalog provides built-in governance to manage security, privacy, compliance, and access control. Snowflake Marketplace connects users to critical business data and apps to foster collaboration within the AI Data Cloud network. Serving over 11,000 customers worldwide, Snowflake supports industries from healthcare and finance to retail and telecom.
-
5
Grow is a full-stack, no-code business intelligence (BI), platform that empowers everyone within your organization to make data-driven decision. Any organization can connect to its data and discover insights by combining ETL, data warehouses, and visualization in one platform. Our unlimited-user license model allows everyone to access the answers they seek without having to wait for an analyst. Everyone can now make great decisions in real time to accelerate their growth. Plus: Unlimited Users - More than 100 Integrations - No SQL required (but still available for use) - BI Consultants Support - Simple ETL Dynamic Dashboards
-
6
The Ocient Hyperscale Data Warehouse revolutionizes data transformation and loading within seconds, allowing organizations to efficiently store and analyze larger datasets while executing queries on hyperscale data up to 50 times faster. In order to provide cutting-edge data analytics, Ocient has entirely rethought its data warehouse architecture, facilitating rapid and ongoing analysis of intricate, hyperscale datasets. By positioning storage close to compute resources to enhance performance on standard industry hardware, the Ocient Hyperscale Data Warehouse allows users to transform, stream, or load data directly, delivering results for previously unattainable queries in mere seconds. With its optimization for standard hardware, Ocient boasts query performance benchmarks that surpass competitors by as much as 50 times. This innovative data warehouse not only meets but exceeds the demands of next-generation analytics in critical areas where traditional solutions struggle, thereby empowering organizations to achieve greater insights from their data. Ultimately, the Ocient Hyperscale Data Warehouse stands out as a powerful tool in the evolving landscape of data analytics.
-
7
Baidu Palo
Baidu AI Cloud
Palo empowers businesses to swiftly establish a PB-level MPP architecture data warehouse service in just minutes while seamlessly importing vast amounts of data from sources like RDS, BOS, and BMR. This capability enables Palo to execute multi-dimensional big data analytics effectively. Additionally, it integrates smoothly with popular BI tools, allowing data analysts to visualize and interpret data swiftly, thereby facilitating informed decision-making. Featuring a top-tier MPP query engine, Palo utilizes column storage, intelligent indexing, and vector execution to enhance performance. Moreover, it offers in-library analytics, window functions, and a range of advanced analytical features. Users can create materialized views and modify table structures without interrupting services, showcasing its flexibility. Furthermore, Palo ensures efficient data recovery, making it a reliable solution for enterprises looking to optimize their data management processes. -
8
Archon Data Store
Platform 3 Solutions
1 RatingThe Archon Data Store™ is a robust and secure platform built on open-source principles, tailored for archiving and managing extensive data lakes. Its compliance capabilities and small footprint facilitate large-scale data search, processing, and analysis across structured, unstructured, and semi-structured data within an organization. By merging the essential characteristics of both data warehouses and data lakes, Archon Data Store creates a seamless and efficient platform. This integration effectively breaks down data silos, enhancing data engineering, analytics, data science, and machine learning workflows. With its focus on centralized metadata, optimized storage solutions, and distributed computing, the Archon Data Store ensures the preservation of data integrity. Additionally, its cohesive strategies for data management, security, and governance empower organizations to operate more effectively and foster innovation at a quicker pace. By offering a singular platform for both archiving and analyzing all organizational data, Archon Data Store not only delivers significant operational efficiencies but also positions your organization for future growth and agility. -
9
AnalyticDB
Alibaba Cloud
$0.248 per hourAnalyticDB for MySQL is an efficient data warehousing solution that boasts security, stability, and user-friendliness. This platform facilitates the creation of online statistical reports and multidimensional analysis applications while supporting real-time data warehousing. Utilizing a distributed computing framework, AnalyticDB for MySQL leverages the cloud’s elastic scaling to process vast amounts of data, handling tens of billions of records instantaneously. It organizes data according to relational models and employs SQL for flexible computation and analysis. Additionally, the service simplifies database management, allowing users to scale nodes and adjust instance sizes with ease. With its suite of visualization and ETL tools, it enhances enterprise data processing significantly. Moreover, this system enables rapid multidimensional analysis, offering the capability to sift through extensive datasets in mere milliseconds. It is a powerful resource for organizations looking to optimize their data strategies and gain insights quickly. -
10
Roghnu
Roghnu
The Roghnu Data Portal serves as a comprehensive platform for managing data and operations, streamlining the processes of collection, transformation, integration, reporting, and utilization of financial and operational data across various advanced software solutions. By utilizing a VPN or a site-to-site connection, the platform seamlessly consolidates data from source applications into a unified data warehouse, implements customizable transformation and integration processes, and enables the creation of personalized applications and dashboards for data analysis. This allows users to have immediate access to real-time metrics without the need for tedious manual exports or data re-entry, significantly reducing labor hours while ensuring the accuracy of data. With its hosting in the US and adherence to SOC 2 Type II standards, the portal guarantees secure data storage and regulatory compliance, while its modular design and open integration capabilities empower organizations to easily incorporate pre-built connectors or develop customized workflows without the challenges typically associated with migration. Furthermore, the flexibility of the platform promotes innovation and efficiency, making it an essential tool for organizations looking to enhance their data management practices. -
11
Apache Doris
The Apache Software Foundation
FreeApache Doris serves as a cutting-edge data warehouse tailored for real-time analytics, enabling exceptionally rapid analysis of data at scale. It features both push-based micro-batch and pull-based streaming data ingestion that occurs within a second, alongside a storage engine capable of real-time upserts, appends, and pre-aggregation. With its columnar storage architecture, MPP design, cost-based query optimization, and vectorized execution engine, it is optimized for handling high-concurrency and high-throughput queries efficiently. Moreover, it allows for federated querying across various data lakes, including Hive, Iceberg, and Hudi, as well as relational databases such as MySQL and PostgreSQL. Doris supports complex data types like Array, Map, and JSON, and includes a Variant data type that facilitates automatic inference for JSON structures, along with advanced text search capabilities through NGram bloomfilters and inverted indexes. Its distributed architecture ensures linear scalability and incorporates workload isolation and tiered storage to enhance resource management. Additionally, it accommodates both shared-nothing clusters and the separation of storage from compute resources, providing flexibility in deployment and management. -
12
SelectDB
SelectDB
$0.22 per hourSelectDB is an innovative data warehouse built on Apache Doris, designed for swift query analysis on extensive real-time datasets. Transitioning from Clickhouse to Apache Doris facilitates the separation of the data lake and promotes an upgrade to a more efficient lake warehouse structure. This high-speed OLAP system handles nearly a billion query requests daily, catering to various data service needs across multiple scenarios. To address issues such as storage redundancy, resource contention, and the complexities of data governance and querying, the original lake warehouse architecture was restructured with Apache Doris. By leveraging Doris's capabilities for materialized view rewriting and automated services, it achieves both high-performance data querying and adaptable data governance strategies. The system allows for real-time data writing within seconds and enables the synchronization of streaming data from databases. With a storage engine that supports immediate updates and enhancements, it also facilitates real-time pre-polymerization of data for improved processing efficiency. This integration marks a significant advancement in the management and utilization of large-scale real-time data. -
13
VeloDB
VeloDB
VeloDB, which utilizes Apache Doris, represents a cutting-edge data warehouse designed for rapid analytics on large-scale real-time data. It features both push-based micro-batch and pull-based streaming data ingestion that occurs in mere seconds, alongside a storage engine capable of real-time upserts, appends, and pre-aggregations. The platform delivers exceptional performance for real-time data serving and allows for dynamic interactive ad-hoc queries. VeloDB accommodates not only structured data but also semi-structured formats, supporting both real-time analytics and batch processing capabilities. Moreover, it functions as a federated query engine, enabling seamless access to external data lakes and databases in addition to internal data. The system is designed for distribution, ensuring linear scalability. Users can deploy it on-premises or as a cloud service, allowing for adaptable resource allocation based on workload demands, whether through separation or integration of storage and compute resources. Leveraging the strengths of open-source Apache Doris, VeloDB supports the MySQL protocol and various functions, allowing for straightforward integration with a wide range of data tools, ensuring flexibility and compatibility across different environments. -
14
GeoSpock
GeoSpock
GeoSpock revolutionizes data integration for a connected universe through its innovative GeoSpock DB, a cutting-edge space-time analytics database. This cloud-native solution is specifically designed for effective querying of real-world scenarios, enabling the combination of diverse Internet of Things (IoT) data sources to fully harness their potential, while also streamlining complexity and reducing expenses. With GeoSpock DB, users benefit from efficient data storage, seamless fusion, and quick programmatic access, allowing for the execution of ANSI SQL queries and the ability to link with analytics platforms through JDBC/ODBC connectors. Analysts can easily conduct evaluations and disseminate insights using familiar toolsets, with compatibility for popular business intelligence tools like Tableau™, Amazon QuickSight™, and Microsoft Power BI™, as well as support for data science and machine learning frameworks such as Python Notebooks and Apache Spark. Furthermore, the database can be effortlessly integrated with internal systems and web services, ensuring compatibility with open-source and visualization libraries, including Kepler and Cesium.js, thus expanding its versatility in various applications. This comprehensive approach empowers organizations to make data-driven decisions efficiently and effectively. -
15
Toustone
Toustone
Toustone is a team of data professionals who are passionate about making every business data-driven. Located in Albury-Wodonga in regional Australia, Toustone has developed a BI solution that supports a variety of industries. It addresses challenges across productivity, data transparency, cohesion, and trust. This will allow you to make better, more informed data-driven business decisions. Tailored solutions that offer: * Hosting & Data Warehousing * Data Modelling & Visualisation * AI & Data Science * Fully Managed Service This fully integrated, customizable solution is based on industry experience and can be customized to allow any business to create automated daily KPI reports or visual dashboards. This will allow you to quickly and easily dig into the 'why' of the numbers, and gain meaningful, actionable insights. To begin your journey to becoming data-driven, contact Toustone today. -
16
Apache Kylin
Apache Software Foundation
Apache Kylin™ is a distributed, open-source Analytical Data Warehouse designed for Big Data, aimed at delivering OLAP (Online Analytical Processing) capabilities in the modern big data landscape. By enhancing multi-dimensional cube technology and precalculation methods on platforms like Hadoop and Spark, Kylin maintains a consistent query performance, even as data volumes continue to expand. This innovation reduces query response times from several minutes to just milliseconds, effectively reintroducing online analytics into the realm of big data. Capable of processing over 10 billion rows in under a second, Kylin eliminates the delays previously associated with report generation, facilitating timely decision-making. It seamlessly integrates data stored on Hadoop with popular BI tools such as Tableau, PowerBI/Excel, MSTR, QlikSense, Hue, and SuperSet, significantly accelerating business intelligence operations on Hadoop. As a robust Analytical Data Warehouse, Kylin supports ANSI SQL queries on Hadoop/Spark and encompasses a wide array of ANSI SQL functions. Moreover, Kylin’s architecture allows it to handle thousands of simultaneous interactive queries with minimal resource usage, ensuring efficient analytics even under heavy loads. This efficiency positions Kylin as an essential tool for organizations seeking to leverage their data for strategic insights. -
17
OpenText Analytics Database is a cutting-edge analytics platform designed to accelerate decision-making and operational efficiency through fast, real-time data processing and advanced machine learning. Organizations benefit from its flexible deployment options, including on-premises, hybrid, and multi-cloud environments, enabling them to tailor analytics infrastructure to their specific needs and lower overall costs. The platform’s massively parallel processing (MPP) architecture delivers lightning-fast query performance across large, complex datasets. It supports columnar storage and data lakehouse compatibility, allowing seamless analysis of data stored in various formats such as Parquet, ORC, and AVRO. Users can interact with data using familiar languages like SQL, R, Python, Java, and C/C++, making it accessible for both technical and business users. In-database machine learning capabilities allow for building and deploying predictive models without moving data, providing real-time insights. Additional analytics functions include time series, geospatial, and event-pattern matching, enabling deep and diverse data exploration. OpenText Analytics Database is ideal for organizations looking to harness AI and analytics to drive smarter business decisions.
-
18
e6data
e6data
The market experiences limited competition as a result of significant entry barriers, specialized expertise, substantial capital requirements, and extended time-to-market. Moreover, current platforms offer similar pricing and performance, which diminishes the motivation for users to transition. Transitioning from one SQL dialect to another can take months of intensive work. There is a demand for format-independent computing that can seamlessly work with all major open standards. Data leaders in enterprises are currently facing an extraordinary surge in the need for data intelligence. They are taken aback to discover that a mere 10% of their most demanding, compute-heavy tasks account for 80% of the costs, engineering resources, and stakeholder grievances. Regrettably, these workloads are also essential and cannot be neglected. e6data enhances the return on investment for a company's current data platforms and infrastructure. Notably, e6data’s format-agnostic computing stands out for its remarkable efficiency and performance across various leading data lakehouse table formats, thereby providing a significant advantage in optimizing enterprise operations. This innovative solution positions organizations to better manage their data-driven demands while maximizing their existing resources. -
19
FutureAnalytica
FutureAnalytica
Introducing the world’s pioneering end-to-end platform designed for all your AI-driven innovation requirements—from data cleansing and organization to the creation and deployment of sophisticated data science models, as well as the integration of advanced analytics algorithms featuring built-in Recommendation AI; our platform also simplifies outcome interpretation with intuitive visualization dashboards and employs Explainable AI to trace the origins of outcomes. FutureAnalytica delivers a comprehensive, seamless data science journey, equipped with essential attributes such as a powerful Data Lakehouse, an innovative AI Studio, an inclusive AI Marketplace, and a top-notch data science support team available as needed. This unique platform is specifically tailored to streamline your efforts, reduce costs, and save time throughout your data science and AI endeavors. Start by engaging with our leadership team, and expect a swift technology evaluation within just 1 to 3 days. In a span of 10 to 18 days, you can construct fully automated, ready-to-integrate AI solutions using FutureAnalytica’s advanced platform, paving the way for a transformative approach to data management and analysis. Embrace the future of AI innovation with us today! -
20
Edge Intelligence
Edge Intelligence
Experience immediate advantages for your business right after installation. Discover the functionality of our system, which stands out as the quickest and most user-friendly solution for evaluating extensive geographically dispersed data. This innovative method of analytics breaks free from the limitations typically found in conventional big data warehouses, database designs, and edge computing frameworks. Gain insights into the platform's features that facilitate centralized management and control, streamline automated software setup and orchestration, and support data input and storage across diverse geographic locations. By adopting this new approach, you can enhance your data capabilities and drive growth more effectively than ever before. -
21
Astera DW Builder
Astera Software
In Astera DW Builder, data models play a crucial role in the data warehousing ecosystem, acting as the essential groundwork for various subsequent tasks, including ETL mappings, populating dimension and fact tables, facilitating data access via the integrated OData module, and managing changes post-deployment. This centrality of data models ensures that all processes are interconnected and streamlined, thereby enhancing the overall efficiency of data management. -
22
Cloudera
Cloudera
Oversee and protect the entire data lifecycle from the Edge to AI across any cloud platform or data center. Functions seamlessly within all leading public cloud services as well as private clouds, providing a uniform public cloud experience universally. Unifies data management and analytical processes throughout the data lifecycle, enabling access to data from any location. Ensures the implementation of security measures, regulatory compliance, migration strategies, and metadata management in every environment. With a focus on open source, adaptable integrations, and compatibility with various data storage and computing systems, it enhances the accessibility of self-service analytics. This enables users to engage in integrated, multifunctional analytics on well-managed and protected business data, while ensuring a consistent experience across on-premises, hybrid, and multi-cloud settings. Benefit from standardized data security, governance, lineage tracking, and control, all while delivering the robust and user-friendly cloud analytics solutions that business users need, effectively reducing the reliance on unauthorized IT solutions. Additionally, these capabilities foster a collaborative environment where data-driven decision-making is streamlined and more efficient. -
23
Fully compatible with Netezza, this solution offers a streamlined command-line upgrade option. It can be deployed on-premises, in the cloud, or through a hybrid model. The IBM® Netezza® Performance Server for IBM Cloud Pak® for Data serves as a sophisticated platform for data warehousing and analytics, catering to both on-premises and cloud environments. With significant improvements in in-database analytics functions, this next-generation Netezza empowers users to engage in data science and machine learning with datasets that can reach petabyte levels. It includes features for detecting failures and ensuring rapid recovery, making it robust for enterprise use. Users can upgrade existing systems using a single command-line interface. The platform allows for querying multiple systems as a cohesive unit. You can select the nearest data center or availability zone, specify the desired compute units and storage capacity, and initiate the setup seamlessly. Furthermore, the IBM® Netezza® Performance Server is accessible on IBM Cloud®, Amazon Web Services (AWS), and Microsoft Azure, and it can also be implemented on a private cloud, all powered by the capabilities of IBM Cloud Pak for Data System. This flexibility enables organizations to tailor the deployment to their specific needs and infrastructure.
-
24
AtScale
AtScale
AtScale streamlines and speeds up business intelligence processes, leading to quicker insights, improved decision-making, and enhanced returns on your cloud analytics investments. It removes the need for tedious data engineering tasks, such as gathering, maintaining, and preparing data for analysis. By centralizing business definitions, AtScale ensures that KPI reporting remains consistent across various BI tools. The platform not only accelerates the time it takes to gain insights from data but also optimizes the management of cloud computing expenses. Additionally, it allows organizations to utilize their existing data security protocols for analytics, regardless of where the data is stored. AtScale’s Insights workbooks and models enable users to conduct Cloud OLAP multidimensional analysis on datasets sourced from numerous providers without the requirement for data preparation or engineering. With user-friendly built-in dimensions and measures, businesses can swiftly extract valuable insights that inform their strategic decisions, enhancing their overall operational efficiency. This capability empowers teams to focus on analysis rather than data handling, leading to sustained growth and innovation. -
25
Oracle Warehouse Builder
Oracle
Oracle Warehouse Builder (OWB) 11g serves as a comprehensive solution for integrating data within a data warehousing context. The 11gR2 version comes pre-installed with Oracle Database 11gR2 while remaining compatible for installation and use alongside Oracle Database versions 10gR2 and 11gR1. This document outlines the licensing details for Warehouse Builder and provides crucial links for further information. The capabilities of OWB are categorized into several feature groups: Basic ETL offers fundamental ETL functionalities designed for the creation of straightforward data warehouses, also known as Core ETL, which aligns closely with the feature set of Warehouse Builder 10gR1. The enterprise ETL group delivers enhanced functionalities tailored for sophisticated enterprise data warehousing and integration projects. Additionally, application Adapters for OWB facilitate connections to SAP and Oracle ERP applications, thereby broadening its integration capabilities. For a thorough overview of the features included in the Enterprise ETL feature set, one can refer to the Fusion Middleware 11g licensing guide, specifically within the section dedicated to Oracle Data Integrator, Enterprise Edition. This structured approach ensures users can easily identify the tools and resources they need for effective data management. -
26
SwiftStack
SwiftStack
SwiftStack is a versatile data storage and management solution designed for applications and workflows that rely heavily on data, enabling effortless access to information across both private and public infrastructures. Its on-premises offering, SwiftStack Storage, is a scalable and geographically dispersed object and file storage solution that can begin with tens of terabytes and scale to hundreds of petabytes. By integrating your current enterprise data into the SwiftStack platform, you can enhance accessibility for your contemporary cloud-native applications without the need for another extensive storage migration, utilizing your existing tier 1 storage effectively. SwiftStack 1space further optimizes data management by distributing information across various clouds, both public and private, based on operator-defined policies, thereby bringing applications and users closer to their needed data. This system creates a unified addressable namespace, ensuring that data movement within the platform remains seamless and transparent to both applications and users alike, enhancing the overall efficiency of data access and management. Moreover, this approach simplifies the complexities associated with data handling in multi-cloud environments, allowing organizations to focus on their core operations. -
27
Blendo
Blendo
Blendo stands out as the premier data integration tool for ETL and ELT, significantly streamlining the process of connecting various data sources to databases. With an array of natively supported data connection types, Blendo transforms the extract, load, and transform (ETL) workflow into a simple task. By automating both data management and transformation processes, it allows users to gain business intelligence insights in a more efficient manner. The challenges of data analysis are alleviated, as Blendo eliminates the burdens of data warehousing, management, and integration. Users can effortlessly automate and synchronize their data from numerous SaaS applications into a centralized data warehouse. Thanks to user-friendly, ready-made connectors, establishing a connection to any data source is as straightforward as logging in, enabling immediate data syncing. This means no more need for complicated integrations, tedious data exports, or script development. By doing so, businesses can reclaim valuable hours and reveal critical insights. Enhance your journey toward understanding your data with dependable information, as well as analytics-ready tables and schemas designed specifically for seamless integration with any BI software, thus fostering a more insightful decision-making process. Ultimately, Blendo’s capabilities empower businesses to focus on analysis rather than the intricacies of data handling. -
28
Databend
Databend
FreeDatabend is an innovative, cloud-native data warehouse crafted to provide high-performance and cost-effective analytics for extensive data processing needs. Its architecture is elastic, allowing it to scale dynamically in response to varying workload demands, thus promoting efficient resource use and reducing operational expenses. Developed in Rust, Databend delivers outstanding performance through features such as vectorized query execution and columnar storage, which significantly enhance data retrieval and processing efficiency. The cloud-first architecture facilitates smooth integration with various cloud platforms while prioritizing reliability, data consistency, and fault tolerance. As an open-source solution, Databend presents a versatile and accessible option for data teams aiming to manage big data analytics effectively in cloud environments. Additionally, its continuous updates and community support ensure that users can take advantage of the latest advancements in data processing technology. -
29
Hologres
Alibaba Cloud
Hologres is a hybrid serving and analytical processing system designed for the cloud that integrates effortlessly with the big data ecosystem. It enables users to analyze and manage petabyte-scale data with remarkable concurrency and minimal latency. With Hologres, you can leverage your business intelligence tools to conduct multidimensional data analysis and gain insights into your business operations in real-time. This platform addresses common issues faced by traditional real-time data warehousing solutions, such as data silos and redundancy. Hologres effectively fulfills the needs for data migration while facilitating the real-time analysis of extensive data volumes. It delivers responses to queries on petabyte-scale datasets in under a second, empowering users to explore their data dynamically. Additionally, it supports highly concurrent writes and queries, reaching speeds of up to 100 million transactions per second (TPS), ensuring that data is immediately available for querying after it’s written. This immediate access to data enhances the overall efficiency of business analytics. -
30
BigLake
Google
$5 per TBBigLake serves as a storage engine that merges the functionalities of data warehouses and lakes, allowing BigQuery and open-source frameworks like Spark to efficiently access data while enforcing detailed access controls. It enhances query performance across various multi-cloud storage systems and supports open formats, including Apache Iceberg. Users can maintain a single version of data, ensuring consistent features across both data warehouses and lakes. With its capacity for fine-grained access management and comprehensive governance over distributed data, BigLake seamlessly integrates with open-source analytics tools and embraces open data formats. This solution empowers users to conduct analytics on distributed data, regardless of its storage location or method, while selecting the most suitable analytics tools, whether they be open-source or cloud-native, all based on a singular data copy. Additionally, it offers fine-grained access control for open-source engines such as Apache Spark, Presto, and Trino, along with formats like Parquet. As a result, users can execute high-performing queries on data lakes driven by BigQuery. Furthermore, BigLake collaborates with Dataplex, facilitating scalable management and logical organization of data assets. This integration not only enhances operational efficiency but also simplifies the complexities of data governance in large-scale environments. -
31
Tweakstreet
Twineworks
Streamline your data science processes by establishing automation workflows tailored to your needs. With the ability to design on your desktop and execute anywhere, this modern data integration tool empowers you with complete control over your data. Tweakstreet functions as a locally-run application on your computer, ensuring that you maintain ownership and security of your information. Whether on a desktop, in your data center, or within cloud servers, you can create and run your workflows seamlessly. It offers extensive connectivity options, featuring connectors for a variety of popular data sources, including file formats, databases, and online services, with new connectors added regularly. Users benefit from built-in support for essential data exchange formats like CSV, XML, and JSON, as well as compatibility with well-known SQL databases such as Postgres, MariaDB, SQL Server, Oracle, MySQL, and DB2. Moreover, Tweakstreet accommodates any database with JDBC drivers, and provides support for HTTP interfaces including REST-style APIs, complete with robust OAuth 2.0 authentication for secure access to widely-used APIs. This flexibility and comprehensive support make Tweakstreet an invaluable tool for data professionals looking to enhance their workflows. -
32
Space and Time
Space and Time
Dapps that leverage Space and Time facilitate seamless blockchain interoperability by integrating SQL and machine learning for both Gaming and DeFi data, catering to any decentralized applications that require reliable tamperproofing, blockchain security, or enterprise-level scalability. By combining blockchain information with a cutting-edge database, we create a link between off-chain storage and on-chain analytical insights. This approach simplifies multi-chain integration, data indexing, and anchoring, allowing for the efficient joining of on-chain and off-chain data. Moreover, it enhances data security through established and robust capabilities. You can select your source data by connecting to our indexed real-time blockchain data from various major chains, as well as incorporating off-chain data you have gathered. Additionally, you can send tamperproof query results securely to smart contracts in a trustless manner or directly publish these results on-chain, supported by our innovative cryptographic assurances known as Proof of SQL. This technology not only streamlines data management but also ensures that the integrity of the data remains intact throughout the process. -
33
IBM's industry data model serves as a comprehensive guide that incorporates shared components aligned with best practices and regulatory standards, tailored to meet the intricate data and analytical demands of various sectors. By utilizing such a model, organizations can effectively oversee data warehouses and data lakes, enabling them to extract more profound insights that lead to improved decision-making. These models encompass designs for warehouses, standardized business terminology, and business intelligence templates, all organized within a predefined framework aimed at expediting the analytics journey for specific industries. Speed up the analysis and design of functional requirements by leveraging tailored information infrastructures specific to the industry. Develop and optimize data warehouses with a cohesive architecture that adapts to evolving requirements, thereby minimizing risks and enhancing data delivery to applications throughout the organization, which is crucial for driving transformation. Establish comprehensive enterprise-wide key performance indicators (KPIs) while addressing the needs for compliance, reporting, and analytical processes. Additionally, implement industry-specific vocabularies and templates for regulatory reporting to effectively manage and govern your data assets, ensuring thorough oversight and accountability. This multifaceted approach not only streamlines operations but also empowers organizations to respond proactively to the dynamic nature of their industry landscape.
-
34
beVault
beVault
beVault serves as an all-encompassing platform for automating data management, specifically tailored to tackle the complexities associated with changing business demands and data frameworks. The platform significantly accelerates the creation and implementation of new business scenarios, enhancing data warehouse automation by as much as fivefold, which in turn shortens time-to-market while preserving organizational agility. It promotes effective collaboration between IT and business stakeholders through its user-friendly, business-focused interface, enabling teams to collaboratively construct data models without encountering technical hurdles. As a comprehensive low-code solution, beVault reduces reliance on costly resources and eliminates the need for multiple licenses, streamlining data management tools to cut down on both implementation and operational expenses. Noteworthy attributes of the platform include a scalable, business-oriented model that evolves with data requirements, an integrated data quality framework to uphold high standards, and a versatile architecture that supports on-premises, cloud, or hybrid deployment options. Additionally, beVault is designed to adapt to future technological advancements, ensuring that organizations remain competitive and responsive to new challenges. -
35
Kinetica
Kinetica
A cloud database that can scale to handle large streaming data sets. Kinetica harnesses modern vectorized processors to perform orders of magnitude faster for real-time spatial or temporal workloads. In real-time, track and gain intelligence from billions upon billions of moving objects. Vectorization unlocks new levels in performance for analytics on spatial or time series data at large scale. You can query and ingest simultaneously to take action on real-time events. Kinetica's lockless architecture allows for distributed ingestion, which means data is always available to be accessed as soon as it arrives. Vectorized processing allows you to do more with fewer resources. More power means simpler data structures which can be stored more efficiently, which in turn allows you to spend less time engineering your data. Vectorized processing allows for incredibly fast analytics and detailed visualizations of moving objects at large scale. -
36
Weld
Weld
€750 per monthEffortlessly create, edit, and manage your data models without the hassle of needing another tool by using Weld. This platform is equipped with an array of features designed to streamline your data modeling process, including intelligent autocomplete, code folding, error highlighting, audit logs, version control, and collaboration capabilities. Moreover, it utilizes the same text editor as VS Code, ensuring a fast, efficient, and visually appealing experience. Your queries are neatly organized in a library that is not only easily searchable but also accessible at any time. The audit logs provide transparency by showing when a query was last modified and by whom. Weld Model allows you to materialize your models in various formats such as tables, incremental tables, views, or tailored materializations that suit your specific design. Furthermore, you can conduct all your data operations within a single, user-friendly platform, supported by a dedicated team of data analysts ready to assist you. This integrated approach simplifies the complexities of data management, making it more efficient and less time-consuming. -
37
WhereScape
WhereScape Software
WhereScape is a tool that helps IT organizations of any size to use automation to build, deploy, manage, and maintain data infrastructure faster. WhereScape automation is trusted by more than 700 customers around the world to eliminate repetitive, time-consuming tasks such as hand-coding and other tedious aspects of data infrastructure projects. This allows data warehouses, vaults and lakes to be delivered in days or weeks, rather than months or years. -
38
PurpleCube
PurpleCube
Experience an enterprise-level architecture and a cloud data platform powered by Snowflake® that enables secure storage and utilization of your data in the cloud. With integrated ETL and an intuitive drag-and-drop visual workflow designer, you can easily connect, clean, and transform data from over 250 sources. Harness cutting-edge Search and AI technology to quickly generate insights and actionable analytics from your data within seconds. Utilize our advanced AI/ML environments to create, refine, and deploy your predictive analytics and forecasting models. Take your data capabilities further with our comprehensive AI/ML frameworks, allowing you to design, train, and implement AI models through the PurpleCube Data Science module. Additionally, construct engaging BI visualizations with PurpleCube Analytics, explore your data using natural language searches, and benefit from AI-driven insights and intelligent recommendations that reveal answers to questions you may not have considered. This holistic approach ensures that you are equipped to make data-driven decisions with confidence and clarity. -
39
Integrate data within a business framework to enable users to derive insights through our comprehensive data and analytics cloud platform. The SAP Data Warehouse Cloud merges analytics and data within a cloud environment that features data integration, databases, data warehousing, and analytical tools, facilitating the emergence of a data-driven organization. Utilizing the SAP HANA Cloud database, this software-as-a-service (SaaS) solution enhances your comprehension of business data, allowing for informed decision-making based on up-to-the-minute information. Seamlessly connect data from various multi-cloud and on-premises sources in real-time while ensuring the preservation of relevant business context. Gain insights from real-time data and conduct analyses at lightning speed, made possible by the capabilities of SAP HANA Cloud. Equip all users with the self-service functionality to connect, model, visualize, and securely share their data in an IT-governed setting. Additionally, take advantage of pre-built industry and line-of-business content, templates, and data models to further streamline your analytics process. This holistic approach not only fosters collaboration but also enhances productivity across your organization.
-
40
INGEST. PREPARE. DELIVER. ALL WITH A SINGLE TOOL. Build a data infrastructure capable of ingesting, transforming, modeling, and delivering clean, reliable data in the fastest, most efficient way possible - all within a single, low-code user interface. ALL THE DATA INTEGRATION CAPABILITIES YOU NEED IN A SINGLE SOLUTION. TimeXtender seamlessly overlays and accelerates your data infrastructure, which means you can build an end-to-end data solution in days, not months - no more costly delays or disruptions. Say goodbye to a pieced-together Frankenstack of disconnected tools and systems. Say hello to a holistic solution for data integration that's optimized for agility. Unlock the full potential of your data with TimeXtender. Our comprehensive solution enables organizations to build future-proof data infrastructure and streamline data workflows, empowering every member of your team.
-
41
Vaultspeed
VaultSpeed
€600 per user per monthAchieve rapid automation for your data warehouse with Vaultspeed, an innovative tool adhering to the Data Vault 2.0 standards and backed by a decade of practical experience in data integration. This solution supports a comprehensive range of Data Vault 2.0 objects and offers various implementation options. It enables the swift generation of high-quality code across all scenarios within a Data Vault 2.0 integration framework. By integrating Vaultspeed into your existing setup, you can maximize your investments in both tools and expertise. You will also enjoy guaranteed compliance with the most recent Data Vault 2.0 standard, thanks to our ongoing collaboration with Scalefree, the authoritative knowledge source for the Data Vault 2.0 community. The Data Vault 2.0 modeling methodology simplifies model components to their essential elements, facilitating a uniform loading pattern and consistent database structure. Furthermore, Vaultspeed utilizes a template system that comprehensively understands the various object types and includes straightforward configuration settings, enhancing user experience and efficiency in data management. -
42
QuerySurge
RTTS
8 RatingsQuerySurge is the smart Data Testing solution that automates the data validation and ETL testing of Big Data, Data Warehouses, Business Intelligence Reports and Enterprise Applications with full DevOps functionality for continuous testing. Use Cases - Data Warehouse & ETL Testing - Big Data (Hadoop & NoSQL) Testing - DevOps for Data / Continuous Testing - Data Migration Testing - BI Report Testing - Enterprise Application/ERP Testing Features Supported Technologies - 200+ data stores are supported QuerySurge Projects - multi-project support Data Analytics Dashboard - provides insight into your data Query Wizard - no programming required Design Library - take total control of your custom test desig BI Tester - automated business report testing Scheduling - run now, periodically or at a set time Run Dashboard - analyze test runs in real-time Reports - 100s of reports API - full RESTful API DevOps for Data - integrates into your CI/CD pipeline Test Management Integration QuerySurge will help you: - Continuously detect data issues in the delivery pipeline - Dramatically increase data validation coverage - Leverage analytics to optimize your critical data - Improve your data quality at speed -
43
Agile Data Engine
Agile Data Engine
Agile Data Engine serves as a robust DataOps platform crafted to optimize the lifecycle of cloud-based data warehouses, encompassing their development, deployment, and management. This solution consolidates data modeling, transformation processes, continuous deployment, workflow orchestration, monitoring, and API integration into a unified SaaS offering. By leveraging a metadata-driven model, it automates the generation of SQL scripts and the workflows for data loading, significantly boosting efficiency and responsiveness in data operations. The platform accommodates a variety of cloud database systems such as Snowflake, Databricks SQL, Amazon Redshift, Microsoft Fabric (Warehouse), Azure Synapse SQL, Azure SQL Database, and Google BigQuery, thus providing considerable flexibility across different cloud infrastructures. Furthermore, its modular data product architecture and pre-built CI/CD pipelines ensure smooth integration and facilitate ongoing delivery, empowering data teams to quickly adjust to evolving business demands. Additionally, Agile Data Engine offers valuable insights and performance metrics related to the data platform, enhancing overall operational transparency and effectiveness. This capability allows organizations to make informed decisions based on real-time data analytics, further driving strategic initiatives. -
44
Firebolt
Firebolt Analytics
Firebolt offers incredible speed and flexibility to tackle even the most daunting data challenges. By completely reimagining the cloud data warehouse, Firebolt provides an exceptionally rapid and efficient analytics experience regardless of scale. This significant leap in performance enables you to process larger datasets with greater detail through remarkably swift queries. You can effortlessly adjust your resources to accommodate any workload, volume of data, and number of simultaneous users. At Firebolt, we are committed to making data warehouses far more user-friendly than what has traditionally been available. This commitment drives us to simplify processes that were once complex and time-consuming into manageable tasks. Unlike other cloud data warehouse providers that profit from the resources you utilize, our model prioritizes transparency and fairness. We offer a pricing structure that ensures you can expand your operations without incurring excessive costs, making our solution not only efficient but also economical. Ultimately, Firebolt empowers organizations to harness the full potential of their data without the usual headaches. -
45
SQream
SQream
SQream is an advanced data analytics platform powered by GPU technology that allows companies to analyze large and intricate datasets with remarkable speed and efficiency. By utilizing NVIDIA's powerful GPU capabilities, SQream can perform complex SQL queries on extensive datasets in a fraction of the time, turning processes that traditionally take hours into mere minutes. The platform features dynamic scalability, enabling organizations to expand their data operations seamlessly as they grow, without interrupting ongoing analytics workflows. SQream's flexible architecture caters to a variety of deployment needs, ensuring it can adapt to different infrastructure requirements. Targeting sectors such as telecommunications, manufacturing, finance, advertising, and retail, SQream equips data teams with the tools to extract valuable insights, promote data accessibility, and inspire innovation, all while significantly cutting costs. This ability to enhance operational efficiency provides a competitive edge in today’s data-driven market.