RaimaDB
RaimaDB, an embedded time series database that can be used for Edge and IoT devices, can run in-memory. It is a lightweight, secure, and extremely powerful RDBMS. It has been field tested by more than 20 000 developers around the world and has been deployed in excess of 25 000 000 times.
RaimaDB is a high-performance, cross-platform embedded database optimized for mission-critical applications in industries such as IoT and edge computing. Its lightweight design makes it ideal for resource-constrained environments, supporting both in-memory and persistent storage options. RaimaDB offers flexible data modeling, including traditional relational models and direct relationships through network model sets. With ACID-compliant transactions and advanced indexing methods like B+Tree, Hash Table, R-Tree, and AVL-Tree, it ensures data reliability and efficiency. Built for real-time processing, it incorporates multi-version concurrency control (MVCC) and snapshot isolation, making it a robust solution for applications demanding speed and reliability.
Learn more
ClouDNS
ClouDNS provides a range of DNS hosting services, offering both free and premium options to meet various needs. Services include dynamic DNS, DDoS protection, GeoDNS, and advanced features like DNS Failover, DNSSEC, and Anycast DNS for faster and more reliable performance. The platform features a robust global network with a 10,000% uptime guarantee, ensuring consistent domain availability. Custom DNS solutions are available for hosting companies, along with SSL certificates and domain management tools.
Learn more
Timescale
TimescaleDB is the most popular open-source relational database that supports time-series data. Fully managed or self-hosted. You can rely on the same PostgreSQL that you love. It has full SQL, rock-solid reliability and a huge ecosystem. Write millions of data points per node. Horizontally scale up to petabytes. Don't worry too much about cardinality. Reduce complexity, ask more questions and build more powerful applications. You will save money with 94-97% compression rates using best-in-class algorithms, and other performance improvements. Modern cloud-native relational database platform that stores time-series data. It is based on PostgreSQL and TimescaleDB. This is the fastest, easiest, and most reliable way to store all of your time-series information. All observability data can be considered time-series data. Time-series problems are those that require efficient solutions to infrastructure and application problems.
Learn more
Azure AI Anomaly Detector
Anticipate issues before they arise by utilizing an Azure AI anomaly detection service. This service allows for the seamless integration of time-series anomaly detection features into applications, enabling users to quickly pinpoint problems. The AI Anomaly Detector processes various types of time-series data and intelligently chooses the most effective anomaly detection algorithm tailored to your specific dataset, ensuring superior accuracy. It can identify sudden spikes, drops, deviations from established patterns, and changes in trends using both univariate and multivariate APIs. Users can personalize the service to recognize different levels of anomalies based on their needs. The anomaly detection service can be deployed flexibly, whether in the cloud or at the intelligent edge. With a robust inference engine, the service evaluates your time-series dataset and automatically determines the ideal detection algorithm, enhancing accuracy for your unique context. This automatic detection process removes the necessity for labeled training data, enabling you to save valuable time and concentrate on addressing issues promptly as they arise. By leveraging advanced technology, organizations can enhance their operational efficiency and maintain a proactive approach to problem-solving.
Learn more