Best JetBrains DataSpell Alternatives in 2026
Find the top alternatives to JetBrains DataSpell currently available. Compare ratings, reviews, pricing, and features of JetBrains DataSpell alternatives in 2026. Slashdot lists the best JetBrains DataSpell alternatives on the market that offer competing products that are similar to JetBrains DataSpell. Sort through JetBrains DataSpell alternatives below to make the best choice for your needs
-
1
Windsurf Editor
Windsurf
155 RatingsWindsurf is a cutting-edge IDE designed for developers to maintain focus and productivity through AI-driven assistance. At the heart of the platform is Cascade, an intelligent agent that not only fixes bugs and errors but also anticipates potential issues before they arise. With built-in features for real-time code previews, automatic linting, and seamless integrations with popular tools like GitHub and Slack, Windsurf streamlines the development process. Developers can also benefit from memory tracking, which helps Cascade recall past work, and smart suggestions that enhance code optimization. Windsurf’s unique capabilities ensure that developers can work faster and smarter, reducing onboarding time and accelerating project delivery. -
2
Introducing DataGrip, a cutting-edge database integrated development environment designed specifically for the needs of SQL professionals. This tool allows for executing queries in various modes while maintaining a local history that safeguards your work by tracking all activities. Users can effortlessly navigate to any table, view, or procedure by name through specific actions or directly from their usages within SQL code. Additionally, DataGrip offers in-depth insights into the performance of your queries and the behavior of the database engine, enabling you to optimize your queries for better efficiency. With context-sensitive code completion, writing SQL becomes a faster process, as the feature is aware of the structure of tables, foreign keys, and database objects within the code you are currently working on. The IDE also identifies potential errors in your code and provides immediate suggestions for fixes, ensuring a smoother coding experience. Moreover, it promptly notifies you about any unresolved objects, utilizing keywords as identifiers while consistently offering solutions to rectify issues that arise. This combination of features makes DataGrip an invaluable tool for developers aiming to enhance their productivity and code quality.
-
3
Utilize our complimentary, collaborative IDE that operates in your browser to write code in over 50 programming languages—no setup time required. Begin coding in your preferred language across any device, operating system, or platform. You can easily invite friends, team members, and colleagues to collaborate in real-time, similar to Google Docs editing. Seamlessly import, execute, and work together on countless GitHub repositories without any manual configurations. Whether you’re interested in Python, C++, HTML, or CSS, our platform allows you to learn and code in whatever language you choose, all in one place. The moment you create a new repl, it becomes live and shareable instantly with others around the globe. Join a community of over 3 million enthusiastic programmers, technologists, creatives, and learners eager to enhance their coding skills. Boost your team's efficiency with dynamic documentation, real-time collaboration features, and effortless remote interviewing options. Additionally, you can build applications programmatically, develop bots, and tailor the IDE with plugins to meet your specific requirements, ensuring a personalized coding experience. This all-in-one platform is designed to make coding more accessible and engaging for everyone.
-
4
marimo
marimo
$0Introducing an innovative reactive notebook designed for Python, which allows you to conduct repeatable experiments, run scripts seamlessly, launch applications, and manage versions using git. 🚀 Comprehensive: it serves as a substitute for jupyter, streamlit, jupytext, ipywidgets, papermill, and additional tools. ⚡️ Dynamic: when you execute a cell, marimo automatically runs all related cells or flags them as outdated. 🖐️ Engaging: easily connect sliders, tables, and plots to your Python code without the need for callbacks. 🔬 Reliable: ensures no hidden states, guarantees deterministic execution, and includes built-in package management for consistency. 🏃 Functional: capable of being executed as a Python script, allowing for customization via CLI arguments. 🛜 Accessible: can be transformed into an interactive web application or presentation, and functions in the browser using WASM. 🛢️ Tailored for data: efficiently query dataframes and databases using SQL, plus filter and search through dataframes effortlessly. 🐍 git-compatible: stores notebooks as .py files, making version control straightforward. ⌨️ A contemporary editor: features include GitHub Copilot, AI helpers, vim keybindings, a variable explorer, and an array of other enhancements to streamline your workflow. With these capabilities, this notebook elevates the way you work with Python, promoting a more efficient and collaborative coding environment. -
5
JupyterLab
Jupyter
Project Jupyter is dedicated to the creation of open-source tools, standards, and services that facilitate interactive computing in numerous programming languages. At the heart of this initiative is JupyterLab, a web-based interactive development environment designed for Jupyter notebooks, coding, and data manipulation. JupyterLab offers remarkable flexibility, allowing users to customize and organize the interface to cater to various workflows in fields such as data science, scientific research, and machine learning. Its extensibility and modular nature enable developers to create plugins that introduce new features and seamlessly integrate with existing components. The Jupyter Notebook serves as an open-source web application enabling users to produce and share documents that incorporate live code, mathematical equations, visualizations, and descriptive text. Common applications of Jupyter include data cleaning and transformation, numerical simulations, statistical analysis, data visualization, and machine learning, among others. Supporting over 40 programming languages—including popular ones like Python, R, Julia, and Scala—Jupyter continues to be a valuable resource for researchers and developers alike, fostering collaborative and innovative approaches to computing challenges. -
6
runcell.dev
runcell.dev
$20 per monthRuncell is an AI agent designed specifically for Jupyter notebooks, capable of comprehending your projects, generating code, and running cells, allowing you to concentrate on deriving insights. This powerful extension features four distinct AI-driven modes: Interactive Learning Mode acts as an AI tutor, elucidating concepts with live coding demonstrations, comparative algorithms, and dynamic visual execution; Autonomous Agent Mode takes command of your notebook, executing cells autonomously, streamlining complex processes, minimizing manual input, and intelligently managing errors; Smart Edit Mode serves as a context-aware helper, providing insightful code suggestions, automating optimizations, and facilitating real-time enhancements to syntax and logic; and AI-Enhanced Jupyter enables you to pose questions in natural language about your code, generate AI-assisted solutions, and receive tailored recommendations for subsequent actions, all integrated smoothly within the user-friendly Jupyter environment. With these capabilities, Runcell significantly enhances the efficiency and effectiveness of coding in Jupyter notebooks. -
7
JupyterHub
JupyterHub
JupyterHub allows users to establish a multi-user environment that can spawn, manage, and proxy several instances of the individual Jupyter notebook server. Developed by Project Jupyter, JupyterHub is designed to cater to numerous users simultaneously. This platform can provide notebook servers for a variety of purposes, including educational environments for students, corporate data science teams, collaborative scientific research, or groups utilizing high-performance computing resources. It is important to note that JupyterHub does not officially support Windows operating systems. While it might be possible to run JupyterHub on Windows by utilizing compatible Spawners and Authenticators, the default configurations are not designed for this platform. Furthermore, any bugs reported on Windows will not be addressed, and the testing framework does not operate on Windows systems. Although minor patches to resolve basic Windows compatibility issues may be considered, they are rare. For users on Windows, it is advisable to run JupyterHub within a Docker container or a Linux virtual machine to ensure optimal performance and compatibility. This approach not only enhances functionality but also simplifies the installation process for Windows users. -
8
Google Colab
Google
8 RatingsGoogle Colab is a complimentary, cloud-based Jupyter Notebook platform that facilitates environments for machine learning, data analysis, and educational initiatives. It provides users with immediate access to powerful computational resources, including GPUs and TPUs, without the need for complex setup, making it particularly suitable for those engaged in data-heavy projects. Users can execute Python code in an interactive notebook format, collaborate seamlessly on various projects, and utilize a wide range of pre-built tools to enhance their experimentation and learning experience. Additionally, Colab has introduced a Data Science Agent that streamlines the analytical process by automating tasks from data comprehension to providing insights within a functional Colab notebook, although it is important to note that the agent may produce errors. This innovative feature further supports users in efficiently navigating the complexities of data science workflows. -
9
JetBrains Datalore
JetBrains
$19.90 per monthDatalore is a platform for collaborative data science and analytics that aims to improve the entire analytics workflow and make working with data more enjoyable for both data scientists as well as data-savvy business teams. Datalore is a collaborative platform that focuses on data teams workflow. It offers technical-savvy business users the opportunity to work with data teams using no-code and low-code, as well as the power of Jupyter Notebooks. Datalore allows business users to perform analytic self-service. They can work with data using SQL or no-code cells, create reports, and dive deep into data. It allows core data teams to focus on simpler tasks. Datalore allows data scientists and analysts to share their results with ML Engineers. You can share your code with ML Engineers on powerful CPUs and GPUs, and you can collaborate with your colleagues in real time. -
10
Bokeh
Bokeh
FreeBokeh simplifies the creation of standard visualizations while also accommodating unique or specialized scenarios. It allows users to publish plots, dashboards, and applications seamlessly on web pages or within Jupyter notebooks. The Python ecosystem boasts a remarkable collection of robust analytical libraries such as NumPy, Scipy, Pandas, Dask, Scikit-Learn, and OpenCV. With its extensive selection of widgets, plotting tools, and user interface events that can initiate genuine Python callbacks, the Bokeh server serves as a vital link, enabling the integration of these libraries into dynamic, interactive visualizations accessible via the browser. Additionally, Microscopium, a project supported by researchers at Monash University, empowers scientists to uncover new functions of genes or drugs through the exploration of extensive image datasets facilitated by Bokeh’s interactive capabilities. Another useful tool, Panel, which is developed by Anaconda, enhances data presentation by leveraging the Bokeh server. It streamlines the creation of custom interactive web applications and dashboards by linking user-defined widgets to a variety of elements, including plots, images, tables, and textual information, thus broadening the scope of data interaction possibilities. This combination of tools fosters a rich environment for data analysis and visualization, making it easier for researchers and developers to share their insights. -
11
MLJAR Studio
MLJAR
$20 per monthThis desktop application integrates Jupyter Notebook and Python, allowing for a seamless one-click installation. It features engaging code snippets alongside an AI assistant that enhances coding efficiency, making it an ideal tool for data science endeavors. We have meticulously developed over 100 interactive code recipes tailored for your Data Science projects, which can identify available packages within your current environment. With a single click, you can install any required modules, streamlining your workflow significantly. Users can easily create and manipulate all variables present in their Python session, while these interactive recipes expedite the completion of tasks. The AI Assistant, equipped with knowledge of your active Python session, variables, and modules, is designed to address data challenges using the Python programming language. It offers support for various tasks, including plotting, data loading, data wrangling, and machine learning. If you encounter code issues, simply click the Fix button, and the AI assistant will analyze the problem and suggest a viable solution, making your coding experience smoother and more productive. Additionally, this innovative tool not only simplifies coding but also enhances your learning curve in data science. -
12
Jupyter Notebook
Project Jupyter
2 RatingsThe Jupyter Notebook is a web-based open-source tool that enables users to create and distribute documents featuring live code, visualizations, equations, and written explanations. Its applications are diverse and encompass tasks such as data cleaning and transformation, statistical modeling, numerical simulations, data visualization, machine learning, among others, showcasing its versatility in various fields. Additionally, it serves as an excellent platform for collaboration and sharing insights within the data science community. -
13
esDynamic
eShard
FreeElevate your security testing experience, from establishing your setup to examining your data processing outcomes, with esDynamic, which streamlines your efforts and saves you precious time while maximizing the effectiveness of your attack strategies. Explore this adaptable and all-encompassing Python-based platform, expertly designed to support every step of your security evaluations. Tailor your research environment to fit your specific needs by seamlessly incorporating new tools, integrating equipment, and adjusting data. Moreover, esDynamic offers a vast repository of resources on intricate subjects that would usually necessitate considerable research or the input of a specialized team, providing immediate access to expert knowledge. Move away from disorganized data and piecemeal information. Embrace a unified workspace that encourages your team to easily exchange data and insights, enhancing collaboration and speeding up the discovery process. Additionally, consolidate and fortify your work within JupyterLab notebooks for streamlined sharing among your team members, ensuring everyone is on the same page. This holistic approach can significantly transform your security testing workflow. -
14
Azure Notebooks
Microsoft
Create and execute code seamlessly using Jupyter notebooks hosted on Azure. Begin your journey at no cost with a free Azure Subscription for an enhanced experience. Ideal for data scientists, developers, students, and individuals from various backgrounds, you can develop and run code directly in your browser, transcending industry boundaries and skill levels. The platform boasts compatibility with more programming languages than any competitor, including Python 2, Python 3, R, and F#. Developed by Microsoft Azure, it's designed to be accessible and available from any browser, no matter where you are in the world, ensuring that your coding needs are met anytime, anywhere. With its user-friendly interface and robust capabilities, it empowers users to explore their coding projects with ease and flexibility. -
15
PyCharm
JetBrains
$199 per user per year 21 RatingsAll your Python development needs are consolidated in one application. While PyCharm handles routine tasks, you can save precious time and concentrate on more significant projects, fully utilizing its keyboard-centric design to explore countless productivity features. This IDE is well-versed in your code and can be trusted for features like intelligent code completion, immediate error detection, and quick-fix suggestions, alongside straightforward project navigation and additional capabilities. With PyCharm, you can write organized and maintainable code, as it assists in maintaining quality through PEP8 compliance checks, testing support, smart refactoring options, and a comprehensive range of inspections. Created by programmers specifically for other programmers, PyCharm equips you with every tool necessary for effective Python development, allowing you to focus on what matters most. Additionally, PyCharm's robust navigation and automated refactoring features further enhance your coding experience, ensuring that you remain efficient and productive throughout your projects. -
16
Positron
Posit PBC
FreePositron is an advanced, freely available integrated development environment designed specifically for data science, accommodating both Python and R within a single cohesive workflow. This platform empowers data specialists to transition smoothly from data exploration to production by providing interactive consoles, notebook integration, variable and plot management, as well as real-time app previews alongside the coding process, all without the need for intricate setup. The IDE comes equipped with AI-driven features such as the Positron Assistant and Databot agent, which aid users in code writing, refinement, and exploratory data analysis to expedite the development process. Additional offerings include a dedicated Data Explorer for inspecting dataframes, a connections pane for database management, and comprehensive support for notebooks, scripts, and visual dashboards, allowing users to effortlessly switch between R and Python. Furthermore, with integrated version control, support for extensions, and robust connectivity to other tools in the Posit Software ecosystem, Positron enhances the overall data science experience. Ultimately, this environment aims to streamline workflows and boost productivity for data professionals in their projects. -
17
Jovian
Jovian
Begin coding immediately with a cloud-based interactive Jupyter notebook that requires no installation or setup. You can start fresh with a blank notebook, follow tutorials, or utilize pre-made templates. Keep track of all your projects using Jovian, where a simple command, jovian.commit(), allows you to capture snapshots, log versions, and create shareable links for your notebooks. Highlight your top projects on your Jovian profile, showcasing notebooks, collections, activities, and more. Monitor changes in your code, outputs, graphs, tables, and logs with user-friendly and visual notebook diffs that make it easy to track progress. Share your creations online or collaborate privately with your team, enabling others to build on your experiments and give feedback. Team members can engage in discussions and comment on specific sections of your notebooks using a robust cell-level commenting feature. Additionally, a versatile comparison dashboard provides options to sort, filter, and archive, allowing for in-depth analysis of machine learning experiments and results. This comprehensive platform enhances collaboration and encourages innovative contributions from all participants. -
18
Apache Zeppelin
Apache
A web-based notebook facilitates interactive data analytics and collaborative documentation using SQL, Scala, and other languages. With an IPython interpreter, it delivers a user experience similar to that of Jupyter Notebook. The latest version introduces several enhancements, including a dynamic form at the note level, a note revision comparison tool, and the option to execute paragraphs sequentially rather than simultaneously, as was the case in earlier versions. Additionally, an interpreter lifecycle manager ensures that idle interpreter processes are automatically terminated, freeing up resources when they are not actively being utilized. This improvement not only optimizes performance but also enhances the overall user experience. -
19
Hex
Hex
$24 per user per monthHex unites the finest features of notebooks, business intelligence, and documentation into a cohesive and collaborative user interface, establishing itself as a contemporary Data Workspace. It simplifies the process of connecting to various data sources and allows for collaborative analysis via SQL and Python-based notebooks, enabling users to share their findings as interactive data applications and narratives. Upon entering Hex, the Projects page serves as the default landing area, making it easy to access both your own projects and those shared within your workspace. The outline feature offers a streamlined overview of all cells contained in a project's Logic View, where each cell is annotated with the variables it defines. Furthermore, cells that produce visible outputs—such as chart cells, input parameters, and markdown cells—provide a preview of their results. By clicking on any cell within the outline, users can instantly navigate to that specific location in the logic, enhancing the overall efficiency of the workflow. This functionality ensures that collaboration and data exploration are both intuitive and effective. -
20
QuantRocket
QuantRocket
QuantRocket is a Python-based platform for researching, backtesting, and trading quantitative strategies. Built on Docker, QuantRocket can be deployed locally or to the cloud and has an open architecture that is flexible and extensible. It provides a JupyterLab environment, offers a suite of data integrations, and supports multiple backtesters: Zipline, the open-source backtester that originally powered Quantopian; Alphalens, an alpha factor analysis library; Moonshot, a vectorized backtester based on pandas; and MoonshotML, a walk-forward machine learning backtester. -
21
Coiled
Coiled
$0.05 per CPU hourCoiled simplifies the process of using Dask at an enterprise level by managing Dask clusters within your AWS or GCP accounts, offering a secure and efficient method for deploying Dask in a production environment. With Coiled, you can set up cloud infrastructure in mere minutes, allowing for a seamless deployment experience with minimal effort on your part. You have the flexibility to tailor the types of cluster nodes to meet the specific requirements of your analysis. Utilize Dask in Jupyter Notebooks while gaining access to real-time dashboards and insights about your clusters. The platform also facilitates the easy creation of software environments with personalized dependencies tailored to your Dask workflows. Coiled prioritizes enterprise-level security and provides cost-effective solutions through service level agreements, user-level management, and automatic termination of clusters when they’re no longer needed. Deploying your cluster on AWS or GCP is straightforward and can be accomplished in just a few minutes, all without needing a credit card. You can initiate your code from a variety of sources, including cloud-based services like AWS SageMaker, open-source platforms like JupyterHub, or even directly from your personal laptop, ensuring that you have the freedom and flexibility to work from anywhere. This level of accessibility and customization makes Coiled an ideal choice for teams looking to leverage Dask efficiently. -
22
Beaker Notebook
Two Sigma Open Source
BeakerX is an extensive suite of kernels and enhancements designed for the Jupyter interactive computing platform. It offers support for the JVM, Spark clusters, and polyglot programming, alongside features like interactive visualizations, tables, forms, and publishing capabilities. Each of BeakerX's supported JVM languages, in addition to Python and JavaScript, is equipped with APIs for generating interactive time-series, scatter plots, histograms, heatmaps, and treemaps. The interactive widgets retain their functionality in both saved notebooks and those shared online, featuring specialized tools for managing large datasets, nanosecond precision, zooming capabilities, and export options. Additionally, BeakerX's table widget seamlessly integrates with pandas data frames, enabling users to easily search, sort, drag, filter, format, select, graph, hide, pin, and export data to CSV or clipboard, facilitating quick connections to spreadsheets. Furthermore, BeakerX includes a Spark magic interface, complete with graphical user interfaces for managing configuration, monitoring status and progress, and interrupting Spark jobs, allowing users the flexibility to either utilize the GUI or programmatically create their own SparkSession. In this way, it significantly enhances the efficiency and usability of data processing and analysis tasks within the Jupyter environment. -
23
Create, execute, and oversee AI models while enhancing decision-making at scale across any cloud infrastructure. IBM Watson Studio enables you to implement AI seamlessly anywhere as part of the IBM Cloud Pak® for Data, which is the comprehensive data and AI platform from IBM. Collaborate across teams, streamline the management of the AI lifecycle, and hasten the realization of value with a versatile multicloud framework. You can automate the AI lifecycles using ModelOps pipelines and expedite data science development through AutoAI. Whether preparing or constructing models, you have the option to do so visually or programmatically. Deploying and operating models is made simple with one-click integration. Additionally, promote responsible AI governance by ensuring your models are fair and explainable to strengthen business strategies. Leverage open-source frameworks such as PyTorch, TensorFlow, and scikit-learn to enhance your projects. Consolidate development tools, including leading IDEs, Jupyter notebooks, JupyterLab, and command-line interfaces, along with programming languages like Python, R, and Scala. Through the automation of AI lifecycle management, IBM Watson Studio empowers you to build and scale AI solutions with an emphasis on trust and transparency, ultimately leading to improved organizational performance and innovation.
-
24
CData Python Connectors
CData Software
CData Python Connectors make it easy for Python users to connect to SaaS and Big Data, NoSQL and relational data sources. Our Python Connectors provide simple Python database interfaces to (DB-API), making them easy to connect to popular tools like Jupyter Notebook and SQLAlchemy. CData Python Connectors wrap SQL around APIs and data protocol, making it easier to access data from Python. It also allows Python users to connect more than 150 SaaS and Big Data data sources with advanced Python processing. The CData Python Connectors bridge a critical gap in Python tooling, providing consistent connectivity with data-centric interfaces for hundreds of SaaS/Cloud, NoSQL and Big Data sources. Download a 30-day free trial or learn more at: https://www.cdata.com/python/ -
25
Gurobi Optimizer
Gurobi Optimization
By leveraging our advanced algorithms, you can enhance your model's complexity to more accurately reflect real-world scenarios while ensuring you can solve it within the given timeframe. Seamlessly incorporate Gurobi into your existing applications using familiar programming languages. Our user-friendly programming interfaces are crafted to be efficient and contemporary, helping you reduce the learning curve while boosting your overall productivity. The Python API we offer includes advanced modeling features that simplify the creation of optimization models, making the process more straightforward. You have the option to utilize Anaconda Python distributions, which come with pre-compiled libraries to facilitate application development, or choose Spyder for visual development and Jupyter for a notebook-style development experience, ensuring you have versatile tools at your disposal. Additionally, Gurobi's robust capabilities empower users to tackle increasingly complex optimization challenges with confidence. -
26
Solara
Widgetti BV
Numerous Python frameworks are capable of managing simple dashboards, yet they struggle with more complex implementations, which frequently results in teams dividing into specialized frontend and backend roles, creating multiple challenges in the process. Solara emerges as an innovative web framework that merges the principles of ReactJS with the straightforwardness of Python. It provides a versatile API that accommodates different levels of UI complexity while ensuring effective state management. Solara is designed to cater to a wide array of applications, from initial prototypes to sophisticated dashboards, and it seamlessly integrates with platforms such as Jupyter, Voilà, and other web servers. Furthermore, it places a strong emphasis on maintaining high code quality, enhancing developer accessibility, and facilitating thorough testing practices. Ultimately, Solara aims to simplify the development experience while enabling the creation of powerful, data-driven applications. -
27
Collimator
Collimator
Collimator is a simulation and modeling platform for hybrid dynamical system. Engineers can design and test complex, mission-critical systems in a reliable, secure, fast, and intuitive way with Collimator. Our customers are control system engineers from the electrical, mechanical, and control sectors. They use Collimator to improve productivity, performance, and collaborate more effectively. Our out-of-the-box features include an intuitive block diagram editor, Python blocks for developing custom algorithms, Jupyter notebooks for optimizing their systems, high performance computing in cloud, and role-based access controls. -
28
Modelbit
Modelbit
Maintain your usual routine while working within Jupyter Notebooks or any Python setting. Just invoke modelbi.deploy to launch your model, allowing Modelbit to manage it — along with all associated dependencies — in a production environment. Machine learning models deployed via Modelbit can be accessed directly from your data warehouse with the same simplicity as invoking a SQL function. Additionally, they can be accessed as a REST endpoint directly from your application. Modelbit is integrated with your git repository, whether it's GitHub, GitLab, or a custom solution. It supports code review processes, CI/CD pipelines, pull requests, and merge requests, enabling you to incorporate your entire git workflow into your Python machine learning models. This platform offers seamless integration with tools like Hex, DeepNote, Noteable, and others, allowing you to transition your model directly from your preferred cloud notebook into a production setting. If you find managing VPC configurations and IAM roles cumbersome, you can effortlessly redeploy your SageMaker models to Modelbit. Experience immediate advantages from Modelbit's platform utilizing the models you have already developed, and streamline your machine learning deployment process like never before. -
29
Kaggle
Kaggle
Kaggle provides a user-friendly, customizable environment for Jupyter Notebooks without any setup requirements. You can take advantage of free GPU resources along with an extensive collection of data and code shared by the community. Within the Kaggle platform, you will discover everything necessary to perform your data science tasks effectively. With access to more than 19,000 publicly available datasets and 200,000 notebooks created by users, you can efficiently tackle any analytical challenge you encounter. This wealth of resources empowers users to enhance their learning and productivity in the field of data science. -
30
Edison Analysis
Edison Scientific
$50 per monthEdison Analysis serves as an advanced scientific data-analysis tool developed by Edison Scientific, functioning as the core analytical engine for their AI Scientist platform known as Kosmos. It is accessible through both Edison’s platform and an API, facilitating intricate scientific data analysis. By iteratively constructing and refining Jupyter notebooks within a specialized environment, this agent takes a dataset alongside a prompt to thoroughly explore, analyze, and interpret the information, ultimately delivering detailed insights, comprehensive reports, and visualizations akin to the work of a human scientist. It is capable of executing code in Python, R, and Bash, and incorporates a wide array of common scientific-analysis libraries within a Docker framework. As all operations occur within a notebook, the logic behind the analysis remains completely transparent and accountable; users have the ability to examine how data was processed, the parameters selected, and the reasoning that led to conclusions, while also being able to download the notebook and related assets whenever they wish. This innovative approach not only enhances the understanding of scientific data but also fosters greater collaboration among researchers by providing a clear record of the entire analytical process. -
31
Quadratic
Quadratic
Quadratic empowers your team to collaborate on data analysis, resulting in quicker outcomes. While you may already be familiar with spreadsheet usage, the capabilities offered by Quadratic are unprecedented. It fluently integrates Formulas and Python, with SQL and JavaScript support on the horizon. Utilize the programming languages that you and your colleagues are comfortable with. Unlike single-line formulas that can be difficult to decipher, Quadratic allows you to elaborate your formulas across multiple lines for clarity. The platform conveniently includes support for Python libraries, enabling you to incorporate the latest open-source tools seamlessly into your spreadsheets. The last executed code is automatically returned to the spreadsheet, and it accommodates raw values, 1/2D arrays, and Pandas DataFrames as standard. You can effortlessly retrieve data from an external API, with automatic updates reflected in Quadratic's cells. The interface allows for smooth navigation, permitting you to zoom out for an overview or zoom in to examine specifics. You can organize and traverse your data in a manner that aligns with your thought process, rather than conforming to the constraints imposed by traditional tools. This flexibility enhances not only productivity but also fosters a more intuitive approach to data management. -
32
MinusX
MinusX
Introducing MinusX, a Chrome extension designed to streamline the operation of your analytics applications, providing the quickest method to derive insights from your data. With the ability to interoperate with MinusX, users can easily adjust or enhance their existing notebooks. Simply select a specific area, pose inquiries, or request modifications to your data. MinusX is compatible with popular analytics platforms such as Jupyter Notebooks, Metabase, Tableau, and more, allowing you to generate analyses and share outcomes with your team in real-time. Our advanced privacy settings ensure that any data shared is utilized solely for improving the accuracy of our models, with a strict policy against sharing your data with external parties. The seamless integration of MinusX into your existing tools means you can remain within your current workflow while addressing questions. Actionable tasks are prioritized as first-class entities, enabling MinusX to select the most appropriate action based on context. Presently, we support models like Claude Sonnet 3.5, GPT-4o, and GPT-4o mini, and we are actively developing a feature that will allow you to incorporate your own models for even greater customization. This adaptability ensures that MinusX can cater to a wide range of analytical needs and preferences. -
33
Xq1
Xquantum
$9The ultimate cron manager you've been searching for. Effortlessly deploy human or AI-generated Python scripts on a schedule without any infrastructure requirements. STEPS: 1. BYOC (Bring Your Own Code): If your code is already prepared in VS Code or Jupyter Notebook, simply copy and paste it into Xq1. Alternatively, you can utilize ChatGPT to create your code by prompting, "Write a Python code for ....," and then pasting the output into Xq1. 2. Execute your code: Launch your code on Xq1, which will install any necessary packages, create a container, and execute it. If the execution is error-free, you are ready to proceed. 3. Assign a name and choose a schedule: Give your code (cron) a recognizable name for easier identification upon deployment. Then, specify your preferred schedule or frequency for running the code. 4. Deploy: Click the deploy button, and Xq1 will handle the deployment of your container while scheduling it according to your selected frequency. You can monitor each execution in real-time through the 'Cron Monitor' interface on Xq1. 5. Enjoy seamless automation: Now you can sit back and relax as your scripts run automatically, freeing up your time for other essential tasks while ensuring your projects progress consistently. -
34
Nomic Atlas
Nomic AI
$50 per monthAtlas seamlessly integrates into your workflow by structuring text and embedding datasets into dynamic maps for easy exploration via a web browser. No longer will you need to sift through Excel spreadsheets, log DataFrames, or flip through lengthy lists to grasp your data. With the capability to automatically read, organize, and summarize your document collections, Atlas highlights emerging trends and patterns. Its well-organized data interface provides a quick way to identify anomalies and problematic data that could threaten the success of your AI initiatives. You can label and tag your data during the cleaning process, with instant synchronization to your Jupyter Notebook. While vector databases are essential for powerful applications like recommendation systems, they often present significant interpretive challenges. Atlas not only stores and visualizes your vectors but also allows comprehensive search functionality through all of your data using a single API, making data management more efficient and user-friendly. By enhancing accessibility and clarity, Atlas empowers users to make informed decisions based on their data insights. -
35
Tellurium
Tellurium
$15.00/month/ user Tellurium is a versatile Python package that integrates several key tools necessary for conducting simulation studies in systems biology and various other fields. It offers access to the robust high-performance simulation engine known as libRoadrunner. Users can create their models using Antimony, a simplified, human-readable format based on SBML. Additionally, an Antimony tutorial is available for those looking to learn the specifics of the language. Tellurium is compatible with all major standards, including SBML, SED-ML, and COMBINE archives. It can be utilized through user-friendly GUI environments like Spyder, PyCharm, or Jupyter Notebooks, including CoLab, which enhances productivity and supports interactive editing features. Installation is straightforward, achieved through the standard pip method, and there is also a convenient one-click installer available for Windows users that sets up a comprehensive environment for systems biology modeling. The development of Tellurium benefits from the contributions of a wide range of open-source developers, ensuring a continually evolving tool for researchers. Overall, Tellurium stands out as an essential resource for those involved in simulation studies across multiple scientific disciplines. -
36
Hopsworks
Logical Clocks
$1 per monthHopsworks is a comprehensive open-source platform designed to facilitate the creation and management of scalable Machine Learning (ML) pipelines, featuring the industry's pioneering Feature Store for ML. Users can effortlessly transition from data analysis and model creation in Python, utilizing Jupyter notebooks and conda, to executing robust, production-ready ML pipelines without needing to acquire knowledge about managing a Kubernetes cluster. The platform is capable of ingesting data from a variety of sources, whether they reside in the cloud, on-premise, within IoT networks, or stem from your Industry 4.0 initiatives. You have the flexibility to deploy Hopsworks either on your own infrastructure or via your chosen cloud provider, ensuring a consistent user experience regardless of the deployment environment, be it in the cloud or a highly secure air-gapped setup. Moreover, Hopsworks allows you to customize alerts for various events triggered throughout the ingestion process, enhancing your workflow efficiency. This makes it an ideal choice for teams looking to streamline their ML operations while maintaining control over their data environments. -
37
RubyMine
JetBrains
$199 per user per yearLeverage the language-specific syntax and error highlighting, along with features like code formatting, completion, and instant documentation to enhance your coding experience. Utilize intelligent search to swiftly navigate to any class, file, symbol, or even specific IDE actions and tool windows. With just one click, you can access declarations, super methods, tests, usages, implementations, and more. Experience incredibly fast navigation within your Rails project, supported by an MVC-based project view, as well as diagrams illustrating model, class, and gem dependencies. Adhere to community best practices through code inspections that validate your code for various potential issues, offering immediate improvements via quick-fix options. Automated refactorings ensure that your code remains clean and maintainable, while Rails-aware features facilitate project-wide modifications: for instance, renaming a controller will automatically adjust the corresponding helper, views, and tests. This comprehensive set of tools allows for a more efficient workflow, enabling developers to focus on building robust applications without getting bogged down by mundane tasks. -
38
StarCoder
BigCode
FreeStarCoder and StarCoderBase represent advanced Large Language Models specifically designed for code, developed using openly licensed data from GitHub, which encompasses over 80 programming languages, Git commits, GitHub issues, and Jupyter notebooks. In a manner akin to LLaMA, we constructed a model with approximately 15 billion parameters trained on a staggering 1 trillion tokens. Furthermore, we tailored the StarCoderBase model with 35 billion Python tokens, leading to the creation of what we now refer to as StarCoder. Our evaluations indicated that StarCoderBase surpasses other existing open Code LLMs when tested against popular programming benchmarks and performs on par with or even exceeds proprietary models like code-cushman-001 from OpenAI, the original Codex model that fueled early iterations of GitHub Copilot. With an impressive context length exceeding 8,000 tokens, the StarCoder models possess the capability to handle more information than any other open LLM, thus paving the way for a variety of innovative applications. This versatility is highlighted by our ability to prompt the StarCoder models through a sequence of dialogues, effectively transforming them into dynamic technical assistants that can provide support in diverse programming tasks. -
39
Protect AI
Protect AI
Protect AI conducts comprehensive security assessments throughout your machine learning lifecycle, ensuring that your AI applications and models are both secure and compliant. It is crucial for enterprises to comprehend the distinct vulnerabilities present in their AI and ML systems throughout the entire lifecycle and to take swift action to mitigate any potential risks. Our offerings deliver enhanced threat visibility, effective security testing, and robust remediation strategies. Jupyter Notebooks serve as an invaluable resource for data scientists, enabling them to explore datasets, develop models, assess experiments, and collaborate by sharing findings with colleagues. These notebooks encompass live code, visualizations, data, and explanatory text, but they also present various security vulnerabilities that existing cybersecurity solutions may not adequately address. NB Defense is a complimentary tool that swiftly scans individual notebooks or entire repositories to uncover common security flaws, pinpoint issues, and provide guidance on how to resolve them effectively. By utilizing such tools, organizations can significantly enhance their overall security posture while leveraging the powerful capabilities of Jupyter Notebooks. -
40
Illumina Connected Analytics
Illumina
Manage, store, and collaborate on multi-omic datasets effectively. The Illumina Connected Analytics platform serves as a secure environment for genomic data, facilitating the operationalization of informatics and the extraction of scientific insights. Users can effortlessly import, construct, and modify workflows utilizing tools such as CWL and Nextflow. The platform also incorporates DRAGEN bioinformatics pipelines for enhanced data processing. Securely organize your data within a protected workspace, enabling global sharing that adheres to compliance standards. Retain your data within your own cloud infrastructure while leveraging our robust platform. Utilize a versatile analysis environment, featuring JupyterLab Notebooks, to visualize and interpret your data. Aggregate, query, and analyze both sample and population data through a scalable data warehouse, which can adapt to your growing needs. Enhance your analysis operations by constructing, validating, automating, and deploying informatics pipelines with ease. This efficiency can significantly decrease the time needed for genomic data analysis, which is vital when rapid results are essential. Furthermore, the platform supports comprehensive profiling to uncover novel drug targets and identify biomarkers for drug response. Lastly, seamlessly integrate data from Illumina sequencing systems for a streamlined workflow experience. -
41
JetBrains Fleet
JetBrains
Developed entirely from the ground up, JetBrains Fleet draws on two decades of experience in creating integrated development environments (IDEs). It utilizes the robust IntelliJ code-processing engine, featuring a distributed architecture and a fresh user interface designed for modern developers. Our aim with Fleet was to create a swift and efficient text editor that allows for quick code browsing and editing. It launches almost instantaneously, enabling you to start your work without delay, and has the capability to seamlessly evolve into a full-fledged IDE, with the IntelliJ engine operating independently from the editing interface. Fleet encompasses all the beloved features of IntelliJ-based IDEs, such as code completion tailored to your project context, easy navigation to definitions and usages, real-time code quality assessments, and convenient quick-fixes. The architecture of Fleet is thoughtfully designed to accommodate various configurations and workflows, allowing it to run locally on your machine or to offload some processes to the cloud, showcasing its versatility and adaptability for different development needs. This flexibility ensures that developers can choose the setup that best fits their workflow requirements. -
42
Google Cloud Datalab
Google
Cloud Datalab is a user-friendly interactive platform designed for data exploration, analysis, visualization, and machine learning. This robust tool, developed for the Google Cloud Platform, allows users to delve into, transform, and visualize data while building machine learning models efficiently. Operating on Compute Engine, it smoothly integrates with various cloud services, enabling you to concentrate on your data science projects without distractions. Built using Jupyter (previously known as IPython), Cloud Datalab benefits from a vibrant ecosystem of modules and a comprehensive knowledge base. It supports the analysis of data across BigQuery, AI Platform, Compute Engine, and Cloud Storage, utilizing Python, SQL, and JavaScript for BigQuery user-defined functions. Whether your datasets are in the megabytes or terabytes range, Cloud Datalab is equipped to handle your needs effectively. You can effortlessly query massive datasets in BigQuery, perform local analysis on sampled subsets of data, and conduct training jobs on extensive datasets within AI Platform without any interruptions. This versatility makes Cloud Datalab a valuable asset for data scientists aiming to streamline their workflows and enhance productivity. -
43
Bayesforge
Quantum Programming Studio
Bayesforge™ is a specialized Linux machine image designed to assemble top-tier open source applications tailored for data scientists in need of sophisticated analytical tools, as well as for professionals in quantum computing and computational mathematics who wish to engage with key quantum computing frameworks. This image integrates well-known machine learning libraries like PyTorch and TensorFlow alongside open source tools from D-Wave, Rigetti, and platforms like IBM Quantum Experience and Google’s innovative quantum language Cirq, in addition to other leading quantum computing frameworks. For example, it features our quantum fog modeling framework and the versatile quantum compiler Qubiter, which supports cross-compilation across all significant architectures. Users can conveniently access all software through the Jupyter WebUI, which features a modular design that enables coding in Python, R, and Octave, enhancing flexibility in project development. Moreover, this comprehensive environment empowers researchers and developers to seamlessly blend classical and quantum computing techniques in their workflows. -
44
JetBrains Aqua
JetBrains
$249 per yearAqua stands out as the pioneering integrated development environment (IDE) designed exclusively for test automation. This comprehensive workspace seamlessly accommodates Selenium, Cypress, and Playwright, providing a versatile environment for users. As a polyglot IDE, Aqua is proficient in several programming languages, including Java, Python, JavaScript, TypeScript, Kotlin, and SQL. It streamlines the testing process by eliminating the need for extensive plugin installations and configurations. What truly sets Aqua apart is its distinctive feature set, which caters to all the daily requirements of a test automation engineer. The integrated Web Inspector functions akin to an embedded browser, enabling users to effortlessly capture any page element without the need to switch to other applications. Additionally, Aqua offers an HTTP client for API testing, along with seamless integration with databases, Docker, and version control systems. By alleviating the complexities of even the most demanding tasks, Aqua significantly enhances the user experience. The synergy of intelligent code analysis, robust search and refactoring tools, along with its user-friendly design, empowers users to maximize their productivity in quality engineering endeavors. Ultimately, Aqua represents a transformative tool that redefines the landscape of test automation development. -
45
Visual Studio by Microsoft is a complete ecosystem for professional developers, combining robust coding environments, integrated AI capabilities, and advanced collaboration tools. The flagship Visual Studio 2022 IDE delivers an all-in-one workspace with compilers, debuggers, designers, and performance profilers for .NET, C++, C#, and Azure development. Meanwhile, Visual Studio Code (VS Code) offers a lightweight yet powerful editor that runs on Windows, macOS, and Linux, ideal for web, JavaScript, Python, and container-based workflows. With GitHub Copilot integration, developers receive intelligent code completions, automated refactoring, and natural language explanations of complex logic. Agent Mode introduces an AI-driven assistant that can edit across files, execute builds, and resolve compile or test errors autonomously. Built-in tools like unit test generators, CI-aware policy enforcement, and style validation help ensure clean, testable, and secure code. Thousands of extensions from the Visual Studio Marketplace expand functionality for database, cloud, and DevOps workflows. Together, these platforms redefine productivity, helping teams code smarter and deliver innovation faster.