Best KX Streaming Analytics Alternatives in 2024
Find the top alternatives to KX Streaming Analytics currently available. Compare ratings, reviews, pricing, and features of KX Streaming Analytics alternatives in 2024. Slashdot lists the best KX Streaming Analytics alternatives on the market that offer competing products that are similar to KX Streaming Analytics. Sort through KX Streaming Analytics alternatives below to make the best choice for your needs
-
1
StarTree
StarTree
25 RatingsStarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. StarTree Cloud includes StarTree Data Manager, which allows you to ingest data from both real-time sources such as Amazon Kinesis, Apache Kafka, Apache Pulsar, or Redpanda, as well as batch data sources such as data warehouses like Snowflake, Delta Lake or Google BigQuery, or object stores like Amazon S3, Apache Flink, Apache Hadoop, or Apache Spark. StarTree ThirdEye is an add-on anomaly detection system running on top of StarTree Cloud that observes your business-critical metrics, alerting you and allowing you to perform root-cause analysis — all in real-time. -
2
Rockset
Rockset
FreeReal-time analytics on raw data. Live ingest from S3, DynamoDB, DynamoDB and more. Raw data can be accessed as SQL tables. In minutes, you can create amazing data-driven apps and live dashboards. Rockset is a serverless analytics and search engine that powers real-time applications and live dashboards. You can directly work with raw data such as JSON, XML and CSV. Rockset can import data from real-time streams and data lakes, data warehouses, and databases. You can import real-time data without the need to build pipelines. Rockset syncs all new data as it arrives in your data sources, without the need to create a fixed schema. You can use familiar SQL, including filters, joins, and aggregations. Rockset automatically indexes every field in your data, making it lightning fast. Fast queries are used to power your apps, microservices and live dashboards. Scale without worrying too much about servers, shards or pagers. -
3
Striim
Striim
Data integration for hybrid clouds Modern, reliable data integration across both your private cloud and public cloud. All this in real-time, with change data capture and streams. Striim was developed by the executive and technical team at GoldenGate Software. They have decades of experience in mission critical enterprise workloads. Striim can be deployed in your environment as a distributed platform or in the cloud. Your team can easily adjust the scaleability of Striim. Striim is fully secured with HIPAA compliance and GDPR compliance. Built from the ground up to support modern enterprise workloads, whether they are hosted in the cloud or on-premise. Drag and drop to create data flows among your sources and targets. Real-time SQL queries allow you to process, enrich, and analyze streaming data. -
4
Kinetica
Kinetica
A cloud database that can scale to handle large streaming data sets. Kinetica harnesses modern vectorized processors to perform orders of magnitude faster for real-time spatial or temporal workloads. In real-time, track and gain intelligence from billions upon billions of moving objects. Vectorization unlocks new levels in performance for analytics on spatial or time series data at large scale. You can query and ingest simultaneously to take action on real-time events. Kinetica's lockless architecture allows for distributed ingestion, which means data is always available to be accessed as soon as it arrives. Vectorized processing allows you to do more with fewer resources. More power means simpler data structures which can be stored more efficiently, which in turn allows you to spend less time engineering your data. Vectorized processing allows for incredibly fast analytics and detailed visualizations of moving objects at large scale. -
5
Amazon Timestream
Amazon
Amazon Timestream is a fast, scalable and serverless time series data service for IoT/operational applications. It makes it possible to store and analyze trillions per day up to 1000 times faster than traditional relational databases and at as low as 1/10th of the cost. Amazon Timestream helps you save time and money when managing the lifecycles of time series data. It stores recent data in memory and moves historical data to a cost-optimized storage tier according to user defined policies. Amazon Timestream's purpose-built query tool allows you to access and analyze both recent and historic data simultaneously, without having to specify in the query whether the data is in the in-memory tier or the cost-optimized. Amazon Timestream's built-in time series analytics functions allow you to identify trends and patterns within your data in real-time. -
6
Circonus IRONdb
Circonus
Circonus IRONdb makes it simple to store and manage unlimited volumes of Telemetry data. It can also handle billions of metric streams. Circonus IRONdb allows users to identify areas where there is opportunity and challenges in real-time. It provides forensic, predictive and automated analytics capabilities that are unmatched by any other product. Machine learning can automatically establish a "new norm" for your data and operations as they change. Circonus IRONdb is compatible with Grafana which supports our analytics query language. We also work with Graphite-web and other visualization apps. Circonus IRONdb protects your data by storing multiple copies in a cluster IRONdb nodes. Clustering is often managed by system administrators, who spend considerable time maintaining it and keeping the system running. Circonus IRONdb allows operators the ability to set and forget their cluster and stop manually managing their time series data stores. -
7
kdb Insights
KX
kdb Insights, a cloud native, high-performance analytics solution designed for real-time data analysis of streaming and historical data, is a platform that can be used to analyze both streams and historical information. It allows for intelligent decision making regardless of data volume and velocity. It offers unmatched performance and price, and delivers analytics up to 100-fold faster than other solutions. The platform allows interactive data visualization via real-time dashboards to facilitate instantaneous insight and decision-making. It also integrates machine-learning models to predict and cluster structured data, detect patterns, score it, and enhance AI capabilities for time-series datasets. kdb Insights is scalable enough to handle large volumes of real-time data and historical data. This has been proven with volumes up to 110 Terabytes per Day. Its simple data intake and quick setup accelerate time-to value. Native support for q SQL and Python is also available, as well as compatibility with other programming languages via RESTful interfaces. -
8
SAS Event Stream Processing
SAS Institute
Streaming data from operations and transactions is valuable when it is well-understood. SAS Event stream processing includes streaming data quality, analytics, and a vast array SAS and open-source machine learning and high frequency analytics for connecting to, deciphering and cleansing streaming data. It doesn't matter how fast your data moves or how many sources you pull from, all of it is under your control through a single, intuitive interface. You can create patterns and address situations from any aspect of your business, giving the ability to be agile and deal with issues as they arise. -
9
kdb+
KX Systems
A cross-platform, high-performance historical time-series database featuring: - An in memory compute engine A real-time stream processor - A query and programming language that is expressive called q kdb+ is the engine behind kdb insights portfolio and KDB.AI. Together, they deliver time-oriented data insight and generative AI capabilities for the world's largest enterprise organizations. kdb+ is the fastest columnar analytics database in memory, according to independent benchmarking*. It delivers unmatched value for businesses that operate in the most challenging data environments. kdb+ helps businesses navigate rapidly changing data environments by improving decision-making processes. - 10
-
11
Warp 10
SenX
Warp 10 is a modular open source platform that collects, stores, and allows you to analyze time series and sensor data. Shaped for the IoT with a flexible data model, Warp 10 provides a unique and powerful framework to simplify your processes from data collection to analysis and visualization, with the support of geolocated data in its core model (called Geo Time Series). Warp 10 offers both a time series database and a powerful analysis environment, which can be used together or independently. It will allow you to make: statistics, extraction of characteristics for training models, filtering and cleaning of data, detection of patterns and anomalies, synchronization or even forecasts. The Platform is GDPR compliant and secure by design using cryptographic tokens to manage authentication and authorization. The Analytics Engine can be implemented within a large number of existing tools and ecosystems such as Spark, Kafka Streams, Hadoop, Jupyter, Zeppelin and many more. From small devices to distributed clusters, Warp 10 fits your needs at any scale, and can be used in many verticals: industry, transportation, health, monitoring, finance, energy, etc. -
12
Informatica Data Engineering Streaming
Informatica
AI-powered Informatica Data Engineering streaming allows data engineers to ingest and process real-time streaming data in order to gain actionable insights. -
13
Amazon Kinesis
Amazon
You can quickly collect, process, analyze, and analyze video and data streams. Amazon Kinesis makes it easy for you to quickly and easily collect, process, analyze, and interpret streaming data. Amazon Kinesis provides key capabilities to process streaming data at any scale cost-effectively, as well as the flexibility to select the tools that best fit your application's requirements. Amazon Kinesis allows you to ingest real-time data, including video, audio, website clickstreams, application logs, and IoT data for machine learning, analytics, or other purposes. Amazon Kinesis allows you to instantly process and analyze data, rather than waiting for all the data to be collected before processing can begin. Amazon Kinesis allows you to ingest buffer and process streaming data instantly, so you can get insights in seconds or minutes, instead of waiting for hours or days. -
14
DeltaStream
DeltaStream
DeltaStream is an integrated serverless streaming processing platform that integrates seamlessly with streaming storage services. Imagine it as a compute layer on top your streaming storage. It offers streaming databases and streaming analytics along with other features to provide an integrated platform for managing, processing, securing and sharing streaming data. DeltaStream has a SQL-based interface that allows you to easily create stream processing apps such as streaming pipelines. It uses Apache Flink, a pluggable stream processing engine. DeltaStream is much more than a query-processing layer on top Kafka or Kinesis. It brings relational databases concepts to the world of data streaming, including namespacing, role-based access control, and enables you to securely access and process your streaming data, regardless of where it is stored. -
15
Materialize
Materialize
$0.98 per hourMaterialize is a reactive database that provides incremental view updates. Our standard SQL allows developers to easily work with streaming data. Materialize connects to many external data sources without any pre-processing. Connect directly to streaming sources such as Kafka, Postgres databases and CDC or historical data sources such as files or S3. Materialize allows you to query, join, and transform data sources in standard SQL - and presents the results as incrementally-updated Materialized views. Queries are kept current and updated as new data streams are added. With incrementally-updated views, developers can easily build data visualizations or real-time applications. It is as easy as writing a few lines SQL to build with streaming data. -
16
BangDB integrates AI, streaming and graph analytics within its DB to allow users to deal complex data of all types, such as text, images and objects. Real-time data processing and analysis Many types of data are required to be ingested and processed simultaneously for today's use cases. BangDB supports almost all the data formats that are useful to users to solve their problem quickly. The rise of real-time data allows for real-time streaming and predictive analytics to optimize business operations.
-
17
Apama
Apama
Apama Streaming Analytics enables organizations to analyze and respond to IoT and fast moving data in real time, allowing them to react intelligently to events as they occur. Apama Community Edition by Software AG is a freemium version that allows users to learn about, develop, and implement streaming analytics applications. Software AG Data & Analytics Platform offers an integrated, modular and end-to-end set of world-class capabilities that are optimized for high-speed data management. It also provides connectivity and integration to all major enterprise data sources. You can choose the capabilities that you require: streaming, predictive, and visual analytics. There is also messaging and integration with other enterprise applications. You can integrate historical and other data to create models and enrich customer data. -
18
Oracle Stream Analytics
Oracle
Oracle Stream Analytics makes it possible to analyze and process large amounts of real-time data using complex correlation patterns, enrichment and machine learning. It provides real-time, actionable business insight from streaming data and automates actions to drive agile businesses of today. -
19
Prometheus
Prometheus
FreeOpen-source monitoring solutions are able to power your alerting and metrics. Prometheus stores all data in time series. These are streams of timestamped value belonging to the same metric with the same labeled dimensions. Prometheus can also generate temporary derived times series as a result of queries. Prometheus offers a functional query language called PromQL, which allows the user to select and aggregate time series data real-time. The expression result can be displayed as a graph or tabular data in Prometheus’s expression browser. External systems can also consume the HTTP API. Prometheus can be configured using command-line flags or a configuration file. The command-line flags can be used to configure immutable system parameters such as storage locations and the amount of data to be kept on disk and in memory. . Download: https://sourceforge.net/projects/prometheus.mirror/ -
20
IBM StreamSets
IBM
$1000 per monthIBM® StreamSets allows users to create and maintain smart streaming data pipelines using an intuitive graphical user interface. This facilitates seamless data integration in hybrid and multicloud environments. IBM StreamSets is used by leading global companies to support millions data pipelines, for modern analytics and intelligent applications. Reduce data staleness, and enable real-time information at scale. Handle millions of records across thousands of pipelines in seconds. Drag-and-drop processors that automatically detect and adapt to data drift will protect your data pipelines against unexpected changes and shifts. Create streaming pipelines for ingesting structured, semistructured, or unstructured data to deliver it to multiple destinations. -
21
Azure Data Explorer
Microsoft
$0.11 per hourAzure Data Explorer provides fast, fully managed data analytics services for real-time analysis of large amounts of data streaming from websites, applications, IoT devices, etc. Ask questions and iteratively analyze data on the fly to improve products and customer experiences, monitor devices, boost operations, and increase profits. Identify patterns, anomalies, or trends quickly in your data. Find answers to your questions quickly and easily by exploring new topics. The optimized cost structure allows you to run as many queries as needed. You can explore new possibilities with your data efficiently. With the fully managed, easy-to-use data analytics service, you can focus on insights and not infrastructure. Rapidly respond to rapidly changing and fast-flowing data. Azure Data Explorer simplifies analytics for all types of streaming data. -
22
Digital Twin Streaming Service
ScaleOut Software
ScaleOut Digital Twin Streaming Service™ Easily create and deploy real-time twins for streaming analytics Connect with many data sources with Azure & AWS IoT Hubs, Kafka, etc. Maximize situational awareness through live, aggregate analytics. A breakthrough cloud service that simultaneously tracks telemetry across millions of data sources, with "real-time digital twins" -- enabling deep, immediate introspection and state-tracking for thousands of devices. The powerful UI makes deployment easy and displays aggregate analytics in real-time to maximize situational awareness. Ideal for a wide variety of applications, including the Internet of Things, real-time intelligent monitoring and logistics, financial services, and financial services. Simple pricing makes it easy to get started. The ScaleOut Digital Twin Builder software and ScaleOut Digital Twin Streaming Service enable the next generation of stream processing. -
23
Embiot
Telchemy
Embiot®, a compact, high-performance IoT analytics software agent that can be used for smart sensor and IoT gateway applications, is available. This edge computing application can be integrated directly into devices, smart sensor and gateways but is powerful enough to calculate complex analytics using large amounts of raw data at high speeds. Embiot internally uses a stream processing model in order to process sensor data that arrives at different times and in different order. It is easy to use with its intuitive configuration language, rich in math, stats, and AI functions. This makes it quick and easy to solve any analytics problems. Embiot supports many input methods, including MODBUS and MQTT, REST/XML and REST/JSON. Name/Value, CSV, and REST/XML are all supported. Embiot can send output reports to multiple destinations simultaneously in REST, custom text and MQTT formats. Embiot supports TLS on select input streams, HTTP, and MQTT authentication for security. -
24
Axibase Time Series Database
Axibase
Parallel query engine with symbol- and time-indexed data access. Extended SQL syntax with advanced filtering, aggregations and more. Consolidate all quotes, trades and snapshots in one place. Strategy backtesting using high-frequency data. Quantitative and market microstructure analysis. Granular transaction cost analysis and rollup report. Market surveillance and anomaly detection. Non-transparent ETF/ETN decomposition. FAST, SBE and proprietary protocols. Plain text protocol. Consolidated and direct feeds. Built-in latency monitoring tools. End-of-day archives. ETL from retail and institutional financial data platforms. Parallel SQL engine with syntax extensions. Advanced filtering via trading session, auction stage, and index composition. Optimized aggregates to OHLCV and VWAP calculations. Interactive SQL console with auto completion. API endpoint for programmatic integrtion. Scheduled SQL reporting via email, file, or web delivery. JDBC and ODBC drivers. -
25
JaguarDB
JaguarDB
JaguarDB allows for fast ingestion of time-series data and location-based data. It can also index in both time and space. It is also quick to back-fill time series data (inserting large amounts of data in the past time). Time series are usually a sequence of data points that have been indexed in order of time. JaguarDB uses the term time series to mean both a sequence data points and a set of tick tables that hold aggregated data values over a specified time span. JaguarDB's time series tables can contain a base table that stores data points in time order and tick tables such daily, weekly, monthly, and daily tables to store aggregated information within these time periods. The RETENTION format is identical to the TICK format, but it can have any number or retention periods. The RETENTION indicates how long data points in the base tables should be kept. -
26
Apache Druid
Druid
Apache Druid, an open-source distributed data store, is Apache Druid. Druid's core design blends ideas from data warehouses and timeseries databases to create a high-performance real-time analytics database that can be used for a wide range of purposes. Druid combines key characteristics from each of these systems into its ingestion, storage format, querying, and core architecture. Druid compresses and stores each column separately, so it only needs to read the ones that are needed for a specific query. This allows for fast scans, ranking, groupBys, and groupBys. Druid creates indexes that are inverted for string values to allow for fast search and filter. Connectors out-of-the box for Apache Kafka and HDFS, AWS S3, stream processors, and many more. Druid intelligently divides data based upon time. Time-based queries are much faster than traditional databases. Druid automatically balances servers as you add or remove servers. Fault-tolerant architecture allows for server failures to be avoided. -
27
Visual KPI
Transpara
Monitoring and visualization of real-time operations, including KPIs and dashboards. Also includes trends, analytics, hierarchy, alerts, and analytics. All data sources (industrial and IoT, business, and external) are gathered. It displays data in real-time on any device, without the need to move it. -
28
Alibaba Cloud TSDB
Alibaba
Time Series Database (TSDB), supports high-speed data writing and reading. It has high compression ratios to ensure data storage costs are low. This service supports visualization of precision reduction and interpolation, multimetric aggregate computing, as well as query results. The TSDB service lowers storage costs and improves data writing, query, analysis efficiency. This allows you to manage large numbers of data points and collect more data. This service is widely used in a variety of industries, including IoT monitoring systems and enterprise energy management systems (EMSs), power supply monitoring systems, production security monitoring systems, and IoT monitoring. Optimizes database architectures. TSDB can read and write millions of data points in seconds. Uses an efficient compression algorithm that reduces the data point's size to 2 bytes. This saves more than 90% on storage costs. -
29
QuestDB
QuestDB
QuestDB is a relational database that uses column-oriented databases. It can be used for event and time series data. It uses SQL with extensions to time series to aid in real-time analytics. These pages provide information about core concepts of QuestDB. They include setup steps, usage guides, as well as reference documentation for syntax, APIs, and configuration. This section explains the architecture of QuestDB and how it stores and queries data. It also introduces new capabilities and features that are unique to the system. The core feature of QuestDB is the designated timestamp. It enables partitioning and time-oriented language capabilities. The symbol type makes it easy to store and retrieve repetitive strings. QuestDB's storage model describes how it stores records and partitions within tables. Indexes can be used to provide faster access to specific columns. Partitions can be used to provide significant performance improvements in calculations and queries. SQL extensions enable time series analysis that is efficient and concise with a concise syntax. -
30
VictoriaMetrics
VictoriaMetrics
$0VictoriaMetrics is a cost-effective, scalable monitoring solution that can also be used as a time series database. It can also be used to store Prometheus' long-term data. VictoriaMetrics is a single executable that does not have any external dependencies. All configuration is done using explicit command-line flags and reasonable defaults. It provides global query view. Multiple Prometheus instances, or other data sources, may insert data into VictoriaMetrics. Later this data may be queried via a single query. It can handle high cardinality and high churn rates issues by using a series limiter. -
31
Azure Time Series Insights
Microsoft
$36.208 per unit per monthAzure Time Series Intelligences Gen2 is an open-source, scalable IoT analytics service that can be integrated into existing workflows and applications. It can be used to collect, store, query, query, and visualize data at Internet of Things scale (IoT),-data that is highly contextualized and optimized in time series. Azure Time Series Insights Gen2 can be used for operational analysis and data exploration. It allows you to spot anomalies and uncover hidden trends. It is flexible and open to all industrial IoT deployments. -
32
Apache Spark
Apache Software Foundation
Apache Spark™, a unified analytics engine that can handle large-scale data processing, is available. Apache Spark delivers high performance for streaming and batch data. It uses a state of the art DAG scheduler, query optimizer, as well as a physical execution engine. Spark has over 80 high-level operators, making it easy to create parallel apps. You can also use it interactively via the Scala, Python and R SQL shells. Spark powers a number of libraries, including SQL and DataFrames and MLlib for machine-learning, GraphX and Spark Streaming. These libraries can be combined seamlessly in one application. Spark can run on Hadoop, Apache Mesos and Kubernetes. It can also be used standalone or in the cloud. It can access a variety of data sources. Spark can be run in standalone cluster mode on EC2, Hadoop YARN and Mesos. Access data in HDFS and Alluxio. -
33
SQLstream
Guavus, a Thales company
In the field of IoT stream processing and analytics, SQLstream ranks #1 according to ABI Research. Used by Verizon, Walmart, Cisco, and Amazon, our technology powers applications on premises, in the cloud, and at the edge. SQLstream enables time-critical alerts, live dashboards, and real-time action with sub-millisecond latency. Smart cities can reroute ambulances and fire trucks or optimize traffic light timing based on real-time conditions. Security systems can detect hackers and fraudsters, shutting them down right away. AI / ML models, trained with streaming sensor data, can predict equipment failures. Thanks to SQLstream's lightning performance -- up to 13 million rows / second / CPU core -- companies have drastically reduced their footprint and cost. Our efficient, in-memory processing allows operations at the edge that would otherwise be impossible. Acquire, prepare, analyze, and act on data in any format from any source. Create pipelines in minutes not months with StreamLab, our interactive, low-code, GUI dev environment. Edit scripts instantly and view instantaneous results without compiling. Deploy with native Kubernetes support. Easy installation includes Docker, AWS, Azure, Linux, VMWare, and more -
34
OneTick
OneMarketData
OneTick Database is embraced by top banks, brokerages and data vendors as well as exchanges, markets, hedge funds, market makers, mutual funds and other financial institutions. OneTick is the best enterprise-wide solution for tick data collection, streaming analytics and data management. OneTick is loved by top hedge funds, mutual funds and banks as well as brokers, banks, brokerages and market makers. OneTick's proprietary time-series database is a unified platform for multi-asset classes. It includes a fully integrated streaming analytics engine, built-in business logic, and eliminates the need to use multiple disparate systems. The system has the lowest total cost-of-ownership. -
35
InfluxDB
InfluxData
$0InfluxDB is a purpose-built data platform designed to handle all time series data, from users, sensors, applications and infrastructure — seamlessly collecting, storing, visualizing, and turning insight into action. With a library of more than 250 open source Telegraf plugins, importing and monitoring data from any system is easy. InfluxDB empowers developers to build transformative IoT, monitoring and analytics services and applications. InfluxDB’s flexible architecture fits any implementation — whether in the cloud, at the edge or on-premises — and its versatility, accessibility and supporting tools (client libraries, APIs, etc.) make it easy for developers at any level to quickly build applications and services with time series data. Optimized for developer efficiency and productivity, the InfluxDB platform gives builders time to focus on the features and functionalities that give their internal projects value and their applications a competitive edge. To get started, InfluxData offers free training through InfluxDB University. -
36
IBM Streams
IBM
1 RatingIBM Streams analyzes a wide range of streaming data, including unstructured text, video and audio, and geospatial and sensor data. This helps organizations to spot opportunities and risks, and make decisions in real-time. -
37
ITTIA DB
ITTIA
The ITTIA DB family of products combines time series, real time data streaming and analytics to reduce development costs and time. ITTIA DB IoT, a small embedded database designed for 32-bit microcontrollers with limited resources for real-time data streaming, and ITTIA DB SQL are high-performance embedded databases for time-series for single-core or multicore microprocessors. Both ITTIA DB product enable devices to monitor real-time data, process it, and store it. ITTIA DB also offers products for Electronic Control Units in the automotive industry. ITTIA DB's data security protocols protect data from malicious access through encryption, authentication and DB Seal. ITTIA SDL conforms to the principles of IEC/ISO 62443. ITTIA DB can be embedded in a SDK designed for edge devices to collect, enrich, and process real-time data streams. Search, filter, combine, and aggregate data at the edge. -
38
CrateDB
CrateDB
The enterprise database for time series, documents, and vectors. Store any type data and combine the simplicity and scalability NoSQL with SQL. CrateDB is a distributed database that runs queries in milliseconds regardless of the complexity, volume, and velocity. -
39
Blueflood
Blueflood
Blueflood, a distributed metric processing system that is high throughput and low latency for multi-tenant multi-tenants, is behind Rackspace Metrics. It is currently being used in production by Rackspace Monitoring team as well as Rackspace public cloud team to store metrics created by their systems. Blueflood is also used in large-scale Rackspace deployments. Blueflood data can be used to create dashboards, reports, graphs, or any other use that involves time-series information. It is focused on near-realtime data and data that can be queryable within milliseconds of ingestion. You send metrics to ingestion service. The Query service allows you to query your metrics. Rollups are processed offline in the background so that queries with long time periods are quickly returned. -
40
BlackLynx Accelerated Analytics
BlackLynx
BlackLynx accelerators provide analytics power where it is needed, without the need for specialized skills. No matter what analytics ecosystem you have, you can power data-driven businesses with powerful, easy to use heterogeneous computing. -
41
KairosDB
KairosDB
KairosDB can push data via multiple protocols: Telnet Rest, Graphite, and Rest. You can also use plugins and other mechanisms. KairosDB stores time series using Cassandra NoSQL datastore. The schema is composed of three column families. This API allows you to list existing metric names, value tags, store metric data, and query for metric points. KairosDB will automatically install the query page. This page allows you to query data stored in the data store. It is intended for development purposes only. Aggregators can perform operations on data points and down samples. You can use standard functions such as min, max, sum and count to calculate the mean, mean, count, mean, and other parameters. The command line allows you to import and export data from the KairosDB server. The server's performance can be monitored internally by the data store. -
42
Esper Enterprise Edition
EsperTech Inc.
Esper Enterprise Edition is a distributed platform for horizontal and linear elastic scalability, fault-tolerant event processing, and fault tolerance. -
43
KX Insights
KX
KX Insights, a cloud-native platform that provides critical real-time performance as well as continuous actionable intelligence, is available. It enables rapid decision-making and automated responses to incidents by combining complex event processing, high speed analytics, and machine learning interfaces. Cloud computing is not just about storage and compute elasticity. It encompasses everything: data and tools, development, security, connectivity as well as operations and maintenance. KX can help you harness that power to make better, more informed decisions by integrating real time analytics into your business operations. KX Insights uses industry standards to ensure interoperability and openness with other technologies to deliver insights faster, more cost-effectively. It uses microservices to capture, store, and process high-volume, high velocity data using cloud protocols, services, and standards. -
44
Riak TS
Riak
$0Riak®, TS is an enterprise-grade NoSQL Time Series Database that is specifically designed for IoT data and Time Series data. It can ingest, transform, store, and analyze massive amounts of time series information. Riak TS is designed to be faster than Cassandra. Riak TS masterless architecture can read and write data regardless of network partitions or hardware failures. Data is evenly distributed throughout the Riak ring. By default, there are three copies of your data. This ensures that at least one copy is available for reading operations. Riak TS is a distributed software system that does not have a central coordinator. It is simple to set up and use. It is easy to add or remove nodes from a cluster thanks to the masterless architecture. Riak TS's masterless architecture makes it easy for you to add or remove nodes from your cluster. Adding nodes made of commodity hardware to your cluster can help you achieve predictable and almost linear scale. -
45
Streaming service is a streaming service that allows developers and data scientists to stream real-time events. It is serverless and Apache Kafka compatible. Streaming can be integrated with Oracle Cloud Infrastructure, Database, GoldenGate, Integration Cloud, and Oracle Cloud Infrastructure (OCI). The service provides integrations for hundreds third-party products, including databases, big data, DevOps, and SaaS applications. Data engineers can easily create and manage big data pipelines. Oracle manages all infrastructure and platform management, including provisioning, scaling and security patching. Streaming can provide state management to thousands of consumers with the help of consumer groups. This allows developers to easily create applications on a large scale.
-
46
QuasarDB
QuasarDB
QuasarDB is Quasar's brain. It is a high-performance distributed, column-oriented, timeseries database management software system that delivers real-time data for petascale use cases. You can save up to 20X on your disk usage Quasardb compression and ingestion are unmatched. Feature extraction can be performed up to 10,000 times faster. QuasarDB is able to extract features from raw data in real-time thanks to a combination of a builtin map/reduce engine, an aggregate engine that leverages SIMD from modern processors, and stochastic indices that consume virtually no disk space. -
47
SiriDB
Cesbit
SiriDB is optimized for speed. Inserts and queries are answered quickly. You can speed up your development with the custom query language. SiriDB is flexible and can be scaled on the fly. There is no downtime when you update or expand your database. You can scale your database without losing speed. As we distribute your time series data across all pools, we make full use of all resources. SiriDB was designed to deliver unmatched performance with minimal downtime. A SiriDB cluster distributes time series across multiple pools. Each pool has active replicas that can be used for load balancing or redundancy. The database can still be accessed even if one of the replicas is unavailable. -
48
Lenses
Lenses.io
$49 per monthAllow everyone to view and discover streaming data. Up to 95% of productivity can be increased by sharing, documenting, and cataloging data. Next, create apps for production use cases using the data. To address privacy concerns and cover all the gaps in open source technology, apply a data-centric security approach. Secure and low-code data pipeline capabilities. All darkness is eliminated and data and apps can be viewed with unparalleled visibility. Unify your data technologies and data meshes and feel confident using open source production. Independent third-party reviews have rated Lenses the best product for real time stream analytics. We have built features to allow you to focus on what is driving value from real-time data. This was based on feedback from our community as well as thousands of engineering hours. You can deploy and run SQL-based real-time applications over any Kafka Connect, Kubernetes or Kubernetes infrastructure, including AWS EKS. -
49
Amazon FinSpace
Amazon
Amazon FinSpace simplifies the running of kdb insights applications on AWS. Amazon FinSpace automates undifferentiated tasks to provision, integrate and secure infrastructure for Kdb Insights. Amazon FinSpace also provides easy-to use APIs that allow customers to configure and run new applications for kdb insights in just a few moments. Amazon FinSpace allows customers to move their existing kdb-Insights applications into AWS, allowing them to enjoy the cloud benefits without the hassle of managing the infrastructure themselves. KX's Kdb Insights, a high-performance time-series analytics engine, is optimized for real-time analysis and the analysis of multi-petabytes of historical data. Capital Markets customers use Kdb insights to power their business-critical workloads such as options pricing and transaction cost analysis. Eliminate the need to integrate 15 AWS services in order to deploy kdb. -
50
Apache Flink
Apache Software Foundation
Apache Flink is a distributed processing engine and framework for stateful computations using unbounded and bounded data streams. Flink can be used in all cluster environments and perform computations at any scale and in-memory speed. A stream of events can be used to produce any type of data. All data, including credit card transactions, machine logs, sensor measurements, and user interactions on a website, mobile app, are generated as streams. Apache Flink excels in processing both unbounded and bound data sets. Flink's runtime can run any type of application on unbounded stream streams thanks to its precise control of state and time. Bounded streams are internal processed by algorithms and data structure that are specifically designed to process fixed-sized data sets. This results in excellent performance. Flink can be used with all of the resource managers previously mentioned.