Best KX Streaming Analytics Alternatives in 2025
Find the top alternatives to KX Streaming Analytics currently available. Compare ratings, reviews, pricing, and features of KX Streaming Analytics alternatives in 2025. Slashdot lists the best KX Streaming Analytics alternatives on the market that offer competing products that are similar to KX Streaming Analytics. Sort through KX Streaming Analytics alternatives below to make the best choice for your needs
-
1
StarTree
StarTree
25 RatingsStarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. StarTree Cloud includes StarTree Data Manager, which allows you to ingest data from both real-time sources such as Amazon Kinesis, Apache Kafka, Apache Pulsar, or Redpanda, as well as batch data sources such as data warehouses like Snowflake, Delta Lake or Google BigQuery, or object stores like Amazon S3, Apache Flink, Apache Hadoop, or Apache Spark. StarTree ThirdEye is an add-on anomaly detection system running on top of StarTree Cloud that observes your business-critical metrics, alerting you and allowing you to perform root-cause analysis — all in real-time. -
2
Rockset
Rockset
FreeReal-time analytics on raw data. Live ingest from S3, DynamoDB, DynamoDB and more. Raw data can be accessed as SQL tables. In minutes, you can create amazing data-driven apps and live dashboards. Rockset is a serverless analytics and search engine that powers real-time applications and live dashboards. You can directly work with raw data such as JSON, XML and CSV. Rockset can import data from real-time streams and data lakes, data warehouses, and databases. You can import real-time data without the need to build pipelines. Rockset syncs all new data as it arrives in your data sources, without the need to create a fixed schema. You can use familiar SQL, including filters, joins, and aggregations. Rockset automatically indexes every field in your data, making it lightning fast. Fast queries are used to power your apps, microservices and live dashboards. Scale without worrying too much about servers, shards or pagers. -
3
Striim
Striim
Data integration for hybrid clouds Modern, reliable data integration across both your private cloud and public cloud. All this in real-time, with change data capture and streams. Striim was developed by the executive and technical team at GoldenGate Software. They have decades of experience in mission critical enterprise workloads. Striim can be deployed in your environment as a distributed platform or in the cloud. Your team can easily adjust the scaleability of Striim. Striim is fully secured with HIPAA compliance and GDPR compliance. Built from the ground up to support modern enterprise workloads, whether they are hosted in the cloud or on-premise. Drag and drop to create data flows among your sources and targets. Real-time SQL queries allow you to process, enrich, and analyze streaming data. -
4
Amazon Timestream
Amazon
Amazon Timestream is an efficient, scalable, and serverless time series database designed for IoT and operational applications, capable of storing and analyzing trillions of events daily with speeds up to 1,000 times faster and costs as low as 1/10th that of traditional relational databases. By efficiently managing the lifecycle of time series data, Amazon Timestream reduces both time and expenses by keeping current data in memory while systematically transferring historical data to a more cost-effective storage tier based on user-defined policies. Its specialized query engine allows users to seamlessly access and analyze both recent and historical data without the need to specify whether the data is in memory or in the cost-optimized tier. Additionally, Amazon Timestream features integrated time series analytics functions, enabling users to detect trends and patterns in their data almost in real-time, making it an invaluable tool for data-driven decision-making. Furthermore, this service is designed to scale effortlessly with your data needs while ensuring optimal performance and cost efficiency. -
5
Kinetica
Kinetica
A cloud database that can scale to handle large streaming data sets. Kinetica harnesses modern vectorized processors to perform orders of magnitude faster for real-time spatial or temporal workloads. In real-time, track and gain intelligence from billions upon billions of moving objects. Vectorization unlocks new levels in performance for analytics on spatial or time series data at large scale. You can query and ingest simultaneously to take action on real-time events. Kinetica's lockless architecture allows for distributed ingestion, which means data is always available to be accessed as soon as it arrives. Vectorized processing allows you to do more with fewer resources. More power means simpler data structures which can be stored more efficiently, which in turn allows you to spend less time engineering your data. Vectorized processing allows for incredibly fast analytics and detailed visualizations of moving objects at large scale. -
6
kdb+
KX Systems
Introducing a robust cross-platform columnar database designed for high-performance historical time-series data, which includes: - A compute engine optimized for in-memory operations - A streaming processor that functions in real time - A powerful query and programming language known as q Kdb+ drives the kdb Insights portfolio and KDB.AI, offering advanced time-focused data analysis and generative AI functionalities to many of the world's top enterprises. Recognized for its unparalleled speed, kdb+ has been independently benchmarked* as the leading in-memory columnar analytics database, providing exceptional benefits for organizations confronting complex data challenges. This innovative solution significantly enhances decision-making capabilities, enabling businesses to adeptly respond to the ever-evolving data landscape. By leveraging kdb+, companies can gain deeper insights that lead to more informed strategies. -
7
kdb Insights
KX
kdb Insights is an advanced analytics platform built for the cloud, enabling high-speed real-time analysis of both live and past data streams. It empowers users to make informed decisions efficiently, regardless of the scale or speed of the data, and boasts exceptional price-performance ratios, achieving analytics performance that is up to 100 times quicker while costing only 10% compared to alternative solutions. The platform provides interactive data visualization through dynamic dashboards, allowing for immediate insights that drive timely decision-making. Additionally, it incorporates machine learning models to enhance predictive capabilities, identify clusters, detect patterns, and evaluate structured data, thereby improving AI functionalities on time-series datasets. With remarkable scalability, kdb Insights can manage vast amounts of real-time and historical data, demonstrating effectiveness with loads of up to 110 terabytes daily. Its rapid deployment and straightforward data ingestion process significantly reduce the time needed to realize value, while it natively supports q, SQL, and Python, along with compatibility for other programming languages through RESTful APIs. This versatility ensures that users can seamlessly integrate kdb Insights into their existing workflows and leverage its full potential for a wide range of analytical tasks. -
8
Warp 10
SenX
Warp 10 is a modular open source platform that collects, stores, and allows you to analyze time series and sensor data. Shaped for the IoT with a flexible data model, Warp 10 provides a unique and powerful framework to simplify your processes from data collection to analysis and visualization, with the support of geolocated data in its core model (called Geo Time Series). Warp 10 offers both a time series database and a powerful analysis environment, which can be used together or independently. It will allow you to make: statistics, extraction of characteristics for training models, filtering and cleaning of data, detection of patterns and anomalies, synchronization or even forecasts. The Platform is GDPR compliant and secure by design using cryptographic tokens to manage authentication and authorization. The Analytics Engine can be implemented within a large number of existing tools and ecosystems such as Spark, Kafka Streams, Hadoop, Jupyter, Zeppelin and many more. From small devices to distributed clusters, Warp 10 fits your needs at any scale, and can be used in many verticals: industry, transportation, health, monitoring, finance, energy, etc. -
9
Circonus IRONdb
Circonus
Circonus IRONdb simplifies the management and storage of limitless telemetry data, effortlessly processing billions of metric streams. It empowers users to recognize both opportunities and challenges in real time, offering unmatched forensic, predictive, and automated analytics capabilities. With the help of machine learning, it automatically establishes a "new normal" as your operations and data evolve. Additionally, Circonus IRONdb seamlessly integrates with Grafana, which natively supports our analytics query language, and is also compatible with other visualization tools like Graphite-web. To ensure data security, Circonus IRONdb maintains multiple copies across a cluster of IRONdb nodes. While system administrators usually oversee clustering, they often dedicate considerable time to its upkeep and functionality. However, with Circonus IRONdb, operators can easily configure their clusters to run autonomously, allowing them to focus on more strategic tasks rather than the tedious management of their time series data storage. This streamlined approach not only enhances efficiency but also maximizes resource utilization. -
10
Hitachi Streaming Data Platform
Hitachi
The Hitachi Streaming Data Platform (SDP) is engineered for real-time processing of extensive time-series data as it is produced. Utilizing in-memory and incremental computation techniques, SDP allows for rapid analysis that circumvents the typical delays experienced with conventional stored data processing methods. Users have the capability to outline summary analysis scenarios through Continuous Query Language (CQL), which resembles SQL, thus enabling adaptable and programmable data examination without requiring bespoke applications. The platform's architecture includes various components such as development servers, data-transfer servers, data-analysis servers, and dashboard servers, which together create a scalable and efficient data processing ecosystem. Additionally, SDP’s modular framework accommodates multiple data input and output formats, including text files and HTTP packets, and seamlessly integrates with visualization tools like RTView for real-time performance monitoring. This comprehensive design ensures that users can effectively manage and analyze data streams as they occur. -
11
SAS Event Stream Processing
SAS Institute
The significance of streaming data derived from operations, transactions, sensors, and IoT devices becomes apparent when it is thoroughly comprehended. SAS's event stream processing offers a comprehensive solution that encompasses streaming data quality, analytics, and an extensive selection of SAS and open source machine learning techniques alongside high-frequency analytics. This integrated approach facilitates the connection, interpretation, cleansing, and comprehension of streaming data seamlessly. Regardless of the velocity at which your data flows, the volume of data you manage, or the diversity of data sources you utilize, you can oversee everything effortlessly through a single, user-friendly interface. Moreover, by defining patterns and addressing various scenarios across your entire organization, you can remain adaptable and proactively resolve challenges as they emerge while enhancing your overall operational efficiency. -
12
Amazon Kinesis
Amazon
Effortlessly gather, manage, and scrutinize video and data streams as they occur. Amazon Kinesis simplifies the process of collecting, processing, and analyzing streaming data in real-time, empowering you to gain insights promptly and respond swiftly to emerging information. It provides essential features that allow for cost-effective processing of streaming data at any scale while offering the adaptability to select the tools that best align with your application's needs. With Amazon Kinesis, you can capture real-time data like video, audio, application logs, website clickstreams, and IoT telemetry, facilitating machine learning, analytics, and various other applications. This service allows you to handle and analyze incoming data instantaneously, eliminating the need to wait for all data to be collected before starting the processing. Moreover, Amazon Kinesis allows for the ingestion, buffering, and real-time processing of streaming data, enabling you to extract insights in a matter of seconds or minutes, significantly reducing the time it takes compared to traditional methods. Overall, this capability revolutionizes how businesses can respond to data-driven opportunities as they arise. -
13
Evam's Continuous Intelligence Platform integrates various products aimed at the processing and visualization of real-time data streams. It operates machine learning models in real time while enhancing the data with an advanced in-memory caching system. By doing so, EVAM allows companies in telecommunications, financial services, retail, transportation, and travel sectors to fully leverage their business potential. This platform's machine learning capabilities facilitate the processing of live data, enabling the visual design and orchestration of customer journeys through sophisticated analytical models and AI algorithms. Furthermore, EVAM helps businesses connect with their customers across various channels, including legacy systems, in real time. With the ability to collect and process billions of events instantaneously, companies can gain valuable insights into each customer’s preferences, allowing them to attract, engage, and retain clients more efficiently. The effectiveness of such a system not only enhances operational capabilities but also fosters deeper customer relationships.
-
14
Informatica Data Engineering Streaming
Informatica
Informatica's AI-driven Data Engineering Streaming empowers data engineers to efficiently ingest, process, and analyze real-time streaming data, offering valuable insights. The advanced serverless deployment feature, coupled with an integrated metering dashboard, significantly reduces administrative burdens. With CLAIRE®-enhanced automation, users can swiftly construct intelligent data pipelines that include features like automatic change data capture (CDC). This platform allows for the ingestion of thousands of databases, millions of files, and various streaming events. It effectively manages databases, files, and streaming data for both real-time data replication and streaming analytics, ensuring a seamless flow of information. Additionally, it aids in the discovery and inventorying of all data assets within an organization, enabling users to intelligently prepare reliable data for sophisticated analytics and AI/ML initiatives. By streamlining these processes, organizations can harness the full potential of their data assets more effectively than ever before. -
15
BangDB seamlessly incorporates AI, streaming capabilities, graph processing, and analytics directly within its database, empowering users to handle intricate data types like text, images, videos, and objects for immediate data processing and analysis. Users can ingest or stream various data types, process them, train models, make predictions, uncover patterns, and automate actions, facilitating applications such as IoT monitoring, fraud prevention, log analysis, lead generation, and personalized experiences. Modern applications necessitate the simultaneous ingestion, processing, and querying of diverse data types to address specific challenges effectively. BangDB accommodates a wide array of valuable data formats, simplifying problem-solving for users. The increasing demand for real-time data is driving the need for concurrent streaming and predictive analytics, which are essential for enhancing and optimizing business operations. As organizations continue to evolve, the ability to rapidly adapt to new data sources and insights will become increasingly vital for maintaining a competitive edge.
-
16
Materialize
Materialize
$0.98 per hourMaterialize is an innovative reactive database designed to provide updates to views incrementally. It empowers developers to seamlessly work with streaming data through the use of standard SQL. One of the key advantages of Materialize is its ability to connect directly to a variety of external data sources without the need for pre-processing. Users can link to real-time streaming sources such as Kafka, Postgres databases, and change data capture (CDC), as well as access historical data from files or S3. The platform enables users to execute queries, perform joins, and transform various data sources using standard SQL, presenting the outcomes as incrementally-updated Materialized views. As new data is ingested, queries remain active and are continuously refreshed, allowing developers to create data visualizations or real-time applications with ease. Moreover, constructing applications that utilize streaming data becomes a straightforward task, often requiring just a few lines of SQL code, which significantly enhances productivity. With Materialize, developers can focus on building innovative solutions rather than getting bogged down in complex data management tasks. -
17
DeltaStream
DeltaStream
DeltaStream is an integrated serverless streaming processing platform that integrates seamlessly with streaming storage services. Imagine it as a compute layer on top your streaming storage. It offers streaming databases and streaming analytics along with other features to provide an integrated platform for managing, processing, securing and sharing streaming data. DeltaStream has a SQL-based interface that allows you to easily create stream processing apps such as streaming pipelines. It uses Apache Flink, a pluggable stream processing engine. DeltaStream is much more than a query-processing layer on top Kafka or Kinesis. It brings relational databases concepts to the world of data streaming, including namespacing, role-based access control, and enables you to securely access and process your streaming data, regardless of where it is stored. -
18
ITTIA DB
ITTIA
The ITTIA DB suite brings together advanced features for time series, real-time data streaming, and analytics tailored for embedded systems, ultimately streamlining development processes while minimizing expenses. With ITTIA DB IoT, users can access a compact embedded database designed for real-time operations on resource-limited 32-bit microcontrollers (MCUs), while ITTIA DB SQL serves as a robust time-series embedded database that operates efficiently on both single and multicore microprocessors (MPUs). These ITTIA DB offerings empower devices to effectively monitor, process, and retain real-time data. Additionally, the products are specifically engineered to meet the needs of Electronic Control Units (ECUs) within the automotive sector. To ensure data security, ITTIA DB incorporates comprehensive protection mechanisms against unauthorized access, leveraging encryption, authentication, and the DB SEAL feature. Furthermore, ITTIA SDL adheres to the standards set forth by IEC/ISO 62443, reinforcing its commitment to safety. By integrating ITTIA DB, developers can seamlessly collect, process, and enhance incoming real-time data streams through a specialized SDK designed for edge devices, allowing for efficient searching, filtering, joining, and aggregating of data right at the edge. This comprehensive approach not only optimizes performance but also supports the growing demand for real-time data handling in today's technology landscape. -
19
Azure Time Series Insights
Microsoft
$36.208 per unit per monthAzure Time Series Insights Gen2 is a robust and scalable IoT analytics service that provides an exceptional user experience along with comprehensive APIs for seamless integration into your current workflow or application. This platform enables the collection, processing, storage, querying, and visualization of data at an Internet of Things (IoT) scale, ensuring that the data is highly contextualized and specifically tailored for time series analysis. With a focus on ad hoc data exploration and operational analysis, it empowers users to identify hidden trends, detect anomalies, and perform root-cause investigations. Furthermore, Azure Time Series Insights Gen2 stands out as an open and adaptable solution that caters to the diverse needs of industrial IoT deployments, making it an invaluable tool for organizations looking to harness the power of their data. By leveraging its capabilities, businesses can gain deeper insights into their operations and make informed decisions to drive efficiency and innovation. -
20
Embiot
Telchemy
Embiot®, a compact, high-performance IoT analytics software agent that can be used for smart sensor and IoT gateway applications, is available. This edge computing application can be integrated directly into devices, smart sensor and gateways but is powerful enough to calculate complex analytics using large amounts of raw data at high speeds. Embiot internally uses a stream processing model in order to process sensor data that arrives at different times and in different order. It is easy to use with its intuitive configuration language, rich in math, stats, and AI functions. This makes it quick and easy to solve any analytics problems. Embiot supports many input methods, including MODBUS and MQTT, REST/XML and REST/JSON. Name/Value, CSV, and REST/XML are all supported. Embiot can send output reports to multiple destinations simultaneously in REST, custom text and MQTT formats. Embiot supports TLS on select input streams, HTTP, and MQTT authentication for security. -
21
Oracle Stream Analytics
Oracle
Oracle Stream Analytics empowers users to handle and evaluate vast amounts of real-time data through advanced correlation techniques, enrichment capabilities, and machine learning integration. This platform delivers immediate, actionable insights for businesses dealing with streaming information, facilitating automated responses that support the needs of modern agile enterprises. It features Visual GEOProcessing with GEOFence relationship spatial analytics, enhancing location-based decision-making. Additionally, the introduction of a new Expressive Patterns Library encompasses various categories, such as Spatial, Statistical, General industry, and Anomaly detection, alongside streaming machine learning functionalities. With an intuitive visual interface, users can seamlessly explore live streaming data, enabling effective in-memory analytics that enhance real-time business strategies. Overall, this powerful tool significantly improves operational efficiency and decision-making processes in fast-paced environments. -
22
SQLstream
Guavus, a Thales company
In the field of IoT stream processing and analytics, SQLstream ranks #1 according to ABI Research. Used by Verizon, Walmart, Cisco, and Amazon, our technology powers applications on premises, in the cloud, and at the edge. SQLstream enables time-critical alerts, live dashboards, and real-time action with sub-millisecond latency. Smart cities can reroute ambulances and fire trucks or optimize traffic light timing based on real-time conditions. Security systems can detect hackers and fraudsters, shutting them down right away. AI / ML models, trained with streaming sensor data, can predict equipment failures. Thanks to SQLstream's lightning performance -- up to 13 million rows / second / CPU core -- companies have drastically reduced their footprint and cost. Our efficient, in-memory processing allows operations at the edge that would otherwise be impossible. Acquire, prepare, analyze, and act on data in any format from any source. Create pipelines in minutes not months with StreamLab, our interactive, low-code, GUI dev environment. Edit scripts instantly and view instantaneous results without compiling. Deploy with native Kubernetes support. Easy installation includes Docker, AWS, Azure, Linux, VMWare, and more -
23
Digital Twin Streaming Service
ScaleOut Software
ScaleOut Digital Twin Streaming Service™ allows for the seamless creation and deployment of real-time digital twins for advanced streaming analytics. With the ability to connect to numerous data sources such as Azure and AWS IoT hubs, Kafka, and others, it enhances situational awareness through live, aggregate analytics. This innovative cloud service is capable of tracking telemetry from millions of data sources simultaneously, offering immediate and in-depth insights with state-tracking and focused real-time feedback for a multitude of devices. The user-friendly interface streamlines deployment and showcases aggregate analytics in real time, which is essential for maximizing situational awareness. It is suitable for a diverse array of applications, including the Internet of Things (IoT), real-time monitoring, logistics, and financial services. The straightforward pricing structure facilitates a quick and easy start. When paired with the ScaleOut Digital Twin Builder software toolkit, the ScaleOut Digital Twin Streaming Service paves the way for the next generation of stream processing, empowering users to leverage data like never before. This combination not only enhances operational efficiency but also opens new avenues for innovation across various sectors. -
24
Prometheus
Prometheus
FreeEnhance your metrics and alerting capabilities using a top-tier open-source monitoring tool. Prometheus inherently organizes all data as time series, which consist of sequences of timestamped values associated with the same metric and a specific set of labeled dimensions. In addition to the stored time series, Prometheus has the capability to create temporary derived time series based on query outcomes. The tool features a powerful query language known as PromQL (Prometheus Query Language), allowing users to select and aggregate time series data in real time. The output from an expression can be displayed as a graph, viewed in tabular format through Prometheus’s expression browser, or accessed by external systems through the HTTP API. Configuration of Prometheus is achieved through a combination of command-line flags and a configuration file, where the flags are used to set immutable system parameters like storage locations and retention limits for both disk and memory. This dual method of configuration ensures a flexible and tailored monitoring setup that can adapt to various user needs. For those interested in exploring this robust tool, further details can be found at: https://sourceforge.net/projects/prometheus.mirror/ -
25
Apache Spark
Apache Software Foundation
Apache Spark™ serves as a comprehensive analytics platform designed for large-scale data processing. It delivers exceptional performance for both batch and streaming data by employing an advanced Directed Acyclic Graph (DAG) scheduler, a sophisticated query optimizer, and a robust execution engine. With over 80 high-level operators available, Spark simplifies the development of parallel applications. Additionally, it supports interactive use through various shells including Scala, Python, R, and SQL. Spark supports a rich ecosystem of libraries such as SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming, allowing for seamless integration within a single application. It is compatible with various environments, including Hadoop, Apache Mesos, Kubernetes, and standalone setups, as well as cloud deployments. Furthermore, Spark can connect to a multitude of data sources, enabling access to data stored in systems like HDFS, Alluxio, Apache Cassandra, Apache HBase, and Apache Hive, among many others. This versatility makes Spark an invaluable tool for organizations looking to harness the power of large-scale data analytics. -
26
JaguarDB
JaguarDB
JaguarDB facilitates the rapid ingestion of time series data while integrating location-based information. It possesses the capability to index data across both spatial and temporal dimensions effectively. Additionally, the system allows for swift back-filling of time series data, enabling the insertion of significant volumes of historical data points. Typically, time series refers to a collection of data points that are arranged in chronological order. However, in JaguarDB, time series encompasses both a sequence of data points and multiple tick tables that hold aggregated data values across designated time intervals. For instance, a time series table in JaguarDB may consist of a primary table that organizes data points in time sequence, along with tick tables that represent various time frames such as 5 minutes, 15 minutes, hourly, daily, weekly, and monthly, which store aggregated data for those intervals. The structure for RETENTION mirrors that of the TICK format but allows for a flexible number of retention periods, defining the duration for which data points in the base table are maintained. This approach ensures that users can efficiently manage and analyze historical data according to their specific needs. -
27
Blueflood
Blueflood
Blueflood is an advanced distributed metric processing system designed for high throughput and low latency, operating as a multi-tenant solution that supports Rackspace Metrics. It is actively utilized by both the Rackspace Monitoring team and the Rackspace public cloud team to effectively manage and store metrics produced by their infrastructure. Beyond its application within Rackspace, Blueflood also sees extensive use in large-scale deployments documented in community resources. The data collected through Blueflood is versatile, allowing users to create dashboards, generate reports, visualize data through graphs, or engage in any activities that involve analyzing time-series data. With a primary emphasis on near-real-time processing, data can be queried just milliseconds after it is ingested, ensuring timely access to information. Users send their metrics to the ingestion service and retrieve them from the Query service, while the system efficiently handles background rollups through offline batch processing, thus facilitating quick responses for queries covering extended time frames. This architecture not only enhances performance but also ensures that users can rely on rapid access to their critical metrics for effective decision-making. -
28
Apache Druid
Druid
Apache Druid is a distributed data storage solution that is open source. Its fundamental architecture merges concepts from data warehouses, time series databases, and search technologies to deliver a high-performance analytics database capable of handling a diverse array of applications. By integrating the essential features from these three types of systems, Druid optimizes its ingestion process, storage method, querying capabilities, and overall structure. Each column is stored and compressed separately, allowing the system to access only the relevant columns for a specific query, which enhances speed for scans, rankings, and groupings. Additionally, Druid constructs inverted indexes for string data to facilitate rapid searching and filtering. It also includes pre-built connectors for various platforms such as Apache Kafka, HDFS, and AWS S3, as well as stream processors and others. The system adeptly partitions data over time, making queries based on time significantly quicker than those in conventional databases. Users can easily scale resources by simply adding or removing servers, and Druid will manage the rebalancing automatically. Furthermore, its fault-tolerant design ensures resilience by effectively navigating around any server malfunctions that may occur. This combination of features makes Druid a robust choice for organizations seeking efficient and reliable real-time data analytics solutions. -
29
Axibase Time Series Database
Axibase
A parallel query engine designed for efficient access to time- and symbol-indexed data. It incorporates an extended SQL syntax that allows for sophisticated filtering and aggregation capabilities. Users can unify quotes, trades, snapshots, and reference data within a single environment. The platform supports strategy backtesting using high-frequency data for enhanced analysis. It facilitates quantitative research and insights into market microstructure. Additionally, it offers detailed transaction cost analysis and comprehensive rollup reporting features. Market surveillance mechanisms and anomaly detection capabilities are also integrated into the system. The decomposition of non-transparent ETF/ETN instruments is supported, along with the utilization of FAST, SBE, and proprietary communication protocols. A plain text protocol is available alongside consolidated and direct data feeds. The system includes built-in tools for monitoring latency and provides end-of-day archival options. It can perform ETL processes from both institutional and retail financial data sources. Designed with a parallel SQL engine that features syntax extensions, it allows advanced filtering by trading session, auction stage, and index composition for precise analysis. Optimizations for aggregates related to OHLCV and VWAP calculations enhance performance. An interactive SQL console with auto-completion improves user experience, while an API endpoint facilitates seamless programmatic integration. Scheduled SQL reporting options are available, allowing delivery via email, file, or web. JDBC and ODBC drivers ensure compatibility with various applications, making this system a versatile tool for financial data handling. -
30
QuestDB
QuestDB
QuestDB is an advanced relational database that focuses on column-oriented storage optimized for time series and event-driven data. It incorporates SQL with additional features tailored for time-based analytics to facilitate real-time data processing. This documentation encompasses essential aspects of QuestDB, including initial setup instructions, comprehensive usage manuals, and reference materials for syntax, APIs, and configuration settings. Furthermore, it elaborates on the underlying architecture of QuestDB, outlining its methods for storing and querying data, while also highlighting unique functionalities and advantages offered by the platform. A key feature is the designated timestamp, which empowers time-focused queries and efficient data partitioning. Additionally, the symbol type enhances the efficiency of managing and retrieving frequently used strings. The storage model explains how QuestDB organizes records and partitions within its tables, and the use of indexes can significantly accelerate read access for specific columns. Moreover, partitions provide substantial performance improvements for both calculations and queries. With its SQL extensions, users can achieve high-performance time series analysis using a streamlined syntax that simplifies complex operations. Overall, QuestDB stands out as a powerful tool for handling time-oriented data effectively. -
31
Alibaba Cloud TSDB
Alibaba
A Time Series Database (TSDB) is designed for rapid data input and output, allowing for swift reading and writing of information. It achieves impressive compression rates that lead to economical data storage solutions. Moreover, this service facilitates visualization techniques, such as precision reduction, interpolation, and multi-metric aggregation, alongside the processing of query results. By utilizing TSDB, businesses can significantly lower their storage expenses while enhancing the speed of data writing, querying, and analysis. This capability allows for the management of vast quantities of data points and enables more frequent data collection. Its applications span various sectors, including IoT monitoring, enterprise energy management systems (EMSs), production security oversight, and power supply monitoring. Additionally, TSDB is instrumental in optimizing database structures and algorithms, capable of processing millions of data points in mere seconds. By employing an advanced compression method, it can minimize each data point's size to just 2 bytes, leading to over 90% savings in storage costs. Consequently, this efficiency not only benefits businesses financially but also streamlines operational workflows across different industries. -
32
InfluxDB
InfluxData
$0InfluxDB is a purpose-built data platform designed to handle all time series data, from users, sensors, applications and infrastructure — seamlessly collecting, storing, visualizing, and turning insight into action. With a library of more than 250 open source Telegraf plugins, importing and monitoring data from any system is easy. InfluxDB empowers developers to build transformative IoT, monitoring and analytics services and applications. InfluxDB’s flexible architecture fits any implementation — whether in the cloud, at the edge or on-premises — and its versatility, accessibility and supporting tools (client libraries, APIs, etc.) make it easy for developers at any level to quickly build applications and services with time series data. Optimized for developer efficiency and productivity, the InfluxDB platform gives builders time to focus on the features and functionalities that give their internal projects value and their applications a competitive edge. To get started, InfluxData offers free training through InfluxDB University. -
33
VictoriaMetrics
VictoriaMetrics
$0VictoriaMetrics is a cost-effective, scalable monitoring solution that can also be used as a time series database. It can also be used to store Prometheus' long-term data. VictoriaMetrics is a single executable that does not have any external dependencies. All configuration is done using explicit command-line flags and reasonable defaults. It provides global query view. Multiple Prometheus instances, or other data sources, may insert data into VictoriaMetrics. Later this data may be queried via a single query. It can handle high cardinality and high churn rates issues by using a series limiter. -
34
Apama
Apama
Apama Streaming Analytics empowers businesses to process and respond to IoT and rapidly changing data in real-time, enabling them to react intelligently as events unfold. The Apama Community Edition serves as a freemium option from Software AG, offering users the chance to explore, develop, and deploy streaming analytics applications in a practical setting. Meanwhile, the Software AG Data & Analytics Platform presents a comprehensive, modular, and cohesive suite of advanced capabilities tailored for managing high-velocity data and conducting analytics on real-time information, complete with seamless integration to essential enterprise data sources. Users can select the features they require, including streaming, predictive, and visual analytics, alongside messaging capabilities that facilitate straightforward integration with various enterprise applications and an in-memory data store that ensures rapid access. Additionally, by incorporating historical data for comparative analysis, organizations can enhance their models and enrich critical customer and operational data, ultimately leading to more informed decision-making. This level of flexibility and functionality makes Apama an invaluable asset for companies aiming to leverage their data effectively. -
35
OneTick
OneMarketData
OneTick Database has gained widespread acceptance among top banks, brokerages, data vendors, exchanges, hedge funds, market makers, and mutual funds due to its exceptional performance, advanced features, and unparalleled functionality. Recognized as the foremost enterprise solution for capturing tick data, conducting streaming analytics, managing data, and facilitating research, OneTick stands out in the financial sector. Its unique capabilities have captivated numerous hedge funds and mutual funds, alongside traditional financial institutions, enhancing their operational efficiency. The proprietary time series database offered by OneTick serves as a comprehensive multi-asset class platform, integrating a streaming analytics engine and embedded business logic that obviates the necessity for various separate systems. Furthermore, this robust system is designed to deliver the lowest total cost of ownership, making it an attractive option for organizations aiming to optimize their data management processes. With its innovative approach and cost-effectiveness, OneTick continues to redefine industry standards. -
36
IBM StreamSets
IBM
$1000 per monthIBM® StreamSets allows users to create and maintain smart streaming data pipelines using an intuitive graphical user interface. This facilitates seamless data integration in hybrid and multicloud environments. IBM StreamSets is used by leading global companies to support millions data pipelines, for modern analytics and intelligent applications. Reduce data staleness, and enable real-time information at scale. Handle millions of records across thousands of pipelines in seconds. Drag-and-drop processors that automatically detect and adapt to data drift will protect your data pipelines against unexpected changes and shifts. Create streaming pipelines for ingesting structured, semistructured, or unstructured data to deliver it to multiple destinations. -
37
Azure Data Explorer
Microsoft
$0.11 per hourAzure Data Explorer is an efficient and fully managed analytics service designed for swift analysis of vast amounts of data that originate from various sources such as applications, websites, and IoT devices. Users can pose questions and delve into their data in real-time, allowing for enhancements in product development, customer satisfaction, device monitoring, and overall operational efficiency. This service enables quick detection of patterns, anomalies, and emerging trends within the data landscape. Users can formulate and receive answers to new inquiries within minutes, and the framework allows for unlimited queries thanks to its cost-effective structure. With Azure Data Explorer, organizations can discover innovative ways to utilize their data without overspending. By prioritizing insights over infrastructure, users benefit from a straightforward, fully managed analytics platform. This service is adept at addressing the challenges posed by fast-moving and constantly evolving data streams, making analytics more accessible and efficient for all types of streaming information. Ultimately, Azure Data Explorer empowers businesses to leverage their data in transformative ways. -
38
BlackLynx Accelerated Analytics
BlackLynx
BlackLynx's accelerators offer analytics capabilities exactly where they are required, eliminating the need for specialized expertise. Regardless of the components of your analytics framework, you can harness data-driven insights through robust and user-friendly heterogeneous computing solutions. The integration of BlackStack software with electronic systems significantly enhances processing speeds for sensors utilized across various platforms, including terrestrial, maritime, aerospace, and aerial assets. Our innovative software empowers clients to optimize essential AI/ML algorithms and other computational tasks, specifically targeting real-time sensor data processing, which encompasses signal detection, video analytics, missile tracking, radar operations, thermal imaging, and other object detection functionalities. Additionally, BlackStack software substantially improves the speed of processing for real-time data analytics. We enable our clients to delve into enterprise-level unstructured data, providing the tools necessary to gather, filter, and systematically arrange extensive intelligence or cybersecurity forensic data sets, ultimately transforming how they manage and respond to vast streams of information. This capability allows organizations to make informed decisions that drive efficiency and innovation. -
39
Visual KPI
Transpara
Monitoring and visualization of real-time operations, including KPIs and dashboards. Also includes trends, analytics, hierarchy, alerts, and analytics. All data sources (industrial and IoT, business, and external) are gathered. It displays data in real-time on any device, without the need to move it. -
40
Esper Enterprise Edition
EsperTech Inc.
Esper Enterprise Edition offers a robust platform designed for both linear and elastic scalability, as well as reliable event processing that can withstand faults. It comes equipped with an EPL editor and debugger, supports hot deployment, and provides comprehensive reporting on metrics and memory usage, including detailed breakdowns per EPL. Additionally, it features Data Push capabilities for seamless multi-tier delivery from CEP to browsers and manages both logical and physical subscribers and their subscriptions effectively. Its web-based user interface allows users to oversee various distributed engine instances using JavaScript and HTML5, while also enabling the creation of composable and interactive displays for visualizing distributed event streams through charts, gauges, timelines, and grids. Furthermore, it includes JDBC-compliant client and server endpoints to ensure interoperability across systems. Notably, Esper Enterprise Edition is a proprietary commercial product developed by EsperTech, with source code accessibility granted solely for the support of customers. Such versatility and functionality make it a robust choice for enterprises seeking efficient event processing solutions. -
41
KX Insights
KX
KX Insights serves as a cloud-native platform that provides essential real-time performance analytics and actionable intelligence continuously. By utilizing advanced techniques such as complex event processing, rapid analytics, and machine learning interfaces, it facilitates swift decision-making and automates responses to events in mere fractions of a second. The migration to the cloud encompasses not only storage and computational flexibility but also includes a comprehensive array of elements: data, tools, development, security, connectivity, operations, and maintenance. KX empowers organizations to harness this cloud capability, enabling them to make more informed and insightful decisions by seamlessly integrating real-time analytics into their operational frameworks. Additionally, KX Insights adheres to industry standards, promoting openness and interoperability with diverse technologies, which accelerates the delivery of insights in a cost-effective manner. Its architecture is based on microservices, designed for efficiently capturing, storing, and processing high-volume and high-velocity data utilizing established cloud standards, services, and protocols, ensuring optimal performance and scalability. This innovative approach not only enhances operational efficiency but also positions businesses to adapt swiftly to changing market dynamics. -
42
Machbase
Machbase
Machbase is a leading time-series database designed for real-time storage and analysis of vast amounts of sensor data from various facilities. It stands out as the only database management system (DBMS) capable of processing and analyzing large datasets at remarkable speeds, showcasing its impressive capabilities. Experience the extraordinary processing speeds that Machbase offers! This innovative product allows for immediate handling, storage, and analysis of sensor information. It achieves rapid storage and querying of sensor data by integrating the DBMS directly into Edge devices. Additionally, it provides exceptional performance in data storage and extraction when operating on a single server. With the ability to configure multi-node clusters, Machbase offers enhanced availability and scalability. Furthermore, it serves as a comprehensive management solution for Edge computing, addressing device management, connectivity, and data handling needs effectively. In a fast-paced data-driven world, Machbase proves to be an essential tool for industries relying on real-time sensor data analysis. -
43
CrateDB
CrateDB
The enterprise database for time series, documents, and vectors. Store any type data and combine the simplicity and scalability NoSQL with SQL. CrateDB is a distributed database that runs queries in milliseconds regardless of the complexity, volume, and velocity. -
44
Riak TS
Riak
$0Riak®, TS is an enterprise-grade NoSQL Time Series Database that is specifically designed for IoT data and Time Series data. It can ingest, transform, store, and analyze massive amounts of time series information. Riak TS is designed to be faster than Cassandra. Riak TS masterless architecture can read and write data regardless of network partitions or hardware failures. Data is evenly distributed throughout the Riak ring. By default, there are three copies of your data. This ensures that at least one copy is available for reading operations. Riak TS is a distributed software system that does not have a central coordinator. It is simple to set up and use. It is easy to add or remove nodes from a cluster thanks to the masterless architecture. Riak TS's masterless architecture makes it easy for you to add or remove nodes from your cluster. Adding nodes made of commodity hardware to your cluster can help you achieve predictable and almost linear scale. -
45
KairosDB
KairosDB
KairosDB allows data ingestion through various protocols including Telnet, Rest, and Graphite, in addition to supporting plugins for further flexibility. It utilizes Cassandra, a well-regarded NoSQL database, to manage time series data effectively. The database schema is organized into three column families, facilitating efficient data storage. The API offers a range of functionalities, such as listing existing metric names, retrieving tag names and their corresponding values, storing metric data points, and querying these points for analysis. Upon a standard installation, users can access a query page that enables them to extract data from the database easily. This tool is primarily tailored for development applications. Aggregators within the system can perform operations on data points, allowing for down sampling and analysis. A set of standard functions, including min, max, sum, count, and mean, among others, are readily available for users to utilize. Additionally, the KairosDB server supports import and export functionalities via the command line interface. Internal metrics related to the database not only provide insights into the stored data but also allow for monitoring the performance of the server itself, ensuring optimal operation and efficiency. This comprehensive approach makes KairosDB a powerful solution for managing time series data. -
46
QuasarDB
QuasarDB
QuasarDB, the core of Quasar's intelligence, is an advanced, distributed, column-oriented database management system specifically engineered for high-performance timeseries data handling, enabling real-time processing for massive petascale applications. It boasts up to 20 times less disk space requirement, making it exceptionally efficient. The unmatched ingestion and compression features of QuasarDB allow for up to 10,000 times quicker feature extraction. This database can perform real-time feature extraction directly from raw data via an integrated map/reduce query engine, a sophisticated aggregation engine that utilizes SIMD capabilities of contemporary CPUs, and stochastic indexes that consume minimal disk storage. Its ultra-efficient resource utilization, ability to integrate with object storage solutions like S3, innovative compression methods, and reasonable pricing structure make it the most economical timeseries solution available. Furthermore, QuasarDB is versatile enough to operate seamlessly across various platforms, from 32-bit ARM devices to high-performance Intel servers, accommodating both Edge Computing environments and traditional cloud or on-premises deployments. Its scalability and efficiency make it an ideal choice for businesses aiming to harness the full potential of their data in real-time. -
47
SiriDB
Cesbit
SiriDB is optimized for speed. Inserts and queries are answered quickly. You can speed up your development with the custom query language. SiriDB is flexible and can be scaled on the fly. There is no downtime when you update or expand your database. You can scale your database without losing speed. As we distribute your time series data across all pools, we make full use of all resources. SiriDB was designed to deliver unmatched performance with minimal downtime. A SiriDB cluster distributes time series across multiple pools. Each pool has active replicas that can be used for load balancing or redundancy. The database can still be accessed even if one of the replicas is unavailable. -
48
Amazon FinSpace
Amazon
Amazon FinSpace streamlines the deployment of kdb Insights applications on AWS, making the process significantly easier. By automating the routine tasks necessary for provisioning, integrating, and securing the infrastructure needed for kdb Insights, Amazon FinSpace simplifies operations for its users. Furthermore, it offers intuitive APIs that enable customers to set up and initiate new kdb Insights applications in just a matter of minutes. This platform allows users the flexibility to transition their existing kdb Insights applications to AWS, harnessing the advantages of cloud computing without the burden of managing complex and expensive infrastructure. KX's kdb Insights serves as a robust analytics engine, tailored for the examination of both real-time and extensive historical time-series data. Frequently utilized by clients in Capital Markets, kdb Insights supports essential business functions such as options pricing, transaction cost analysis, and backtesting. Additionally, it eliminates the need to integrate more than 15 AWS services for the deployment of kdb, streamlining the entire process further. Overall, Amazon FinSpace empowers organizations to focus on their analytics while minimizing operational overhead. -
49
IBM Streams
IBM
1 RatingIBM Streams analyzes a diverse array of streaming data, including unstructured text, video, audio, geospatial data, and sensor inputs, enabling organizations to identify opportunities and mitigate risks while making swift decisions. By leveraging IBM® Streams, users can transform rapidly changing data into meaningful insights. This platform evaluates various forms of streaming data, empowering organizations to recognize trends and threats as they arise. When integrated with other capabilities of IBM Cloud Pak® for Data, which is founded on a flexible and open architecture, it enhances the collaborative efforts of data scientists in developing models to apply to stream flows. Furthermore, it facilitates the real-time analysis of vast datasets, ensuring that deriving actionable value from your data has never been more straightforward. With these tools, organizations can harness the full potential of their data streams for improved outcomes. -
50
IBM Informix
IBM
IBM Informix® is a highly adaptable and efficient database that can effortlessly combine SQL, NoSQL/JSON, as well as time series and spatial data. Its flexibility and user-friendly design position Informix as a top choice for diverse settings, ranging from large-scale enterprise data warehouses to smaller individual application development projects. Moreover, due to its compact footprint and self-managing features, Informix is particularly advantageous for embedded data management applications. The rising demand for IoT data processing necessitates strong integration and processing capabilities, which Informix fulfills with its hybrid database architecture that requires minimal administrative effort and has a small memory footprint while delivering robust functionality. Notably, Informix is well-equipped for multi-tiered architectures that necessitate processing at various levels, including devices, gateway layers, and cloud environments. Furthermore, it incorporates native encryption to safeguard data both at rest and in transit. Additionally, Informix supports a flexible schema alongside multiple APIs and configurations, making it a versatile choice for modern data management challenges.