kama DEI
kama.ai's Designed Emotional Intelligence, kama DEI, truly understands the meaning and human impact behind your client or user's situation or inquiry the way we as people understand each other.
Our Natural Language Understanding (NLU) technology, combined with our proprietary knowledge base, and our human value guidance algorithm supports true human-like understanding and inference behind the interactions with users. Our knowledge base content is easily 'programmed' in natural language, rated by human values, that we all understand, creating an ever expanding Virtual Agent that can answer questions for your clients, employees or other stakeholders.
Conversation journeys deliver prioritized product and service information, directly the way your product or service experts or client practitioners want to communicate it. No data scientists or programmers are required.
kama DEI Agents can 'speak' over our website chat interface, Facebook Messenger, smart speakers, or from within mobile applications. Ultimately, we help you get the right information, to the right people, at the right time, providing any-time client engagement, increasing your marketing ROI and building your brand's loyalty
Learn more
DataHub
DataHub is a versatile open-source metadata platform crafted to enhance data discovery, observability, and governance within various data environments. It empowers organizations to easily find reliable data, providing customized experiences for users while avoiding disruptions through precise lineage tracking at both the cross-platform and column levels. By offering a holistic view of business, operational, and technical contexts, DataHub instills trust in your data repository. The platform features automated data quality assessments along with AI-driven anomaly detection, alerting teams to emerging issues and consolidating incident management. With comprehensive lineage information, documentation, and ownership details, DataHub streamlines the resolution of problems. Furthermore, it automates governance processes by classifying evolving assets, significantly reducing manual effort with GenAI documentation, AI-based classification, and intelligent propagation mechanisms. Additionally, DataHub's flexible architecture accommodates more than 70 native integrations, making it a robust choice for organizations seeking to optimize their data ecosystems. This makes it an invaluable tool for any organization looking to enhance their data management capabilities.
Learn more
Apache TinkerPop
Apache TinkerPop™ serves as a framework for graph computing, catering to both online transaction processing (OLTP) with graph databases and online analytical processing (OLAP) through graph analytic systems. The traversal language utilized within Apache TinkerPop is known as Gremlin, which is a functional, data-flow language designed to allow users to effectively articulate intricate traversals or queries related to their application's property graph. Each traversal in Gremlin consists of a series of steps that can be nested. In graph theory, a graph is defined as a collection of vertices and edges. Both these components can possess multiple key/value pairs referred to as properties. Vertices represent distinct entities, which may include individuals, locations, or events, while edges signify the connections among these vertices. For example, one individual might have connections to another, have participated in a certain event, or have been at a specific location recently. This framework is particularly useful when a user's domain encompasses a diverse array of objects that can be interconnected in various ways. Moreover, the versatility of Gremlin enhances the ability to navigate complex relationships within the graph structure seamlessly.
Learn more
Amazon Neptune
Amazon Neptune is an efficient and dependable graph database service that is fully managed, facilitating the development and operation of applications that handle intricate, interconnected datasets. At its heart, Amazon Neptune features a specialized, high-performance database engine tailored for the storage of billions of relationships while enabling rapid querying with latency measured in milliseconds. It accommodates widely-used graph models, including Property Graph and W3C's RDF, along with their associated query languages, Apache TinkerPop Gremlin and SPARQL, which simplifies the process of crafting queries for navigating complex datasets. This service supports various graph-based applications, including recommendation systems, fraud detection mechanisms, knowledge graphs, drug discovery initiatives, and enhanced network security protocols. With a proactive approach, it enables the detection and analysis of IT infrastructure threats through a multi-layered security framework. Furthermore, it allows users to visualize their entire infrastructure to effectively plan, forecast, and address potential risks, while also enabling the creation of graph queries for the near-real-time identification of fraudulent patterns in financial and purchasing activities, thereby enhancing overall security and efficiency.
Learn more