Best Kimi K2 Alternatives in 2025

Find the top alternatives to Kimi K2 currently available. Compare ratings, reviews, pricing, and features of Kimi K2 alternatives in 2025. Slashdot lists the best Kimi K2 alternatives on the market that offer competing products that are similar to Kimi K2. Sort through Kimi K2 alternatives below to make the best choice for your needs

  • 1
    Qwen Reviews
    Qwen LLM represents a collection of advanced large language models created by Alibaba Cloud's Damo Academy. These models leverage an extensive dataset comprising text and code, enabling them to produce human-like text, facilitate language translation, craft various forms of creative content, and provide informative answers to queries. Key attributes of Qwen LLMs include: A range of sizes: The Qwen series features models with parameters varying from 1.8 billion to 72 billion, catering to diverse performance requirements and applications. Open source availability: Certain versions of Qwen are open-source, allowing users to access and modify the underlying code as needed. Multilingual capabilities: Qwen is equipped to comprehend and translate several languages, including English, Chinese, and French. Versatile functionalities: In addition to language generation and translation, Qwen models excel in tasks such as answering questions, summarizing texts, and generating code, making them highly adaptable tools for various applications. Overall, the Qwen LLM family stands out for its extensive capabilities and flexibility in meeting user needs.
  • 2
    Grok 4 Reviews
    xAI’s Grok 4 represents a major step forward in AI technology, delivering advanced reasoning, multimodal understanding, and improved natural language capabilities. Built on the powerful Colossus supercomputer, Grok 4 can process text and images, with video input support expected soon, enhancing its ability to interpret cultural and contextual content such as memes. It has outperformed many competitors in benchmark tests for scientific and visual reasoning, establishing itself as a top-tier model. Focused on technical users, researchers, and developers, Grok 4 is tailored to meet the demands of advanced AI applications. xAI has strengthened moderation systems to prevent inappropriate outputs and promote ethical AI use. This release signals xAI’s commitment to innovation and responsible AI deployment. Grok 4 sets a new standard in AI performance and versatility. It is poised to support cutting-edge research and complex problem-solving across various fields.
  • 3
    GLM-4.5 Reviews
    Z.ai has unveiled its latest flagship model, GLM-4.5, which boasts an impressive 355 billion total parameters (with 32 billion active) and is complemented by the GLM-4.5-Air variant, featuring 106 billion total parameters (12 billion active), designed to integrate sophisticated reasoning, coding, and agent-like functions into a single framework. This model can switch between a "thinking" mode for intricate, multi-step reasoning and tool usage and a "non-thinking" mode that facilitates rapid responses, accommodating a context length of up to 128K tokens and enabling native function invocation. Accessible through the Z.ai chat platform and API, and with open weights available on platforms like HuggingFace and ModelScope, GLM-4.5 is adept at processing a wide range of inputs for tasks such as general problem solving, common-sense reasoning, coding from the ground up or within existing frameworks, as well as managing comprehensive workflows like web browsing and slide generation. The architecture is underpinned by a Mixture-of-Experts design, featuring loss-free balance routing, grouped-query attention mechanisms, and an MTP layer that facilitates speculative decoding, ensuring it meets enterprise-level performance standards while remaining adaptable to various applications. As a result, GLM-4.5 sets a new benchmark for AI capabilities across numerous domains.
  • 4
    Qwen3-Coder Reviews
    Qwen3-Coder is a versatile coding model that comes in various sizes, prominently featuring the 480B-parameter Mixture-of-Experts version with 35B active parameters, which naturally accommodates 256K-token contexts that can be extended to 1M tokens. This model achieves impressive performance that rivals Claude Sonnet 4, having undergone pre-training on 7.5 trillion tokens, with 70% of that being code, and utilizing synthetic data refined through Qwen2.5-Coder to enhance both coding skills and overall capabilities. Furthermore, the model benefits from post-training techniques that leverage extensive, execution-guided reinforcement learning, which facilitates the generation of diverse test cases across 20,000 parallel environments, thereby excelling in multi-turn software engineering tasks such as SWE-Bench Verified without needing test-time scaling. In addition to the model itself, the open-source Qwen Code CLI, derived from Gemini Code, empowers users to deploy Qwen3-Coder in dynamic workflows with tailored prompts and function calling protocols, while also offering smooth integration with Node.js, OpenAI SDKs, and environment variables. This comprehensive ecosystem supports developers in optimizing their coding projects effectively and efficiently.
  • 5
    DeepSeek-V3 Reviews
    DeepSeek-V3 represents a groundbreaking advancement in artificial intelligence, specifically engineered to excel in natural language comprehension, sophisticated reasoning, and decision-making processes. By utilizing highly advanced neural network designs, this model incorporates vast amounts of data alongside refined algorithms to address intricate problems across a wide array of fields, including research, development, business analytics, and automation. Prioritizing both scalability and operational efficiency, DeepSeek-V3 equips developers and organizations with innovative resources that can significantly expedite progress and lead to transformative results. Furthermore, its versatility makes it suitable for various applications, enhancing its value across industries.
  • 6
    GPT-4.1 Reviews

    GPT-4.1

    OpenAI

    $2 per 1M tokens (input)
    1 Rating
    GPT-4.1 represents a significant upgrade in generative AI, with notable advancements in coding, instruction adherence, and handling long contexts. This model supports up to 1 million tokens of context, allowing it to tackle complex, multi-step tasks across various domains. GPT-4.1 outperforms earlier models in key benchmarks, particularly in coding accuracy, and is designed to streamline workflows for developers and businesses by improving task completion speed and reliability.
  • 7
    DeepSeek-V2 Reviews
    DeepSeek-V2 is a cutting-edge Mixture-of-Experts (MoE) language model developed by DeepSeek-AI, noted for its cost-effective training and high-efficiency inference features. It boasts an impressive total of 236 billion parameters, with only 21 billion active for each token, and is capable of handling a context length of up to 128K tokens. The model utilizes advanced architectures such as Multi-head Latent Attention (MLA) to optimize inference by minimizing the Key-Value (KV) cache and DeepSeekMoE to enable economical training through sparse computations. Compared to its predecessor, DeepSeek 67B, this model shows remarkable improvements, achieving a 42.5% reduction in training expenses, a 93.3% decrease in KV cache size, and a 5.76-fold increase in generation throughput. Trained on an extensive corpus of 8.1 trillion tokens, DeepSeek-V2 demonstrates exceptional capabilities in language comprehension, programming, and reasoning tasks, positioning it as one of the leading open-source models available today. Its innovative approach not only elevates its performance but also sets new benchmarks within the field of artificial intelligence.
  • 8
    Claude Code Reviews
    Anthropic has launched Claude Code, an AI-powered coding assistant, as part of the Claude 3.7 Sonnet update. This innovative tool enables developers to streamline intricate engineering processes directly from their terminal, acting as a collaborative partner in the coding journey. Claude Code possesses the capability to analyze and navigate through code, modify files, execute tests, as well as commit and push updates to GitHub, while also handling command-line tasks. Initial evaluations have showcased its remarkable efficiency, completing tasks like large-scale code refactoring and debugging in a significantly shorter timeframe than traditional methods. Although it is currently in a research preview stage, Claude Code is already regarded as a crucial asset for accelerating development timelines and improving the practice of test-driven development. Its advanced functionalities suggest a promising future for enhancing software engineering productivity.
  • 9
    DeepSeek R2 Reviews
    DeepSeek R2 is the highly awaited successor to DeepSeek R1, an innovative AI reasoning model that made waves when it was introduced in January 2025 by the Chinese startup DeepSeek. This new version builds on the remarkable achievements of R1, which significantly altered the AI landscape by providing cost-effective performance comparable to leading models like OpenAI’s o1. R2 is set to offer a substantial upgrade in capabilities, promising impressive speed and reasoning abilities akin to that of a human, particularly in challenging areas such as complex coding and advanced mathematics. By utilizing DeepSeek’s cutting-edge Mixture-of-Experts architecture along with optimized training techniques, R2 is designed to surpass the performance of its predecessor while keeping computational demands low. Additionally, there are expectations that this model may broaden its reasoning skills to accommodate languages beyond just English, potentially increasing its global usability. The anticipation surrounding R2 highlights the ongoing evolution of AI technology and its implications for various industries.
  • 10
    DeepSeek-Coder-V2 Reviews
    DeepSeek-Coder-V2 is an open-source model tailored for excellence in programming and mathematical reasoning tasks. Utilizing a Mixture-of-Experts (MoE) architecture, it boasts a staggering 236 billion total parameters, with 21 billion of those being activated per token, which allows for efficient processing and outstanding performance. Trained on a massive dataset comprising 6 trillion tokens, this model enhances its prowess in generating code and tackling mathematical challenges. With the ability to support over 300 programming languages, DeepSeek-Coder-V2 has consistently outperformed its competitors on various benchmarks. It is offered in several variants, including DeepSeek-Coder-V2-Instruct, which is optimized for instruction-based tasks, and DeepSeek-Coder-V2-Base, which is effective for general text generation. Additionally, the lightweight options, such as DeepSeek-Coder-V2-Lite-Base and DeepSeek-Coder-V2-Lite-Instruct, cater to environments that require less computational power. These variations ensure that developers can select the most suitable model for their specific needs, making DeepSeek-Coder-V2 a versatile tool in the programming landscape.
  • 11
    Qwen2.5-Max Reviews
    Qwen2.5-Max is an advanced Mixture-of-Experts (MoE) model created by the Qwen team, which has been pretrained on an extensive dataset of over 20 trillion tokens and subsequently enhanced through methods like Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). Its performance in evaluations surpasses that of models such as DeepSeek V3 across various benchmarks, including Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also achieving strong results in other tests like MMLU-Pro. This model is available through an API on Alibaba Cloud, allowing users to easily integrate it into their applications, and it can also be interacted with on Qwen Chat for a hands-on experience. With its superior capabilities, Qwen2.5-Max represents a significant advancement in AI model technology.
  • 12
    DeepSeek R1 Reviews
    DeepSeek-R1 is a cutting-edge open-source reasoning model created by DeepSeek, aimed at competing with OpenAI's Model o1. It is readily available through web, app, and API interfaces, showcasing its proficiency in challenging tasks such as mathematics and coding, and achieving impressive results on assessments like the American Invitational Mathematics Examination (AIME) and MATH. Utilizing a mixture of experts (MoE) architecture, this model boasts a remarkable total of 671 billion parameters, with 37 billion parameters activated for each token, which allows for both efficient and precise reasoning abilities. As a part of DeepSeek's dedication to the progression of artificial general intelligence (AGI), the model underscores the importance of open-source innovation in this field. Furthermore, its advanced capabilities may significantly impact how we approach complex problem-solving in various domains.
  • 13
    Llama 2 Reviews
    Introducing the next iteration of our open-source large language model, this version features model weights along with initial code for the pretrained and fine-tuned Llama language models, which span from 7 billion to 70 billion parameters. The Llama 2 pretrained models have been developed using an impressive 2 trillion tokens and offer double the context length compared to their predecessor, Llama 1. Furthermore, the fine-tuned models have been enhanced through the analysis of over 1 million human annotations. Llama 2 demonstrates superior performance against various other open-source language models across multiple external benchmarks, excelling in areas such as reasoning, coding capabilities, proficiency, and knowledge assessments. For its training, Llama 2 utilized publicly accessible online data sources, while the fine-tuned variant, Llama-2-chat, incorporates publicly available instruction datasets along with the aforementioned extensive human annotations. Our initiative enjoys strong support from a diverse array of global stakeholders who are enthusiastic about our open approach to AI, including companies that have provided valuable early feedback and are eager to collaborate using Llama 2. The excitement surrounding Llama 2 signifies a pivotal shift in how AI can be developed and utilized collectively.
  • 14
    Qwen-7B Reviews
    Qwen-7B is the 7-billion parameter iteration of Alibaba Cloud's Qwen language model series, also known as Tongyi Qianwen. This large language model utilizes a Transformer architecture and has been pretrained on an extensive dataset comprising web texts, books, code, and more. Furthermore, we introduced Qwen-7B-Chat, an AI assistant that builds upon the pretrained Qwen-7B model and incorporates advanced alignment techniques. The Qwen-7B series boasts several notable features: It has been trained on a premium dataset, with over 2.2 trillion tokens sourced from a self-assembled collection of high-quality texts and codes across various domains, encompassing both general and specialized knowledge. Additionally, our model demonstrates exceptional performance, surpassing competitors of similar size on numerous benchmark datasets that assess capabilities in natural language understanding, mathematics, and coding tasks. This positions Qwen-7B as a leading choice in the realm of AI language models. Overall, its sophisticated training and robust design contribute to its impressive versatility and effectiveness.
  • 15
    Falcon-40B Reviews

    Falcon-40B

    Technology Innovation Institute (TII)

    Free
    Falcon-40B is a causal decoder-only model consisting of 40 billion parameters, developed by TII and trained on 1 trillion tokens from RefinedWeb, supplemented with carefully selected datasets. It is distributed under the Apache 2.0 license. Why should you consider using Falcon-40B? This model stands out as the leading open-source option available, surpassing competitors like LLaMA, StableLM, RedPajama, and MPT, as evidenced by its ranking on the OpenLLM Leaderboard. Its design is specifically tailored for efficient inference, incorporating features such as FlashAttention and multiquery capabilities. Moreover, it is offered under a flexible Apache 2.0 license, permitting commercial applications without incurring royalties or facing restrictions. It's important to note that this is a raw, pretrained model and is generally recommended to be fine-tuned for optimal performance in most applications. If you need a version that is more adept at handling general instructions in a conversational format, you might want to explore Falcon-40B-Instruct as a potential alternative.
  • 16
    Phi-4-mini-reasoning Reviews
    Phi-4-mini-reasoning is a transformer-based language model with 3.8 billion parameters, specifically designed to excel in mathematical reasoning and methodical problem-solving within environments that have limited computational capacity or latency constraints. Its optimization stems from fine-tuning with synthetic data produced by the DeepSeek-R1 model, striking a balance between efficiency and sophisticated reasoning capabilities. With training that encompasses over one million varied math problems, ranging in complexity from middle school to Ph.D. level, Phi-4-mini-reasoning demonstrates superior performance to its base model in generating lengthy sentences across multiple assessments and outshines larger counterparts such as OpenThinker-7B, Llama-3.2-3B-instruct, and DeepSeek-R1. Equipped with a 128K-token context window, it also facilitates function calling, which allows for seamless integration with various external tools and APIs. Moreover, Phi-4-mini-reasoning can be quantized through the Microsoft Olive or Apple MLX Framework, enabling its deployment on a variety of edge devices, including IoT gadgets, laptops, and smartphones. Its design not only enhances user accessibility but also expands the potential for innovative applications in mathematical fields.
  • 17
    Baichuan-13B Reviews

    Baichuan-13B

    Baichuan Intelligent Technology

    Free
    Baichuan-13B is an advanced large-scale language model developed by Baichuan Intelligent, featuring 13 billion parameters and available for open-source and commercial use, building upon its predecessor Baichuan-7B. This model has set new records for performance among similarly sized models on esteemed Chinese and English evaluation metrics. The release includes two distinct pre-training variations: Baichuan-13B-Base and Baichuan-13B-Chat. By significantly increasing the parameter count to 13 billion, Baichuan-13B enhances its capabilities, training on 1.4 trillion tokens from a high-quality dataset, which surpasses LLaMA-13B's training data by 40%. It currently holds the distinction of being the model with the most extensive training data in the 13B category, providing robust support for both Chinese and English languages, utilizing ALiBi positional encoding, and accommodating a context window of 4096 tokens for improved comprehension and generation. This makes it a powerful tool for a variety of applications in natural language processing.
  • 18
    Yi-Lightning Reviews
    Yi-Lightning, a product of 01.AI and spearheaded by Kai-Fu Lee, marks a significant leap forward in the realm of large language models, emphasizing both performance excellence and cost-effectiveness. With the ability to process a context length of up to 16K tokens, it offers an attractive pricing model of $0.14 per million tokens for both inputs and outputs, making it highly competitive in the market. The model employs an improved Mixture-of-Experts (MoE) framework, featuring detailed expert segmentation and sophisticated routing techniques that enhance its training and inference efficiency. Yi-Lightning has distinguished itself across multiple fields, achieving top distinctions in areas such as Chinese language processing, mathematics, coding tasks, and challenging prompts on chatbot platforms, where it ranked 6th overall and 9th in style control. Its creation involved an extensive combination of pre-training, targeted fine-tuning, and reinforcement learning derived from human feedback, which not only enhances its performance but also prioritizes user safety. Furthermore, the model's design includes significant advancements in optimizing both memory consumption and inference speed, positioning it as a formidable contender in its field.
  • 19
    DBRX Reviews
    We are thrilled to present DBRX, a versatile open LLM developed by Databricks. This innovative model achieves unprecedented performance on a variety of standard benchmarks, setting a new benchmark for existing open LLMs. Additionally, it equips both the open-source community and enterprises crafting their own LLMs with features that were once exclusive to proprietary model APIs; our evaluations indicate that it outperforms GPT-3.5 and competes effectively with Gemini 1.0 Pro. Notably, it excels as a code model, outperforming specialized counterparts like CodeLLaMA-70B in programming tasks, while also demonstrating its prowess as a general-purpose LLM. The remarkable quality of DBRX is complemented by significant enhancements in both training and inference efficiency. Thanks to its advanced fine-grained mixture-of-experts (MoE) architecture, DBRX elevates the efficiency of open models to new heights. In terms of inference speed, it can be twice as fast as LLaMA2-70B, and its total and active parameter counts are approximately 40% of those in Grok-1, showcasing its compact design without compromising capability. This combination of speed and size makes DBRX a game-changer in the landscape of open AI models.
  • 20
    Mixtral 8x22B Reviews
    The Mixtral 8x22B represents our newest open model, establishing a new benchmark for both performance and efficiency in the AI sector. This sparse Mixture-of-Experts (SMoE) model activates only 39B parameters from a total of 141B, ensuring exceptional cost efficiency relative to its scale. Additionally, it demonstrates fluency in multiple languages, including English, French, Italian, German, and Spanish, while also possessing robust skills in mathematics and coding. With its native function calling capability, combined with the constrained output mode utilized on la Plateforme, it facilitates the development of applications and the modernization of technology stacks on a large scale. The model's context window can handle up to 64K tokens, enabling accurate information retrieval from extensive documents. We prioritize creating models that maximize cost efficiency for their sizes, thereby offering superior performance-to-cost ratios compared to others in the community. The Mixtral 8x22B serves as a seamless extension of our open model lineage, and its sparse activation patterns contribute to its speed, making it quicker than any comparable dense 70B model on the market. Furthermore, its innovative design positions it as a leading choice for developers seeking high-performance solutions.
  • 21
    Qwen3-Omni Reviews
    Qwen3-Omni is a comprehensive multilingual omni-modal foundation model designed to handle text, images, audio, and video, providing real-time streaming responses in both textual and natural spoken formats. Utilizing a unique Thinker-Talker architecture along with a Mixture-of-Experts (MoE) framework, it employs early text-centric pretraining and mixed multimodal training, ensuring high-quality performance across all formats without compromising on text or image fidelity. This model is capable of supporting 119 different text languages, 19 languages for speech input, and 10 languages for speech output. Demonstrating exceptional capabilities, it achieves state-of-the-art performance across 36 benchmarks related to audio and audio-visual tasks, securing open-source SOTA on 32 benchmarks and overall SOTA on 22, thereby rivaling or equaling prominent closed-source models like Gemini-2.5 Pro and GPT-4o. To enhance efficiency and reduce latency in audio and video streaming, the Talker component leverages a multi-codebook strategy to predict discrete speech codecs, effectively replacing more cumbersome diffusion methods. Additionally, this innovative model stands out for its versatility and adaptability across a wide array of applications.
  • 22
    ByteDance Seed Reviews
    Seed Diffusion Preview is an advanced language model designed for code generation that employs discrete-state diffusion, allowing it to produce code in a non-sequential manner, resulting in significantly faster inference times without compromising on quality. This innovative approach utilizes a two-stage training process that involves mask-based corruption followed by edit-based augmentation, enabling a standard dense Transformer to achieve an optimal balance between speed and precision while avoiding shortcuts like carry-over unmasking, which helps maintain rigorous density estimation. The model impressively achieves an inference rate of 2,146 tokens per second on H20 GPUs, surpassing current diffusion benchmarks while either matching or exceeding their accuracy on established code evaluation metrics, including various editing tasks. This performance not only sets a new benchmark for the speed-quality trade-off in code generation but also showcases the effective application of discrete diffusion methods in practical coding scenarios. Its success opens up new avenues for enhancing efficiency in coding tasks across multiple platforms.
  • 23
    CodeGemma Reviews
    CodeGemma represents an impressive suite of efficient and versatile models capable of tackling numerous coding challenges, including middle code completion, code generation, natural language processing, mathematical reasoning, and following instructions. It features three distinct model types: a 7B pre-trained version designed for code completion and generation based on existing code snippets, a 7B variant fine-tuned for translating natural language queries into code and adhering to instructions, and an advanced 2B pre-trained model that offers code completion speeds up to twice as fast. Whether you're completing lines, developing functions, or crafting entire segments of code, CodeGemma supports your efforts, whether you're working in a local environment or leveraging Google Cloud capabilities. With training on an extensive dataset comprising 500 billion tokens predominantly in English, sourced from web content, mathematics, and programming languages, CodeGemma not only enhances the syntactical accuracy of generated code but also ensures its semantic relevance, thereby minimizing mistakes and streamlining the debugging process. This powerful tool continues to evolve, making coding more accessible and efficient for developers everywhere.
  • 24
    StarCoder Reviews
    StarCoder and StarCoderBase represent advanced Large Language Models specifically designed for code, developed using openly licensed data from GitHub, which encompasses over 80 programming languages, Git commits, GitHub issues, and Jupyter notebooks. In a manner akin to LLaMA, we constructed a model with approximately 15 billion parameters trained on a staggering 1 trillion tokens. Furthermore, we tailored the StarCoderBase model with 35 billion Python tokens, leading to the creation of what we now refer to as StarCoder. Our evaluations indicated that StarCoderBase surpasses other existing open Code LLMs when tested against popular programming benchmarks and performs on par with or even exceeds proprietary models like code-cushman-001 from OpenAI, the original Codex model that fueled early iterations of GitHub Copilot. With an impressive context length exceeding 8,000 tokens, the StarCoder models possess the capability to handle more information than any other open LLM, thus paving the way for a variety of innovative applications. This versatility is highlighted by our ability to prompt the StarCoder models through a sequence of dialogues, effectively transforming them into dynamic technical assistants that can provide support in diverse programming tasks.
  • 25
    Solar Mini Reviews

    Solar Mini

    Upstage AI

    $0.1 per 1M tokens
    Solar Mini is an advanced pre-trained large language model that matches the performance of GPT-3.5 while providing responses 2.5 times faster, all while maintaining a parameter count of under 30 billion. In December 2023, it secured the top position on the Hugging Face Open LLM Leaderboard by integrating a 32-layer Llama 2 framework, which was initialized with superior Mistral 7B weights, coupled with a novel method known as "depth up-scaling" (DUS) that enhances the model's depth efficiently without the need for intricate modules. Following the DUS implementation, the model undergoes further pretraining to restore and boost its performance, and it also includes instruction tuning in a question-and-answer format, particularly tailored for Korean, which sharpens its responsiveness to user prompts, while alignment tuning ensures its outputs align with human or sophisticated AI preferences. Solar Mini consistently surpasses rivals like Llama 2, Mistral 7B, Ko-Alpaca, and KULLM across a range of benchmarks, demonstrating that a smaller model can still deliver exceptional performance. This showcases the potential of innovative architectural strategies in the development of highly efficient AI models.
  • 26
    Phi-4-mini-flash-reasoning Reviews
    Phi-4-mini-flash-reasoning is a 3.8 billion-parameter model that is part of Microsoft's Phi series, specifically designed for edge, mobile, and other environments with constrained resources where processing power, memory, and speed are limited. This innovative model features the SambaY hybrid decoder architecture, integrating Gated Memory Units (GMUs) with Mamba state-space and sliding-window attention layers, achieving up to ten times the throughput and a latency reduction of 2 to 3 times compared to its earlier versions without compromising on its ability to perform complex mathematical and logical reasoning. With a support for a context length of 64K tokens and being fine-tuned on high-quality synthetic datasets, it is particularly adept at handling long-context retrieval, reasoning tasks, and real-time inference, all manageable on a single GPU. Available through platforms such as Azure AI Foundry, NVIDIA API Catalog, and Hugging Face, Phi-4-mini-flash-reasoning empowers developers to create applications that are not only fast but also scalable and capable of intensive logical processing. This accessibility allows a broader range of developers to leverage its capabilities for innovative solutions.
  • 27
    Phi-4-reasoning-plus Reviews
    Phi-4-reasoning-plus is an advanced reasoning model with 14 billion parameters, enhancing the capabilities of the original Phi-4-reasoning. It employs reinforcement learning for better inference efficiency, processing 1.5 times the number of tokens compared to its predecessor, which results in improved accuracy. Remarkably, this model performs better than both OpenAI's o1-mini and DeepSeek-R1 across various benchmarks, including challenging tasks in mathematical reasoning and advanced scientific inquiries. Notably, it even outperforms the larger DeepSeek-R1, which boasts 671 billion parameters, on the prestigious AIME 2025 assessment, a qualifier for the USA Math Olympiad. Furthermore, Phi-4-reasoning-plus is accessible on platforms like Azure AI Foundry and HuggingFace, making it easier for developers and researchers to leverage its capabilities. Its innovative design positions it as a top contender in the realm of reasoning models.
  • 28
    Stable LM Reviews
    Stable LM represents a significant advancement in the field of language models by leveraging our previous experience with open-source initiatives, particularly in collaboration with EleutherAI, a nonprofit research organization. This journey includes the development of notable models such as GPT-J, GPT-NeoX, and the Pythia suite, all of which were trained on The Pile open-source dataset, while many contemporary open-source models like Cerebras-GPT and Dolly-2 have drawn inspiration from this foundational work. Unlike its predecessors, Stable LM is trained on an innovative dataset that is three times the size of The Pile, encompassing a staggering 1.5 trillion tokens. We plan to share more information about this dataset in the near future. The extensive nature of this dataset enables Stable LM to excel remarkably in both conversational and coding scenarios, despite its relatively modest size of 3 to 7 billion parameters when compared to larger models like GPT-3, which boasts 175 billion parameters. Designed for versatility, Stable LM 3B is a streamlined model that can efficiently function on portable devices such as laptops and handheld gadgets, making us enthusiastic about its practical applications and mobility. Overall, the development of Stable LM marks a pivotal step towards creating more efficient and accessible language models for a wider audience.
  • 29
    Solar Pro 2 Reviews

    Solar Pro 2

    Upstage AI

    $0.1 per 1M tokens
    Upstage has unveiled Solar Pro 2, a cutting-edge large language model designed for frontier-scale applications, capable of managing intricate tasks and workflows in various sectors including finance, healthcare, and law. This model is built on a streamlined architecture with 31 billion parameters, ensuring exceptional multilingual capabilities, particularly in Korean, where it surpasses even larger models on key benchmarks such as Ko-MMLU, Hae-Rae, and Ko-IFEval, while maintaining strong performance in English and Japanese as well. In addition to its advanced language comprehension and generation abilities, Solar Pro 2 incorporates a sophisticated Reasoning Mode that significantly enhances the accuracy of multi-step tasks across a wide array of challenges, from general reasoning assessments (MMLU, MMLU-Pro, HumanEval) to intricate mathematics problems (Math500, AIME) and software engineering tasks (SWE-Bench Agentless), achieving problem-solving efficiency that rivals or even surpasses that of models with double the parameters. Furthermore, its enhanced tool-use capabilities allow the model to effectively engage with external APIs and data, broadening its applicability in real-world scenarios. This innovative design not only demonstrates exceptional versatility but also positions Solar Pro 2 as a formidable player in the evolving landscape of AI technologies.
  • 30
    Falcon-7B Reviews

    Falcon-7B

    Technology Innovation Institute (TII)

    Free
    Falcon-7B is a causal decoder-only model comprising 7 billion parameters, developed by TII and trained on an extensive dataset of 1,500 billion tokens from RefinedWeb, supplemented with specially selected corpora, and it is licensed under Apache 2.0. What are the advantages of utilizing Falcon-7B? This model surpasses similar open-source alternatives, such as MPT-7B, StableLM, and RedPajama, due to its training on a remarkably large dataset of 1,500 billion tokens from RefinedWeb, which is further enhanced with carefully curated content, as evidenced by its standing on the OpenLLM Leaderboard. Additionally, it boasts an architecture that is finely tuned for efficient inference, incorporating technologies like FlashAttention and multiquery mechanisms. Moreover, the permissive nature of the Apache 2.0 license means users can engage in commercial applications without incurring royalties or facing significant limitations. This combination of performance and flexibility makes Falcon-7B a strong choice for developers seeking advanced modeling capabilities.
  • 31
    Qwen2 Reviews
    Qwen2 represents a collection of extensive language models crafted by the Qwen team at Alibaba Cloud. This series encompasses a variety of models, including base and instruction-tuned versions, with parameters varying from 0.5 billion to an impressive 72 billion, showcasing both dense configurations and a Mixture-of-Experts approach. The Qwen2 series aims to outperform many earlier open-weight models, including its predecessor Qwen1.5, while also striving to hold its own against proprietary models across numerous benchmarks in areas such as language comprehension, generation, multilingual functionality, programming, mathematics, and logical reasoning. Furthermore, this innovative series is poised to make a significant impact in the field of artificial intelligence, offering enhanced capabilities for a diverse range of applications.
  • 32
    DeepSeekMath Reviews
    DeepSeekMath is an advanced 7B parameter language model created by DeepSeek-AI, specifically engineered to enhance mathematical reasoning capabilities within open-source language models. Building upon the foundation of DeepSeek-Coder-v1.5, this model undergoes additional pre-training utilizing 120 billion math-related tokens gathered from Common Crawl, complemented by data from natural language and coding sources. It has shown exceptional outcomes, achieving a score of 51.7% on the challenging MATH benchmark without relying on external tools or voting systems, positioning itself as a strong contender against models like Gemini-Ultra and GPT-4. The model's prowess is further bolstered by a carefully curated data selection pipeline and the implementation of Group Relative Policy Optimization (GRPO), which improves both its mathematical reasoning skills and efficiency in memory usage. DeepSeekMath is offered in various formats including base, instruct, and reinforcement learning (RL) versions, catering to both research and commercial interests, and is intended for individuals eager to delve into or leverage sophisticated mathematical problem-solving in the realm of artificial intelligence. Its versatility makes it a valuable resource for researchers and practitioners alike, driving innovation in AI-driven mathematics.
  • 33
    Phi-4-reasoning Reviews
    Phi-4-reasoning is an advanced transformer model featuring 14 billion parameters, specifically tailored for tackling intricate reasoning challenges, including mathematics, programming, algorithm development, and strategic planning. Through a meticulous process of supervised fine-tuning on select "teachable" prompts and reasoning examples created using o3-mini, it excels at generating thorough reasoning sequences that optimize computational resources during inference. By integrating outcome-driven reinforcement learning, Phi-4-reasoning is capable of producing extended reasoning paths. Its performance notably surpasses that of significantly larger open-weight models like DeepSeek-R1-Distill-Llama-70B and nears the capabilities of the comprehensive DeepSeek-R1 model across various reasoning applications. Designed for use in settings with limited computing power or high latency, Phi-4-reasoning is fine-tuned with synthetic data provided by DeepSeek-R1, ensuring it delivers precise and methodical problem-solving. This model's ability to handle complex tasks with efficiency makes it a valuable tool in numerous computational contexts.
  • 34
    Ministral 8B Reviews
    Mistral AI has unveiled two cutting-edge models specifically designed for on-device computing and edge use cases, collectively referred to as "les Ministraux": Ministral 3B and Ministral 8B. These innovative models stand out due to their capabilities in knowledge retention, commonsense reasoning, function-calling, and overall efficiency, all while remaining within the sub-10B parameter range. They boast support for a context length of up to 128k, making them suitable for a diverse range of applications such as on-device translation, offline smart assistants, local analytics, and autonomous robotics. Notably, Ministral 8B incorporates an interleaved sliding-window attention mechanism, which enhances both the speed and memory efficiency of inference processes. Both models are adept at serving as intermediaries in complex multi-step workflows, skillfully managing functions like input parsing, task routing, and API interactions based on user intent, all while minimizing latency and operational costs. Benchmark results reveal that les Ministraux consistently exceed the performance of similar models across a variety of tasks, solidifying their position in the market. As of October 16, 2024, these models are now available for developers and businesses, with Ministral 8B being offered at a competitive rate of $0.1 for every million tokens utilized. This pricing structure enhances accessibility for users looking to integrate advanced AI capabilities into their solutions.
  • 35
    NVIDIA Llama Nemotron Reviews
    The NVIDIA Llama Nemotron family comprises a series of sophisticated language models that are fine-tuned for complex reasoning and a wide array of agentic AI applications. These models shine in areas such as advanced scientific reasoning, complex mathematics, coding, following instructions, and executing tool calls. They are designed for versatility, making them suitable for deployment on various platforms, including data centers and personal computers, and feature the ability to switch reasoning capabilities on or off, which helps to lower inference costs during less demanding tasks. The Llama Nemotron series consists of models specifically designed to meet different deployment requirements. Leveraging the foundation of Llama models and enhanced through NVIDIA's post-training techniques, these models boast a notable accuracy improvement of up to 20% compared to their base counterparts while also achieving inference speeds that can be up to five times faster than other leading open reasoning models. This remarkable efficiency allows for the management of more intricate reasoning challenges, boosts decision-making processes, and significantly lowers operational expenses for businesses. Consequently, the Llama Nemotron models represent a significant advancement in the field of AI, particularly for organizations seeking to integrate cutting-edge reasoning capabilities into their systems.
  • 36
    Devstral Reviews

    Devstral

    Mistral AI

    $0.1 per million input tokens
    Devstral is a collaborative effort between Mistral AI and All Hands AI, resulting in an open-source large language model specifically tailored for software engineering. This model demonstrates remarkable proficiency in navigating intricate codebases, managing edits across numerous files, and addressing practical problems, achieving a notable score of 46.8% on the SWE-Bench Verified benchmark, which is superior to all other open-source models. Based on Mistral-Small-3.1, Devstral boasts an extensive context window supporting up to 128,000 tokens. It is designed for optimal performance on high-performance hardware setups, such as Macs equipped with 32GB of RAM or Nvidia RTX 4090 GPUs, and supports various inference frameworks including vLLM, Transformers, and Ollama. Released under the Apache 2.0 license, Devstral is freely accessible on platforms like Hugging Face, Ollama, Kaggle, Unsloth, and LM Studio, allowing developers to integrate its capabilities into their projects seamlessly. This model not only enhances productivity for software engineers but also serves as a valuable resource for anyone working with code.
  • 37
    Gemma 2 Reviews
    The Gemma family consists of advanced, lightweight models developed using the same innovative research and technology as the Gemini models. These cutting-edge models are equipped with robust security features that promote responsible and trustworthy AI applications, achieved through carefully curated data sets and thorough refinements. Notably, Gemma models excel in their various sizes—2B, 7B, 9B, and 27B—often exceeding the performance of some larger open models. With the introduction of Keras 3.0, users can experience effortless integration with JAX, TensorFlow, and PyTorch, providing flexibility in framework selection based on specific tasks. Designed for peak performance and remarkable efficiency, Gemma 2 is specifically optimized for rapid inference across a range of hardware platforms. Furthermore, the Gemma family includes diverse models that cater to distinct use cases, ensuring they adapt effectively to user requirements. These lightweight language models feature a decoder and have been trained on an extensive array of textual data, programming code, and mathematical concepts, which enhances their versatility and utility in various applications.
  • 38
    TinyLlama Reviews
    The TinyLlama initiative seeks to pretrain a Llama model with 1.1 billion parameters using a dataset of 3 trillion tokens. With the right optimizations, this ambitious task can be completed in a mere 90 days, utilizing 16 A100-40G GPUs. We have maintained the same architecture and tokenizer as Llama 2, ensuring that TinyLlama is compatible with various open-source projects that are based on Llama. Additionally, the model's compact design, consisting of just 1.1 billion parameters, makes it suitable for numerous applications that require limited computational resources and memory. This versatility enables developers to integrate TinyLlama seamlessly into their existing frameworks and workflows.
  • 39
    Evo 2 Reviews
    Evo 2 represents a cutting-edge genomic foundation model that excels in making predictions and designing tasks related to DNA, RNA, and proteins. It employs an advanced deep learning architecture that allows for the modeling of biological sequences with single-nucleotide accuracy, achieving impressive scaling of both compute and memory resources as the context length increases. With a robust training of 40 billion parameters and a context length of 1 megabase, Evo 2 has analyzed over 9 trillion nucleotides sourced from a variety of eukaryotic and prokaryotic genomes. This extensive dataset facilitates Evo 2's ability to conduct zero-shot function predictions across various biological types, including DNA, RNA, and proteins, while also being capable of generating innovative sequences that maintain a plausible genomic structure. The model's versatility has been showcased through its effectiveness in designing operational CRISPR systems and in the identification of mutations that could lead to diseases in human genes. Furthermore, Evo 2 is available to the public on Arc's GitHub repository, and it is also incorporated into the NVIDIA BioNeMo framework, enhancing its accessibility for researchers and developers alike. Its integration into existing platforms signifies a major step forward for genomic modeling and analysis.
  • 40
    MAI-1-preview Reviews
    The MAI-1 Preview marks the debut of Microsoft AI's fully in-house developed foundation model, utilizing a mixture-of-experts architecture for streamlined performance. This model has undergone extensive training on around 15,000 NVIDIA H100 GPUs, equipping it to adeptly follow user instructions and produce relevant text responses for common inquiries, thus illustrating a prototype for future Copilot functionalities. Currently accessible for public testing on LMArena, MAI-1 Preview provides an initial look at the platform's direction, with plans to introduce select text-driven applications in Copilot over the next few weeks aimed at collecting user insights and enhancing its capabilities. Microsoft emphasizes its commitment to integrating its proprietary models, collaborations with partners, and advancements from the open-source sector to dynamically enhance user experiences through millions of distinct interactions every day. This innovative approach illustrates Microsoft's dedication to continuously evolving its AI offerings.
  • 41
    PanGu-Σ Reviews
    Recent breakthroughs in natural language processing, comprehension, and generation have been greatly influenced by the development of large language models. This research presents a system that employs Ascend 910 AI processors and the MindSpore framework to train a language model exceeding one trillion parameters, specifically 1.085 trillion, referred to as PanGu-{\Sigma}. This model enhances the groundwork established by PanGu-{\alpha} by converting the conventional dense Transformer model into a sparse format through a method known as Random Routed Experts (RRE). Utilizing a substantial dataset of 329 billion tokens, the model was effectively trained using a strategy called Expert Computation and Storage Separation (ECSS), which resulted in a remarkable 6.3-fold improvement in training throughput through the use of heterogeneous computing. Through various experiments, it was found that PanGu-{\Sigma} achieves a new benchmark in zero-shot learning across multiple downstream tasks in Chinese NLP, showcasing its potential in advancing the field. This advancement signifies a major leap forward in the capabilities of language models, illustrating the impact of innovative training techniques and architectural modifications.
  • 42
    ERNIE 3.0 Titan Reviews
    Pre-trained language models have made significant strides, achieving top-tier performance across multiple Natural Language Processing (NLP) applications. The impressive capabilities of GPT-3 highlight how increasing the scale of these models can unlock their vast potential. Recently, a comprehensive framework known as ERNIE 3.0 was introduced to pre-train large-scale models enriched with knowledge, culminating in a model boasting 10 billion parameters. This iteration of ERNIE 3.0 has surpassed the performance of existing leading models in a variety of NLP tasks. To further assess the effects of scaling, we have developed an even larger model called ERNIE 3.0 Titan, which consists of up to 260 billion parameters and is built on the PaddlePaddle platform. Additionally, we have implemented a self-supervised adversarial loss alongside a controllable language modeling loss, enabling ERNIE 3.0 Titan to produce texts that are both reliable and modifiable, thus pushing the boundaries of what these models can achieve. This approach not only enhances the model's capabilities but also opens new avenues for research in text generation and control.
  • 43
    RedPajama Reviews
    Foundation models, including GPT-4, have significantly accelerated advancements in artificial intelligence, yet the most advanced models remain either proprietary or only partially accessible. In response to this challenge, the RedPajama initiative aims to develop a collection of top-tier, fully open-source models. We are thrilled to announce that we have successfully completed the initial phase of this endeavor: recreating the LLaMA training dataset, which contains over 1.2 trillion tokens. Currently, many of the leading foundation models are locked behind commercial APIs, restricting opportunities for research, customization, and application with sensitive information. The development of fully open-source models represents a potential solution to these limitations, provided that the open-source community can bridge the gap in quality between open and closed models. Recent advancements have shown promising progress in this area, suggesting that the AI field is experiencing a transformative period akin to the emergence of Linux. The success of Stable Diffusion serves as a testament to the fact that open-source alternatives can not only match the quality of commercial products like DALL-E but also inspire remarkable creativity through the collaborative efforts of diverse communities. By fostering an open-source ecosystem, we can unlock new possibilities for innovation and ensure broader access to cutting-edge AI technology.
  • 44
    LongLLaMA Reviews
    This repository showcases the research preview of LongLLaMA, an advanced large language model that can manage extensive contexts of up to 256,000 tokens or potentially more. LongLLaMA is developed on the OpenLLaMA framework and has been fine-tuned utilizing the Focused Transformer (FoT) technique. The underlying code for LongLLaMA is derived from Code Llama. We are releasing a smaller 3B base variant of the LongLLaMA model, which is not instruction-tuned, under an open license (Apache 2.0), along with inference code that accommodates longer contexts available on Hugging Face. This model's weights can seamlessly replace LLaMA in existing systems designed for shorter contexts, specifically those handling up to 2048 tokens. Furthermore, we include evaluation results along with comparisons to the original OpenLLaMA models, thereby providing a comprehensive overview of LongLLaMA's capabilities in the realm of long-context processing.
  • 45
    Wan2.2 Reviews
    Wan2.2 marks a significant enhancement to the Wan suite of open video foundation models by incorporating a Mixture-of-Experts (MoE) architecture that separates the diffusion denoising process into high-noise and low-noise pathways, allowing for a substantial increase in model capacity while maintaining low inference costs. This upgrade leverages carefully labeled aesthetic data that encompasses various elements such as lighting, composition, contrast, and color tone, facilitating highly precise and controllable cinematic-style video production. With training on over 65% more images and 83% more videos compared to its predecessor, Wan2.2 achieves exceptional performance in the realms of motion, semantic understanding, and aesthetic generalization. Furthermore, the release features a compact TI2V-5B model that employs a sophisticated VAE and boasts a remarkable 16×16×4 compression ratio, enabling both text-to-video and image-to-video synthesis at 720p/24 fps on consumer-grade GPUs like the RTX 4090. Additionally, prebuilt checkpoints for T2V-A14B, I2V-A14B, and TI2V-5B models are available, ensuring effortless integration into various projects and workflows. This advancement not only enhances the capabilities of video generation but also sets a new benchmark for the efficiency and quality of open video models in the industry.