Google AI Studio
Google AI Studio is an all-in-one environment designed for building AI-first applications with Google’s latest models. It supports Gemini, Imagen, Veo, and Gemma, allowing developers to experiment across multiple modalities in one place. The platform emphasizes vibe coding, enabling users to describe what they want and let AI handle the technical heavy lifting. Developers can generate complete, production-ready apps using natural language instructions. One-click deployment makes it easy to move from prototype to live application. Google AI Studio includes a centralized dashboard for API keys, billing, and usage tracking. Detailed logs and rate-limit insights help teams operate efficiently. SDK support for Python, Node.js, and REST APIs ensures flexibility. Quickstart guides reduce onboarding time to minutes. Overall, Google AI Studio blends experimentation, vibe coding, and scalable production into a single workflow.
Learn more
LM-Kit.NET
LM-Kit.NET is an enterprise-grade toolkit designed for seamlessly integrating generative AI into your .NET applications, fully supporting Windows, Linux, and macOS. Empower your C# and VB.NET projects with a flexible platform that simplifies the creation and orchestration of dynamic AI agents.
Leverage efficient Small Language Models for on‑device inference, reducing computational load, minimizing latency, and enhancing security by processing data locally. Experience the power of Retrieval‑Augmented Generation (RAG) to boost accuracy and relevance, while advanced AI agents simplify complex workflows and accelerate development.
Native SDKs ensure smooth integration and high performance across diverse platforms. With robust support for custom AI agent development and multi‑agent orchestration, LM‑Kit.NET streamlines prototyping, deployment, and scalability—enabling you to build smarter, faster, and more secure solutions trusted by professionals worldwide.
Learn more
Semantria
Semantria (natural language processing) API is offered by Lexalytics, a leader in enterprise sentiment analysis and text analysis since 2004. Semantria provides multi-layered sentiment analysis, categorization and entity recognition, theme analysis as well as intention detection, summarization, and summary in an easy to integrate RESTful API package.
Semantria can be customized through graphical configuration tools. It supports 24 languages and can be deployed across public, private and hybrid clouds. Semantria scales easily from single servers to entire data centres and back again to meet your processing needs.
Integrate Semantria for powerful, flexible text analytics and natural word processing capabilities to cloud-based data analysis products or enterprise business intelligence infrastructure. To create a complete business intelligence platform, you can add Lexalytics storage or visualization tools to store, manage, analyze, and visualize text documents.
Learn more
Google Cloud Natural Language API
Leverage advanced machine learning techniques for thorough text analysis that can extract, interpret, and securely store textual data. With AutoML, you can create top-tier custom machine learning models effortlessly, without writing any code. Implement natural language understanding through the Natural Language API to enhance your applications. Utilize entity analysis to pinpoint and categorize various fields in documents, such as emails, chats, and social media interactions, followed by sentiment analysis to gauge customer feedback and derive actionable insights for product improvements and user experience. The Natural Language API, combined with speech-to-text capabilities, can also provide valuable insights from audio sources. Additionally, the Vision API enhances your capabilities with optical character recognition (OCR) for digitizing scanned documents. The Translation API further enables sentiment understanding across diverse languages. With custom entity extraction, you can identify specialized entities within your documents that may not be recognized by standard models, saving both time and resources on manual processing. Ultimately, you can train your own high-quality machine learning models to effectively classify, extract, and assess sentiment, making your analysis more targeted and efficient. This comprehensive approach ensures a robust understanding of textual and audio data, empowering businesses with deeper insights.
Learn more