Liquid AI Description
At Liquid, we aim to develop highly advanced AI systems that can address challenges of varying magnitudes, enabling users to construct, utilize, and manage their own AI solutions effectively. This commitment is designed to guarantee that AI is seamlessly, dependably, and efficiently incorporated across all businesses. In the long run, Liquid aspires to produce and implement cutting-edge AI solutions that are accessible to all individuals. Our approach involves creating transparent models within an organization that values openness and clarity. Ultimately, we believe that this transparency fosters trust and innovation in the AI landscape.
Liquid AI Alternatives
Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
LM-Kit.NET
LM-Kit.NET is an enterprise-grade toolkit designed for seamlessly integrating generative AI into your .NET applications, fully supporting Windows, Linux, and macOS. Empower your C# and VB.NET projects with a flexible platform that simplifies the creation and orchestration of dynamic AI agents.
Leverage efficient Small Language Models for on‑device inference, reducing computational load, minimizing latency, and enhancing security by processing data locally. Experience the power of Retrieval‑Augmented Generation (RAG) to boost accuracy and relevance, while advanced AI agents simplify complex workflows and accelerate development.
Native SDKs ensure smooth integration and high performance across diverse platforms. With robust support for custom AI agent development and multi‑agent orchestration, LM‑Kit.NET streamlines prototyping, deployment, and scalability—enabling you to build smarter, faster, and more secure solutions trusted by professionals worldwide.
Learn more
GLM-5
GLM-5 is a next-generation open-source foundation model from Z.ai designed to push the boundaries of agentic engineering and complex task execution. Compared to earlier versions, it significantly expands parameter count and training data, while introducing DeepSeek Sparse Attention to optimize inference efficiency. The model leverages a novel asynchronous reinforcement learning framework called slime, which enhances training throughput and enables more effective post-training alignment. GLM-5 delivers leading performance among open-source models in reasoning, coding, and general agent benchmarks, with strong results on SWE-bench, BrowseComp, and Vending Bench 2. Its ability to manage long-horizon simulations highlights advanced planning, resource allocation, and operational decision-making skills. Beyond benchmark performance, GLM-5 supports real-world productivity by generating fully formatted documents such as .docx, .pdf, and .xlsx files. It integrates with coding agents like Claude Code and OpenClaw, enabling cross-application automation and collaborative agent workflows. Developers can access GLM-5 via Z.ai’s API, deploy it locally with frameworks like vLLM or SGLang, or use it through an interactive GUI environment. The model is released under the MIT License, encouraging broad experimentation and adoption. Overall, GLM-5 represents a major step toward practical, work-oriented AI systems that move beyond chat into full task execution.
Learn more
Code Intelligence
Our platform uses a variety of security techniques, including feedback-based fuzz testing and coverage-guided fuzz testing, in order to generate millions upon millions of test cases that trigger difficult-to-find bugs deep in your application. This white-box approach helps to prevent edge cases and speed up development. Advanced fuzzing engines produce inputs that maximize code coverage. Powerful bug detectors check for errors during code execution. Only uncover true vulnerabilities. You will need the stack trace and input to prove that you can reproduce errors reliably every time. AI white-box testing is based on data from all previous tests and can continuously learn the inner workings of your application. This allows you to trigger security-critical bugs with increasing precision.
Learn more
Pricing
Free Version:
Yes
Company Details
Company:
Liquid AI
Year Founded:
2023
Headquarters:
United States
Website:
www.liquid.ai/
Recommended Products
Cut Data Warehouse Costs up to 54% with BigQuery
BigQuery delivers up to 54% lower TCO than cloud alternatives. Migrate from legacy or competing warehouses using free BigQuery Migration Service with automated SQL translation. Get serverless scale with no infrastructure to manage, compressed storage, and flexible pricing—pay per query or commit for deeper discounts. New customers get $300 in free credit.
Product Details
Platforms
Web-Based
On-Premises
Types of Training
Training Docs
Live Training (Online)
Customer Support
Online Support
Liquid AI Features and Options
Liquid AI Lists
Liquid AI User Reviews
Write a Review- Previous
- Next