Best MLJAR Studio Alternatives in 2025
Find the top alternatives to MLJAR Studio currently available. Compare ratings, reviews, pricing, and features of MLJAR Studio alternatives in 2025. Slashdot lists the best MLJAR Studio alternatives on the market that offer competing products that are similar to MLJAR Studio. Sort through MLJAR Studio alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
677 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
2
BigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises. Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently.
-
3
Google Colab
Google
8 RatingsGoogle Colab is a complimentary, cloud-based Jupyter Notebook platform that facilitates environments for machine learning, data analysis, and educational initiatives. It provides users with immediate access to powerful computational resources, including GPUs and TPUs, without the need for complex setup, making it particularly suitable for those engaged in data-heavy projects. Users can execute Python code in an interactive notebook format, collaborate seamlessly on various projects, and utilize a wide range of pre-built tools to enhance their experimentation and learning experience. Additionally, Colab has introduced a Data Science Agent that streamlines the analytical process by automating tasks from data comprehension to providing insights within a functional Colab notebook, although it is important to note that the agent may produce errors. This innovative feature further supports users in efficiently navigating the complexities of data science workflows. -
4
At Posit, we strive to enhance data science by making it more open, user-friendly, accessible, and collaborative for everyone. Our suite of tools empowers individuals, teams, and enterprises to utilize advanced analytics to derive meaningful insights and create a significant impact. From our inception, we have committed to open-source software, such as RStudio IDE, Shiny, and tidyverse, because we firmly believe in democratizing access to data science tools. We offer R and Python-based solutions designed to streamline the analysis process, enabling you to achieve higher-quality results in less time. Our platform facilitates secure sharing of data-science applications across your organization, reinforcing the idea that our code belongs to you. You can build upon it, share it, and use it to enhance the lives of others. By simplifying the processes of uploading, storing, accessing, and distributing your work, we aim to make your experience seamless. We are always excited to learn about the incredible projects being developed using our tools globally, and we cherish the opportunity to share those inspiring stories with the community. Ultimately, our mission is to foster a vibrant ecosystem where data science can flourish for everyone involved.
-
5
Deepnote
Deepnote
FreeDeepnote is building the best data science notebook for teams. Connect your data, explore and analyze it within the notebook with real-time collaboration and versioning. Share links to your projects with other analysts and data scientists on your team, or present your polished, published notebooks to end users and stakeholders. All of this is done through a powerful, browser-based UI that runs in the cloud. -
6
Hex
Hex
$24 per user per monthHex unites the finest features of notebooks, business intelligence, and documentation into a cohesive and collaborative user interface, establishing itself as a contemporary Data Workspace. It simplifies the process of connecting to various data sources and allows for collaborative analysis via SQL and Python-based notebooks, enabling users to share their findings as interactive data applications and narratives. Upon entering Hex, the Projects page serves as the default landing area, making it easy to access both your own projects and those shared within your workspace. The outline feature offers a streamlined overview of all cells contained in a project's Logic View, where each cell is annotated with the variables it defines. Furthermore, cells that produce visible outputs—such as chart cells, input parameters, and markdown cells—provide a preview of their results. By clicking on any cell within the outline, users can instantly navigate to that specific location in the logic, enhancing the overall efficiency of the workflow. This functionality ensures that collaboration and data exploration are both intuitive and effective. -
7
Zerve AI
Zerve AI
By combining the advantages of a notebook with the functionality of an IDE, experts are empowered to analyze data while simultaneously developing reliable code, all supported by a fully automated cloud infrastructure. Zerve revolutionizes the data science development environment, providing teams focused on data science and machine learning with a cohesive platform to explore, collaborate, construct, and deploy their AI projects like never before. This innovative tool ensures true language interoperability, allowing users to seamlessly integrate Python, R, SQL, or Markdown within the same workspace, facilitating the connection of various code blocks. Zerve eliminates the frustrations of lengthy code execution or cumbersome containers by enabling unlimited parallel processing throughout the entire development process. Furthermore, artifacts generated during analysis are automatically serialized, versioned, stored, and preserved, making it simple to modify any step in the data pipeline without the need to reprocess earlier stages. Users also benefit from precise control over computing resources and additional memory, which is essential for handling intricate data transformations. With Zerve, data science teams can enhance their workflow efficiency and streamline project management significantly. -
8
Create, execute, and oversee AI models while enhancing decision-making at scale across any cloud infrastructure. IBM Watson Studio enables you to implement AI seamlessly anywhere as part of the IBM Cloud Pak® for Data, which is the comprehensive data and AI platform from IBM. Collaborate across teams, streamline the management of the AI lifecycle, and hasten the realization of value with a versatile multicloud framework. You can automate the AI lifecycles using ModelOps pipelines and expedite data science development through AutoAI. Whether preparing or constructing models, you have the option to do so visually or programmatically. Deploying and operating models is made simple with one-click integration. Additionally, promote responsible AI governance by ensuring your models are fair and explainable to strengthen business strategies. Leverage open-source frameworks such as PyTorch, TensorFlow, and scikit-learn to enhance your projects. Consolidate development tools, including leading IDEs, Jupyter notebooks, JupyterLab, and command-line interfaces, along with programming languages like Python, R, and Scala. Through the automation of AI lifecycle management, IBM Watson Studio empowers you to build and scale AI solutions with an emphasis on trust and transparency, ultimately leading to improved organizational performance and innovation.
-
9
JetBrains DataSpell
JetBrains
$229Easily switch between command and editor modes using just one keystroke while navigating through cells with arrow keys. Take advantage of all standard Jupyter shortcuts for a smoother experience. Experience fully interactive outputs positioned directly beneath the cell for enhanced visibility. When working within code cells, benefit from intelligent code suggestions, real-time error detection, quick-fix options, streamlined navigation, and many additional features. You can operate with local Jupyter notebooks or effortlessly connect to remote Jupyter, JupyterHub, or JupyterLab servers directly within the IDE. Execute Python scripts or any expressions interactively in a Python Console, observing outputs and variable states as they happen. Split your Python scripts into code cells using the #%% separator, allowing you to execute them one at a time like in a Jupyter notebook. Additionally, explore DataFrames and visual representations in situ through interactive controls, all while enjoying support for a wide range of popular Python scientific libraries, including Plotly, Bokeh, Altair, ipywidgets, and many others, for a comprehensive data analysis experience. This integration allows for a more efficient workflow and enhances productivity while coding. -
10
Zepl
Zepl
Coordinate, explore, and oversee all projects within your data science team efficiently. With Zepl's advanced search functionality, you can easily find and repurpose both models and code. The enterprise collaboration platform provided by Zepl allows you to query data from various sources like Snowflake, Athena, or Redshift while developing your models using Python. Enhance your data interaction with pivoting and dynamic forms that feature visualization tools such as heatmaps, radar, and Sankey charts. Each time you execute your notebook, Zepl generates a new container, ensuring a consistent environment for your model runs. Collaborate with teammates in a shared workspace in real time, or leave feedback on notebooks for asynchronous communication. Utilize precise access controls to manage how your work is shared, granting others read, edit, and execute permissions to facilitate teamwork and distribution. All notebooks benefit from automatic saving and version control, allowing you to easily name, oversee, and revert to previous versions through a user-friendly interface, along with smooth exporting capabilities to Github. Additionally, the platform supports integration with external tools, further streamlining your workflow and enhancing productivity. -
11
Oracle Machine Learning
Oracle
Machine learning reveals concealed patterns and valuable insights within enterprise data, ultimately adding significant value to businesses. Oracle Machine Learning streamlines the process of creating and deploying machine learning models for data scientists by minimizing data movement, incorporating AutoML technology, and facilitating easier deployment. Productivity for data scientists and developers is enhanced while the learning curve is shortened through the use of user-friendly Apache Zeppelin notebook technology based on open source. These notebooks accommodate SQL, PL/SQL, Python, and markdown interpreters tailored for Oracle Autonomous Database, enabling users to utilize their preferred programming languages when building models. Additionally, a no-code interface that leverages AutoML on Autonomous Database enhances accessibility for both data scientists and non-expert users, allowing them to harness powerful in-database algorithms for tasks like classification and regression. Furthermore, data scientists benefit from seamless model deployment through the integrated Oracle Machine Learning AutoML User Interface, ensuring a smoother transition from model development to application. This comprehensive approach not only boosts efficiency but also democratizes machine learning capabilities across the organization. -
12
Key Ward
Key Ward
€9,000 per yearEffortlessly manage, process, and transform CAD, FE, CFD, and test data with ease. Establish automatic data pipelines for machine learning, reduced order modeling, and 3D deep learning applications. Eliminate the complexity of data science without the need for coding. Key Ward's platform stands out as the pioneering end-to-end no-code engineering solution, fundamentally changing the way engineers work with their data, whether it be experimental or CAx. By harnessing the power of engineering data intelligence, our software empowers engineers to seamlessly navigate their multi-source data, extracting immediate value through integrated advanced analytics tools while also allowing for the custom development of machine learning and deep learning models, all within a single platform with just a few clicks. Centralize, update, extract, sort, clean, and prepare your diverse data sources for thorough analysis, machine learning, or deep learning applications automatically. Additionally, leverage our sophisticated analytics tools on your experimental and simulation data to uncover correlations, discover dependencies, and reveal underlying patterns that can drive innovation in engineering processes. Ultimately, this approach streamlines workflows, enhancing productivity and enabling more informed decision-making in engineering endeavors. -
13
Analance
Ducen
Analance is a comprehensive and scalable solution that integrates Data Science, Advanced Analytics, Business Intelligence, and Data Management into one seamless, self-service platform. Designed to empower users with essential analytical capabilities, it ensures that data insights are readily available to all, maintains consistent performance as user demands expand, and meets ongoing business goals within a singular framework. Analance is dedicated to transforming high-quality data into precise predictions, providing both seasoned data scientists and novice users with intuitive, point-and-click pre-built algorithms alongside a flexible environment for custom coding. By bridging the gap between advanced analytics and user accessibility, Analance facilitates informed decision-making across organizations. Company – Overview Ducen IT supports Business and IT professionals in Fortune 1000 companies by offering advanced analytics, business intelligence, and data management through its distinctive, all-encompassing data science platform known as Analance. -
14
Empowering businesses to engage in genuine data science quickly and effectively through a comprehensive machine learning platform is crucial. By minimizing the time spent managing tools and infrastructure, organizations can concentrate on developing machine learning applications that drive growth. Anaconda Enterprise alleviates the challenges associated with ML operations, grants access to open-source innovations, and lays the groundwork for robust data science and machine learning operations without confining users to specific models, templates, or workflows. Software developers and data scientists can seamlessly collaborate within AE to create, test, debug, and deploy models using their chosen programming languages and tools. Additionally, AE facilitates access to both notebooks and integrated development environments (IDEs), enhancing collaborative efficiency. Users can also select from a variety of example projects or utilize preconfigured projects tailored to their needs. Furthermore, AE automatically containerizes projects, ensuring they can be effortlessly transitioned between various environments as required. This flexibility ultimately empowers teams to innovate and adapt to changing business demands more readily.
-
15
Obviously AI
Obviously AI
$75 per monthExperience the entire journey of developing machine learning algorithms and forecasting results with just a single click. Not every dataset is inherently suitable for machine learning; leverage the Data Dialog to effortlessly refine your data without the hassle of file manipulation. You can easily distribute your prediction reports among your team or make them publicly accessible, allowing anyone to engage with your model and generate predictions. Integrate dynamic ML predictions directly into your application through our user-friendly low-code API. Assess factors like willingness to pay, evaluate leads, and more, all in real-time. Obviously AI equips you with the latest groundbreaking algorithms while ensuring top-notch performance is maintained. You can now accurately forecast revenue, streamline supply chains, and tailor marketing efforts to individual needs. With just a CSV upload or a quick integration with your preferred data sources, you can select your prediction column from a convenient dropdown menu and watch as we automatically construct the AI for you. Additionally, enjoy beautifully crafted visualizations of predicted outcomes, identify key influencers, and explore "what-if" scenarios to better understand potential futures. This innovative approach transforms the way you interact with data and make predictions. -
16
Azure Data Science Virtual Machines
Microsoft
$0.005DSVMs, or Data Science Virtual Machines, are pre-configured Azure Virtual Machine images equipped with a variety of widely-used tools for data analysis, machine learning, and AI training. They ensure a uniform setup across teams, encouraging seamless collaboration and sharing of resources while leveraging Azure's scalability and management features. Offering a near-zero setup experience, these VMs provide a fully cloud-based desktop environment tailored for data science applications. They facilitate rapid and low-friction deployment suitable for both classroom settings and online learning environments. Users can execute analytics tasks on diverse Azure hardware configurations, benefiting from both vertical and horizontal scaling options. Moreover, the pricing structure allows individuals to pay only for the resources they utilize, ensuring cost-effectiveness. With readily available GPU clusters that come pre-configured for deep learning tasks, users can hit the ground running. Additionally, the VMs include various examples, templates, and sample notebooks crafted or validated by Microsoft, which aids in the smooth onboarding process for numerous tools and capabilities, including but not limited to Neural Networks through frameworks like PyTorch and TensorFlow, as well as data manipulation using R, Python, Julia, and SQL Server. This comprehensive package not only accelerates the learning curve for newcomers but also enhances productivity for seasoned data scientists. -
17
Metaflow
Metaflow
Data science projects achieve success when data scientists possess the ability to independently create, enhance, and manage comprehensive workflows while prioritizing their data science tasks over engineering concerns. By utilizing Metaflow alongside popular data science libraries like TensorFlow or SciKit Learn, you can write your models in straightforward Python syntax without needing to learn much that is new. Additionally, Metaflow supports the R programming language, broadening its usability. This tool aids in designing workflows, scaling them effectively, and deploying them into production environments. It automatically versions and tracks all experiments and data, facilitating easy inspection of results within notebooks. With tutorials included, newcomers can quickly familiarize themselves with the platform. You even have the option to duplicate all tutorials right into your current directory using the Metaflow command line interface, making it a seamless process to get started and explore further. As a result, Metaflow not only simplifies complex tasks but also empowers data scientists to focus on impactful analyses. -
18
Dataiku serves as a sophisticated platform for data science and machine learning, aimed at facilitating teams in the construction, deployment, and management of AI and analytics projects on a large scale. It enables a diverse range of users, including data scientists and business analysts, to work together in developing data pipelines, crafting machine learning models, and preparing data through various visual and coding interfaces. Supporting the complete AI lifecycle, Dataiku provides essential tools for data preparation, model training, deployment, and ongoing monitoring of projects. Additionally, the platform incorporates integrations that enhance its capabilities, such as generative AI, thereby allowing organizations to innovate and implement AI solutions across various sectors. This adaptability positions Dataiku as a valuable asset for teams looking to harness the power of AI effectively.
- 19
-
20
Streamlit is the quickest way to create and distribute data applications. It allows you to transform your data scripts into shareable web applications within minutes, all using Python and at no cost, eliminating the need for any front-end development skills. The platform is built on three core principles: first, it encourages the use of Python scripting; second, it enables you to construct an application with just a few lines of code through an intuitively simple API, which automatically updates when the source file is saved; and third, it simplifies interaction by making the addition of widgets as straightforward as declaring a variable, without the necessity to write a backend, define routes, or manage HTTP requests. Additionally, you can deploy your applications immediately by utilizing Streamlit’s sharing platform, which facilitates easy sharing, management, and collaboration on your projects. This minimalistic framework empowers you to create robust applications, such as the Face-GAN explorer, which employs Shaobo Guan’s TL-GAN project along with TensorFlow and NVIDIA’s PG-GAN to generate attributes-based facial images. Another example is a real-time object detection app that serves as an image browser for the Udacity self-driving car dataset, showcasing advanced capabilities in processing and recognizing objects in real-time. Through these diverse applications, Streamlit proves to be an invaluable tool for developers and data enthusiasts alike.
-
21
SAS Viya
SAS
SAS® Viya® offers a robust and scalable analytics platform that is both efficient and easy to implement, allowing organizations to address a variety of business challenges. The insights generated automatically help in pinpointing the most frequently used variables across all models, highlighting key variables selected along with evaluation outcomes for each model. With the integration of natural language generation, project summaries are produced in straightforward language, which simplifies the interpretation of reports for users. Moreover, members of the analytics team can enhance the insights report with project notes, promoting better communication and teamwork. SAS further enables the integration of open source code within analyses, allowing users to utilize open source algorithms effortlessly in its platform. This flexibility encourages collaboration throughout your organization, as users are free to program in their preferred language. Additionally, you can leverage SAS Deep Learning with Python (DLPy), an open-source package available on GitHub, to expand your analytical capabilities even further. By using these tools, businesses can significantly enhance their data-driven decision-making processes. -
22
Oracle Data Science
Oracle
A data science platform designed to enhance productivity offers unmatched features that facilitate the development and assessment of superior machine learning (ML) models. By leveraging enterprise-trusted data swiftly, businesses can achieve greater flexibility and meet their data-driven goals through simpler deployment of ML models. Cloud-based solutions enable organizations to uncover valuable business insights efficiently. The journey of constructing a machine learning model is inherently iterative, and this ebook meticulously outlines the stages involved in its creation. Readers can engage with notebooks to either build or evaluate various machine learning algorithms. Experimenting with AutoML can yield impressive data science outcomes, allowing users to create high-quality models with greater speed and ease. Moreover, automated machine learning processes quickly analyze datasets, recommending the most effective data features and algorithms while also fine-tuning models and clarifying their results. This comprehensive approach ensures that businesses can harness the full potential of their data, driving innovation and informed decision-making. -
23
Outerbounds
Outerbounds
Create and execute data-heavy projects using the user-friendly, open-source Metaflow framework. The Outerbounds platform offers a completely managed environment to run, scale, and deploy these projects with reliability. It serves as a comprehensive solution for all your machine learning and data science endeavors. You can securely access data from your current data warehouses and utilize a computing cluster that is tailored for both scalability and cost-effectiveness. With 24/7 managed orchestration, production workflows are streamlined and efficient. Results can be leveraged to enhance any application, empowering your data scientists while receiving approval from engineers. The Outerbounds Platform enables rapid development, large-scale experimentation, and confident production deployment, all while adhering to the policies set by your engineers and operating securely within your cloud account. Security is fundamentally integrated into our platform rather than being an afterthought. It meets your compliance needs through various layers of security measures, including centralized authentication, a strict permission framework, and clearly defined roles for task execution, ensuring that your data and processes remain safe. This cohesive structure allows teams to collaborate effectively while maintaining control over their data environment. -
24
Metacoder
Wazoo Mobile Technologies LLC
$89 per user/month Metacoder makes data processing faster and more efficient. Metacoder provides data analysts with the flexibility and tools they need to make data analysis easier. Metacoder automates data preparation steps like cleaning, reducing the time it takes to inspect your data before you can get up and running. It is a good company when compared to other companies. Metacoder is cheaper than similar companies and our management is actively developing based upon our valued customers' feedback. Metacoder is primarily used to support predictive analytics professionals in their work. We offer interfaces for database integrations, data cleaning, preprocessing, modeling, and display/interpretation of results. We make it easy to manage the machine learning pipeline and help organizations share their work. Soon, we will offer code-free solutions for image, audio and video as well as biomedical data. -
25
Kedro
Kedro
FreeKedro serves as a robust framework for establishing clean data science practices. By integrating principles from software engineering, it enhances the efficiency of machine-learning initiatives. Within a Kedro project, you will find a structured approach to managing intricate data workflows and machine-learning pipelines. This allows you to minimize the time spent on cumbersome implementation tasks and concentrate on addressing innovative challenges. Kedro also standardizes the creation of data science code, fostering effective collaboration among team members in problem-solving endeavors. Transitioning smoothly from development to production becomes effortless with exploratory code that can evolve into reproducible, maintainable, and modular experiments. Additionally, Kedro features a set of lightweight data connectors designed to facilitate the saving and loading of data across various file formats and storage systems, making data management more versatile and user-friendly. Ultimately, this framework empowers data scientists to work more effectively and with greater confidence in their projects. -
26
JetBrains Datalore
JetBrains
$19.90 per monthDatalore is a platform for collaborative data science and analytics that aims to improve the entire analytics workflow and make working with data more enjoyable for both data scientists as well as data-savvy business teams. Datalore is a collaborative platform that focuses on data teams workflow. It offers technical-savvy business users the opportunity to work with data teams using no-code and low-code, as well as the power of Jupyter Notebooks. Datalore allows business users to perform analytic self-service. They can work with data using SQL or no-code cells, create reports, and dive deep into data. It allows core data teams to focus on simpler tasks. Datalore allows data scientists and analysts to share their results with ML Engineers. You can share your code with ML Engineers on powerful CPUs and GPUs, and you can collaborate with your colleagues in real time. -
27
Domino Enterprise MLOps Platform
Domino Data Lab
1 RatingThe Domino Enterprise MLOps Platform helps data science teams improve the speed, quality, and impact of data science at scale. Domino is open and flexible, empowering professional data scientists to use their preferred tools and infrastructure. Data science models get into production fast and are kept operating at peak performance with integrated workflows. Domino also delivers the security, governance and compliance that enterprises expect. The Self-Service Infrastructure Portal makes data science teams become more productive with easy access to their preferred tools, scalable compute, and diverse data sets. By automating time-consuming and tedious DevOps tasks, data scientists can focus on the tasks at hand. The Integrated Model Factory includes a workbench, model and app deployment, and integrated monitoring to rapidly experiment, deploy the best models in production, ensure optimal performance, and collaborate across the end-to-end data science lifecycle. The System of Record has a powerful reproducibility engine, search and knowledge management, and integrated project management. Teams can easily find, reuse, reproduce, and build on any data science work to amplify innovation. -
28
Incorporate analytics into immediate interactions and event-driven functionalities. The SAS Visual Data Science Decisioning suite offers strong capabilities in data management, visualization, advanced analytics, and model oversight. It enhances decision-making by crafting, integrating, and governing analytically driven decision processes at scale, whether in real-time or through batch processing. Additionally, it facilitates analytics deployment in the data stream to uncover valuable insights. Tackle intricate analytical challenges with an intuitive visual interface that manages all stages of the analytics life cycle efficiently. Running on SAS® Viya®, SAS Visual Data Mining and Machine Learning merges data manipulation, exploration, feature development, and cutting-edge statistical, data mining, and machine learning methodologies within a single, scalable in-memory processing framework. Users can access data files, libraries, and existing scripts, or create new ones, via this web-based application that is conveniently accessible through any browser, thus enhancing flexibility and collaboration.
-
29
SAS Visual Statistics allows for collaborative data exploration among multiple users, enabling them to interactively develop and refine predictive models. Data scientists and statisticians can leverage the most suitable analytical techniques to act on insights at a detailed level. Consequently, you will discover insights at remarkable speeds, uncovering new opportunities for revenue growth. The platform facilitates the construction and fine-tuning of models aimed at specific demographics or segments while simultaneously running various scenarios. This capability encourages users to pose numerous what-if questions to enhance outcomes. Additionally, results can be operationalized through automatically generated score code. Users are empowered to visually manipulate data by adding or adjusting variables, eliminating outliers, and more. Changes can be instantly assessed for their impact on the model's predictive accuracy, allowing for swift adjustments. Data science teams enjoy the ultimate flexibility by working in their preferred programming languages, maximizing their expertise. Ultimately, SAS Visual Statistics integrates all analytical resources, making it a comprehensive solution for data-driven decision-making. It fosters an environment where innovation can thrive, pushing the boundaries of what data analysis can achieve.
-
30
Darwin
SparkCognition
$4000Darwin is an automated machine-learning product that allows your data science and business analysis teams to quickly move from data to meaningful results. Darwin assists organizations in scaling the adoption of data science across their teams and the implementation machine learning applications across operations to become data-driven enterprises. -
31
Comet
Comet
$179 per user per monthManage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders. -
32
Azure Notebooks
Microsoft
Create and execute code seamlessly using Jupyter notebooks hosted on Azure. Begin your journey at no cost with a free Azure Subscription for an enhanced experience. Ideal for data scientists, developers, students, and individuals from various backgrounds, you can develop and run code directly in your browser, transcending industry boundaries and skill levels. The platform boasts compatibility with more programming languages than any competitor, including Python 2, Python 3, R, and F#. Developed by Microsoft Azure, it's designed to be accessible and available from any browser, no matter where you are in the world, ensuring that your coding needs are met anytime, anywhere. With its user-friendly interface and robust capabilities, it empowers users to explore their coding projects with ease and flexibility. -
33
Gathr is a Data+AI fabric, helping enterprises rapidly deliver production-ready data and AI products. Data+AI fabric enables teams to effortlessly acquire, process, and harness data, leverage AI services to generate intelligence, and build consumer applications— all with unparalleled speed, scale, and confidence. Gathr’s self-service, AI-assisted, and collaborative approach enables data and AI leaders to achieve massive productivity gains by empowering their existing teams to deliver more valuable work in less time. With complete ownership and control over data and AI, flexibility and agility to experiment and innovate on an ongoing basis, and proven reliable performance at real-world scale, Gathr allows them to confidently accelerate POVs to production. Additionally, Gathr supports both cloud and air-gapped deployments, making it the ideal choice for diverse enterprise needs. Gathr, recognized by leading analysts like Gartner and Forrester, is a go-to-partner for Fortune 500 companies, such as United, Kroger, Philips, Truist, and many others.
-
34
Record Evolution
Record Evolution
Accelerate and simplify IoT data extraction, create AI for the shop floor, and visualize KPIs. Manage decentralized, compact data pods. Each data pod is completely autonomous and includes infrastructure for powerful analytics. Flexible storage capacity allows you to create multiple pods with different sizes. In a seamless data journey, you can collect, analyze, visualize, and visualize data. You can collect raw data from multiple sources, such as IoT routers or the web. Instantly generate reports and create custom infographics from your browser. Combine the power of VS Code, Observable and TablePlus to create interactive data science workbooks. You can see the current and past processes in real time and automate package loads up to reporting. -
35
Incedo Lighthouse
Incedo
Introducing a cutting-edge cloud-native platform for Decision Automation that utilizes AI to create tailored solutions for various use cases. Incedo LighthouseTM taps into AI's capabilities within a low-code framework to provide daily insights and actionable recommendations by harnessing the speed and power of Big Data. By optimizing customer experiences and offering highly personalized recommendations, Incedo LighthouseTM helps enhance your revenue potential significantly. Our AI and machine learning-driven models facilitate personalization throughout the entire customer journey. Additionally, Incedo LighthouseTM contributes to cost reduction by streamlining the processes of problem identification, insight generation, and the execution of focused actions. The platform features advanced machine learning for metric monitoring and root cause analysis, ensuring it effectively oversees the quality of large-scale data loads. By leveraging AI and ML to address quality issues, Incedo LighthouseTM enhances data reliability, fostering greater confidence among users in their data-driven decisions. Ultimately, this platform represents a transformative solution for organizations aiming to leverage technology for improved decision-making and operational efficiency. -
36
RapidMiner
Altair
FreeRapidMiner is redefining enterprise AI so anyone can positively shape the future. RapidMiner empowers data-loving people from all levels to quickly create and implement AI solutions that drive immediate business impact. Our platform unites data prep, machine-learning, and model operations. This provides a user experience that is both rich in data science and simplified for all others. Customers are guaranteed success with our Center of Excellence methodology, RapidMiner Academy and no matter what level of experience or resources they have. -
37
NVIDIA RAPIDS
NVIDIA
The RAPIDS software library suite, designed on CUDA-X AI, empowers users to run comprehensive data science and analytics workflows entirely on GPUs. It utilizes NVIDIA® CUDA® primitives for optimizing low-level computations while providing user-friendly Python interfaces that leverage GPU parallelism and high-speed memory access. Additionally, RAPIDS emphasizes essential data preparation processes tailored for analytics and data science, featuring a familiar DataFrame API that seamlessly integrates with various machine learning algorithms to enhance pipeline efficiency without incurring the usual serialization overhead. Moreover, it supports multi-node and multi-GPU setups, enabling significantly faster processing and training on considerably larger datasets. By incorporating RAPIDS, you can enhance your Python data science workflows with minimal code modifications and without the need to learn any new tools. This approach not only streamlines the model iteration process but also facilitates more frequent deployments, ultimately leading to improved machine learning model accuracy. As a result, RAPIDS significantly transforms the landscape of data science, making it more efficient and accessible. -
38
Saturn Cloud
Saturn Cloud
$0.005 per GB per hour 99 RatingsSaturn Cloud is an AI/ML platform available on every cloud. Data teams and engineers can build, scale, and deploy their AI/ML applications with any stack. -
39
Jupyter Notebook
Project Jupyter
3 RatingsThe Jupyter Notebook is a web-based open-source tool that enables users to create and distribute documents featuring live code, visualizations, equations, and written explanations. Its applications are diverse and encompass tasks such as data cleaning and transformation, statistical modeling, numerical simulations, data visualization, machine learning, among others, showcasing its versatility in various fields. Additionally, it serves as an excellent platform for collaboration and sharing insights within the data science community. -
40
Quadratic
Quadratic
Quadratic empowers your team to collaborate on data analysis, resulting in quicker outcomes. While you may already be familiar with spreadsheet usage, the capabilities offered by Quadratic are unprecedented. It fluently integrates Formulas and Python, with SQL and JavaScript support on the horizon. Utilize the programming languages that you and your colleagues are comfortable with. Unlike single-line formulas that can be difficult to decipher, Quadratic allows you to elaborate your formulas across multiple lines for clarity. The platform conveniently includes support for Python libraries, enabling you to incorporate the latest open-source tools seamlessly into your spreadsheets. The last executed code is automatically returned to the spreadsheet, and it accommodates raw values, 1/2D arrays, and Pandas DataFrames as standard. You can effortlessly retrieve data from an external API, with automatic updates reflected in Quadratic's cells. The interface allows for smooth navigation, permitting you to zoom out for an overview or zoom in to examine specifics. You can organize and traverse your data in a manner that aligns with your thought process, rather than conforming to the constraints imposed by traditional tools. This flexibility enhances not only productivity but also fosters a more intuitive approach to data management. -
41
Cloudera Data Science Workbench
Cloudera
Enhance the transition of machine learning from theoretical research to practical application with a seamless experience tailored for your conventional platform. Cloudera Data Science Workbench (CDSW) offers a user-friendly environment for data scientists, allowing them to work with Python, R, and Scala right in their web browsers. Users can download and explore the newest libraries and frameworks within customizable project settings that mirror the functionality of their local machines. CDSW ensures robust connectivity not only to CDH and HDP but also to the essential systems that support your data science teams in their analytical endeavors. Furthermore, Cloudera Data Science Workbench empowers data scientists to oversee their analytics pipelines independently, featuring integrated scheduling, monitoring, and email notifications. This platform enables rapid development and prototyping of innovative machine learning initiatives while simplifying the deployment process into a production environment. By streamlining these workflows, teams can focus on delivering impactful results more efficiently. -
42
esDynamic
eShard
FreeElevate your security testing experience, from establishing your setup to examining your data processing outcomes, with esDynamic, which streamlines your efforts and saves you precious time while maximizing the effectiveness of your attack strategies. Explore this adaptable and all-encompassing Python-based platform, expertly designed to support every step of your security evaluations. Tailor your research environment to fit your specific needs by seamlessly incorporating new tools, integrating equipment, and adjusting data. Moreover, esDynamic offers a vast repository of resources on intricate subjects that would usually necessitate considerable research or the input of a specialized team, providing immediate access to expert knowledge. Move away from disorganized data and piecemeal information. Embrace a unified workspace that encourages your team to easily exchange data and insights, enhancing collaboration and speeding up the discovery process. Additionally, consolidate and fortify your work within JupyterLab notebooks for streamlined sharing among your team members, ensuring everyone is on the same page. This holistic approach can significantly transform your security testing workflow. -
43
ZinkML
ZinkML Technologies
ZinkML is an open-source data science platform that does not require any coding. It was designed to help organizations leverage data more effectively. Its visual and intuitive interface eliminates the need for extensive programming expertise, making data sciences accessible to a wider range of users. ZinkML streamlines data science from data ingestion, model building, deployment and monitoring. Users can drag and drop components to create complex pipelines, explore the data visually, or build predictive models, all without writing a line of code. The platform offers automated model selection, feature engineering and hyperparameter optimization, which accelerates the model development process. ZinkML also offers robust collaboration features that allow teams to work seamlessly together on data science projects. By democratizing the data science, we empower businesses to get maximum value out of their data and make better decisions. -
44
Google Cloud Datalab
Google
Cloud Datalab is a user-friendly interactive platform designed for data exploration, analysis, visualization, and machine learning. This robust tool, developed for the Google Cloud Platform, allows users to delve into, transform, and visualize data while building machine learning models efficiently. Operating on Compute Engine, it smoothly integrates with various cloud services, enabling you to concentrate on your data science projects without distractions. Built using Jupyter (previously known as IPython), Cloud Datalab benefits from a vibrant ecosystem of modules and a comprehensive knowledge base. It supports the analysis of data across BigQuery, AI Platform, Compute Engine, and Cloud Storage, utilizing Python, SQL, and JavaScript for BigQuery user-defined functions. Whether your datasets are in the megabytes or terabytes range, Cloud Datalab is equipped to handle your needs effectively. You can effortlessly query massive datasets in BigQuery, perform local analysis on sampled subsets of data, and conduct training jobs on extensive datasets within AI Platform without any interruptions. This versatility makes Cloud Datalab a valuable asset for data scientists aiming to streamline their workflows and enhance productivity. -
45
MLflow
MLflow
MLflow is an open-source suite designed to oversee the machine learning lifecycle, encompassing aspects such as experimentation, reproducibility, deployment, and a centralized model registry. The platform features four main components that facilitate various tasks: tracking and querying experiments encompassing code, data, configurations, and outcomes; packaging data science code to ensure reproducibility across multiple platforms; deploying machine learning models across various serving environments; and storing, annotating, discovering, and managing models in a unified repository. Among these, the MLflow Tracking component provides both an API and a user interface for logging essential aspects like parameters, code versions, metrics, and output files generated during the execution of machine learning tasks, enabling later visualization of results. It allows for logging and querying experiments through several interfaces, including Python, REST, R API, and Java API. Furthermore, an MLflow Project is a structured format for organizing data science code, ensuring it can be reused and reproduced easily, with a focus on established conventions. Additionally, the Projects component comes equipped with an API and command-line tools specifically designed for executing these projects effectively. Overall, MLflow streamlines the management of machine learning workflows, making it easier for teams to collaborate and iterate on their models.