What Integrates with Intel Open Edge Platform?
Find out what Intel Open Edge Platform integrations exist in 2025. Learn what software and services currently integrate with Intel Open Edge Platform, and sort them by reviews, cost, features, and more. Below is a list of products that Intel Open Edge Platform currently integrates with:
-
1
TensorFlow
TensorFlow
Free 2 RatingsTensorFlow is a comprehensive open-source machine learning platform that covers the entire process from development to deployment. This platform boasts a rich and adaptable ecosystem featuring various tools, libraries, and community resources, empowering researchers to advance the field of machine learning while allowing developers to create and implement ML-powered applications with ease. With intuitive high-level APIs like Keras and support for eager execution, users can effortlessly build and refine ML models, facilitating quick iterations and simplifying debugging. The flexibility of TensorFlow allows for seamless training and deployment of models across various environments, whether in the cloud, on-premises, within browsers, or directly on devices, regardless of the programming language utilized. Its straightforward and versatile architecture supports the transformation of innovative ideas into practical code, enabling the development of cutting-edge models that can be published swiftly. Overall, TensorFlow provides a powerful framework that encourages experimentation and accelerates the machine learning process. -
2
Visual Studio Code
Microsoft
26 RatingsVSCode: A revolutionary approach to code editing. It's completely free, open-source, and compatible with all platforms. Experience more than just basic syntax highlighting and autocomplete; with IntelliSense, you gain intelligent suggestions that are based on the types of variables, definitions of functions, and imported modules. You can also debug your code directly within the editor, allowing you to launch or connect to your active applications while utilizing breakpoints, call stacks, and an interactive console for deeper insights. Collaborating with Git and other source control management (SCM) systems is simpler than ever; you can review differences, stage files, and commit changes right from within the editor itself. Easily push and pull changes from any hosted SCM service without hassle. Looking for additional capabilities? You can enhance your experience by installing extensions that introduce new languages, themes, debuggers, and connections to various services. These extensions operate in their own processes, ensuring they won't hinder your editor's performance. Discover the endless possibilities with extensions. Furthermore, with Microsoft Azure, you can efficiently deploy and host a variety of sites built with React, Angular, Vue, Node, Python, and more, while also being able to store and query both relational and document-based data, and scale effortlessly using serverless computing solutions. This powerful integration streamlines your development workflow and enhances productivity. -
3
JupyterLab
Jupyter
1 RatingProject Jupyter is dedicated to the creation of open-source tools, standards, and services that facilitate interactive computing in numerous programming languages. At the heart of this initiative is JupyterLab, a web-based interactive development environment designed for Jupyter notebooks, coding, and data manipulation. JupyterLab offers remarkable flexibility, allowing users to customize and organize the interface to cater to various workflows in fields such as data science, scientific research, and machine learning. Its extensibility and modular nature enable developers to create plugins that introduce new features and seamlessly integrate with existing components. The Jupyter Notebook serves as an open-source web application enabling users to produce and share documents that incorporate live code, mathematical equations, visualizations, and descriptive text. Common applications of Jupyter include data cleaning and transformation, numerical simulations, statistical analysis, data visualization, and machine learning, among others. Supporting over 40 programming languages—including popular ones like Python, R, Julia, and Scala—Jupyter continues to be a valuable resource for researchers and developers alike, fostering collaborative and innovative approaches to computing challenges. -
4
Effortlessly switch between eager and graph modes using TorchScript, while accelerating your journey to production with TorchServe. The torch-distributed backend facilitates scalable distributed training and enhances performance optimization for both research and production environments. A comprehensive suite of tools and libraries enriches the PyTorch ecosystem, supporting development across fields like computer vision and natural language processing. Additionally, PyTorch is compatible with major cloud platforms, simplifying development processes and enabling seamless scaling. You can easily choose your preferences and execute the installation command. The stable version signifies the most recently tested and endorsed iteration of PyTorch, which is typically adequate for a broad range of users. For those seeking the cutting-edge, a preview is offered, featuring the latest nightly builds of version 1.10, although these may not be fully tested or supported. It is crucial to verify that you meet all prerequisites, such as having numpy installed, based on your selected package manager. Anaconda is highly recommended as the package manager of choice, as it effectively installs all necessary dependencies, ensuring a smooth installation experience for users. This comprehensive approach not only enhances productivity but also ensures a robust foundation for development.
-
5
OpenVINO
Intel
FreeThe Intel® Distribution of OpenVINO™ toolkit serves as an open-source AI development resource that speeds up inference on various Intel hardware platforms. This toolkit is crafted to enhance AI workflows, enabling developers to implement refined deep learning models tailored for applications in computer vision, generative AI, and large language models (LLMs). Equipped with integrated model optimization tools, it guarantees elevated throughput and minimal latency while decreasing the model size without sacrificing accuracy. OpenVINO™ is an ideal choice for developers aiming to implement AI solutions in diverse settings, spanning from edge devices to cloud infrastructures, thereby assuring both scalability and peak performance across Intel architectures. Ultimately, its versatile design supports a wide range of AI applications, making it a valuable asset in modern AI development. -
6
Intel Tiber AI Cloud
Intel
FreeThe Intel® Tiber™ AI Cloud serves as a robust platform tailored to efficiently scale artificial intelligence workloads through cutting-edge computing capabilities. Featuring specialized AI hardware, including the Intel Gaudi AI Processor and Max Series GPUs, it enhances the processes of model training, inference, and deployment. Aimed at enterprise-level applications, this cloud offering allows developers to create and refine models using well-known libraries such as PyTorch. Additionally, with a variety of deployment choices, secure private cloud options, and dedicated expert assistance, Intel Tiber™ guarantees smooth integration and rapid deployment while boosting model performance significantly. This comprehensive solution is ideal for organizations looking to harness the full potential of AI technologies. -
7
Hugging Face
Hugging Face
$9 per monthHugging Face is an AI community platform that provides state-of-the-art machine learning models, datasets, and APIs to help developers build intelligent applications. The platform’s extensive repository includes models for text generation, image recognition, and other advanced machine learning tasks. Hugging Face’s open-source ecosystem, with tools like Transformers and Tokenizers, empowers both individuals and enterprises to build, train, and deploy machine learning solutions at scale. It offers integration with major frameworks like TensorFlow and PyTorch for streamlined model development. -
8
OpenCV
OpenCV
FreeOpenCV, which stands for Open Source Computer Vision Library, is a freely available software library designed for computer vision and machine learning. Its primary goal is to offer a unified framework for developing computer vision applications and to enhance the integration of machine perception in commercial products. As a BSD-licensed library, OpenCV allows companies to easily adapt and modify its code to suit their needs. It boasts over 2500 optimized algorithms encompassing a wide array of both traditional and cutting-edge techniques in computer vision and machine learning. These powerful algorithms enable functionalities such as facial detection and recognition, object identification, human action classification in videos, camera movement tracking, and monitoring of moving objects. Additionally, OpenCV supports the extraction of 3D models, creation of 3D point clouds from stereo camera input, image stitching for high-resolution scene capture, similarity searches within image databases, red-eye removal from flash photographs, and even eye movement tracking and landscape recognition, showcasing its versatility in various applications. The extensive capabilities of OpenCV make it a valuable resource for developers and researchers alike. -
9
ONNX
ONNX
ONNX provides a standardized collection of operators that serve as the foundational elements for machine learning and deep learning models, along with a unified file format that allows AI developers to implement models across a range of frameworks, tools, runtimes, and compilers. You can create in your desired framework without being concerned about the implications for inference later on. With ONNX, you have the flexibility to integrate your chosen inference engine seamlessly with your preferred framework. Additionally, ONNX simplifies the process of leveraging hardware optimizations to enhance performance. By utilizing ONNX-compatible runtimes and libraries, you can achieve maximum efficiency across various hardware platforms. Moreover, our vibrant community flourishes within an open governance model that promotes transparency and inclusivity, inviting you to participate and make meaningful contributions. Engaging with this community not only helps you grow but also advances the collective knowledge and resources available to all. -
10
Intel Geti
Intel
Intel® Geti™ software streamlines the creation of computer vision models through efficient data annotation and training processes. It offers features such as intelligent annotations, active learning, and task chaining, allowing users to develop models for tasks like classification, object detection, and anomaly detection without needing to write extra code. Furthermore, the platform includes optimizations, hyperparameter tuning, and models that are ready for production and optimized for Intel’s OpenVINO™ toolkit. Intended to facilitate teamwork, Geti™ enhances collaboration by guiding teams through the entire model development lifecycle, from labeling data to deploying models effectively. This comprehensive approach ensures that users can focus on refining their models while minimizing technical hurdles. -
11
Intel SceneScape
Intel
Intel® SceneScape is a cutting-edge software platform that facilitates the creation of 4D digital replicas of real-world environments through the integration of data from a variety of sensors. This pioneering system enhances tracking functionalities beyond conventional vision-based AI, allowing for immediate monitoring, asset management, and informed decision-making. Featuring a user-friendly low-code interface and support for multiple sensor types, SceneScape simplifies the implementation of robust AI solutions across diverse sectors, including defense, transportation, healthcare, and retail. Its capabilities for near real-time tracking and analytics significantly boost operational efficiency and situational awareness, making it an invaluable tool for organizations aiming to optimize their processes. Furthermore, SceneScape's adaptability ensures that it can evolve with technological advancements, keeping users at the forefront of innovation.
- Previous
- You're on page 1
- Next