Best Informatica Data Engineering Alternatives in 2025
Find the top alternatives to Informatica Data Engineering currently available. Compare ratings, reviews, pricing, and features of Informatica Data Engineering alternatives in 2025. Slashdot lists the best Informatica Data Engineering alternatives on the market that offer competing products that are similar to Informatica Data Engineering. Sort through Informatica Data Engineering alternatives below to make the best choice for your needs
-
1
BigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises. Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently.
-
2
Big Data Quality must always be verified to ensure that data is safe, accurate, and complete. Data is moved through multiple IT platforms or stored in Data Lakes. The Big Data Challenge: Data often loses its trustworthiness because of (i) Undiscovered errors in incoming data (iii). Multiple data sources that get out-of-synchrony over time (iii). Structural changes to data in downstream processes not expected downstream and (iv) multiple IT platforms (Hadoop DW, Cloud). Unexpected errors can occur when data moves between systems, such as from a Data Warehouse to a Hadoop environment, NoSQL database, or the Cloud. Data can change unexpectedly due to poor processes, ad-hoc data policies, poor data storage and control, and lack of control over certain data sources (e.g., external providers). DataBuck is an autonomous, self-learning, Big Data Quality validation tool and Data Matching tool.
-
3
Looker
Google
20 RatingsLooker reinvents the way business intelligence (BI) works by delivering an entirely new kind of data discovery solution that modernizes BI in three important ways. A simplified web-based stack leverages our 100% in-database architecture, so customers can operate on big data and find the last mile of value in the new era of fast analytic databases. An agile development environment enables today’s data rockstars to model the data and create end-user experiences that make sense for each specific business, transforming data on the way out, rather than on the way in. At the same time, a self-service data-discovery experience works the way the web works, empowering business users to drill into and explore very large datasets without ever leaving the browser. As a result, Looker customers enjoy the power of traditional BI at the speed of the web. -
4
Cognos Analytics with Watson brings BI to a new level with AI capabilities that provide a complete, trustworthy, and complete picture of your company. They can forecast the future, predict outcomes, and explain why they might happen. Built-in AI can be used to speed up and improve the blending of data or find the best tables for your model. AI can help you uncover hidden trends and drivers and provide insights in real-time. You can create powerful visualizations and tell the story of your data. You can also share insights via email or Slack. Combine advanced analytics with data science to unlock new opportunities. Self-service analytics that is governed and secures data from misuse adapts to your needs. You can deploy it wherever you need it - on premises, on the cloud, on IBM Cloud Pak®, for Data or as a hybrid option.
-
5
Qrvey
Qrvey
Qrvey is the only solution for embedded analytics with a built-in data lake. Qrvey saves engineering teams time and money with a turnkey solution connecting your data warehouse to your SaaS application. Qrvey’s full-stack solution includes the necessary components so that your engineering team can build less software in-house. Qrvey is built for SaaS companies that want to offer a better multi-tenant analytics experience. Qrvey's solution offers: - Built-in data lake powered by Elasticsearch - A unified data pipeline to ingest and analyze any type of data - The most embedded components - all JS, no iFrames - Fully personalizable to offer personalized experiences to users With Qrvey, you can build less software and deliver more value. -
6
Domo
Domo
49 RatingsDomo puts data to work for everyone so they can multiply their impact on the business. Underpinned by a secure data foundation, our cloud-native data experience platform makes data visible and actionable with user-friendly dashboards and apps. Domo helps companies optimize critical business processes at scale and in record time to spark bold curiosity that powers exponential business results. -
7
IRI Data Manager
IRI, The CoSort Company
The IRI Data Manager suite from IRI, The CoSort Company, provides all the tools you need to speed up data manipulation and movement. IRI CoSort handles big data processing tasks like DW ETL and BI/analytics. It also supports DB loads, sort/merge utility migrations (downsizing), and other data processing heavy lifts. IRI Fast Extract (FACT) is the only tool that you need to unload large databases quickly (VLDB) for DW ETL, reorg, and archival. IRI NextForm speeds up file and table migrations, and also supports data replication, data reformatting, and data federation. IRI RowGen generates referentially and structurally correct test data in files, tables, and reports, and also includes DB subsetting (and masking) capabilities for test environments. All of these products can be licensed standalone for perpetual use, share a common Eclipse job design IDE, and are also supported in IRI Voracity (data management platform) subscriptions. -
8
Fivetran
Fivetran
Fivetran is the smartest method to replicate data into your warehouse. Our zero-maintenance pipeline is the only one that allows for a quick setup. It takes months of development to create this system. Our connectors connect data from multiple databases and applications to one central location, allowing analysts to gain profound insights into their business. -
9
Dataplane
Dataplane
FreeDataplane's goal is to make it faster and easier to create a data mesh. It has robust data pipelines and automated workflows that can be used by businesses and teams of any size. Dataplane is more user-friendly and places a greater emphasis on performance, security, resilience, and scaling. -
10
Revolutionary Cloud-Native ETL Tool: Quickly Load and Transform Data for Your Cloud Data Warehouse. We have transformed the conventional ETL approach by developing a solution that integrates data directly within the cloud environment. Our innovative platform takes advantage of the virtually limitless storage offered by the cloud, ensuring that your projects can scale almost infinitely. By operating within the cloud, we simplify the challenges associated with transferring massive data quantities. Experience the ability to process a billion rows of data in just fifteen minutes, with a seamless transition from launch to operational status in a mere five minutes. In today’s competitive landscape, businesses must leverage their data effectively to uncover valuable insights. Matillion facilitates your data transformation journey by extracting, migrating, and transforming your data in the cloud, empowering you to derive fresh insights and enhance your decision-making processes. This enables organizations to stay ahead in a rapidly evolving market.
-
11
Crux
Crux
Discover the reasons why leading companies are turning to the Crux external data automation platform to enhance their external data integration, transformation, and monitoring without the need for additional personnel. Our cloud-native technology streamlines the processes of ingesting, preparing, observing, and consistently delivering any external dataset. Consequently, this enables you to receive high-quality data precisely where and when you need it, formatted correctly. Utilize features such as automated schema detection, inferred delivery schedules, and lifecycle management to swiftly create pipelines from diverse external data sources. Moreover, boost data discoverability across your organization with a private catalog that links and matches various data products. Additionally, you can enrich, validate, and transform any dataset, allowing for seamless integration with other data sources, which ultimately speeds up your analytics processes. With these capabilities, your organization can fully leverage its data assets to drive informed decision-making and strategic growth. -
12
Informatica Data Engineering Streaming
Informatica
Informatica's AI-driven Data Engineering Streaming empowers data engineers to efficiently ingest, process, and analyze real-time streaming data, offering valuable insights. The advanced serverless deployment feature, coupled with an integrated metering dashboard, significantly reduces administrative burdens. With CLAIRE®-enhanced automation, users can swiftly construct intelligent data pipelines that include features like automatic change data capture (CDC). This platform allows for the ingestion of thousands of databases, millions of files, and various streaming events. It effectively manages databases, files, and streaming data for both real-time data replication and streaming analytics, ensuring a seamless flow of information. Additionally, it aids in the discovery and inventorying of all data assets within an organization, enabling users to intelligently prepare reliable data for sophisticated analytics and AI/ML initiatives. By streamlining these processes, organizations can harness the full potential of their data assets more effectively than ever before. -
13
Google Cloud Dataflow
Google
Data processing that integrates both streaming and batch operations while being serverless, efficient, and budget-friendly. It offers a fully managed service for data processing, ensuring seamless automation in the provisioning and administration of resources. With horizontal autoscaling capabilities, worker resources can be adjusted dynamically to enhance overall resource efficiency. The innovation is driven by the open-source community, particularly through the Apache Beam SDK. This platform guarantees reliable and consistent processing with exactly-once semantics. Dataflow accelerates the development of streaming data pipelines, significantly reducing data latency in the process. By adopting a serverless model, teams can devote their efforts to programming rather than the complexities of managing server clusters, effectively eliminating the operational burdens typically associated with data engineering tasks. Additionally, Dataflow’s automated resource management not only minimizes latency but also optimizes utilization, ensuring that teams can operate with maximum efficiency. Furthermore, this approach promotes a collaborative environment where developers can focus on building robust applications without the distraction of underlying infrastructure concerns. -
14
Ask On Data
Helical Insight
Ask On Data is an innovative, chat-based open source tool designed for Data Engineering and ETL processes, equipped with advanced agentic capabilities and a next-generation data stack. It simplifies the creation of data pipelines through an intuitive chat interface. Users can perform a variety of tasks such as Data Migration, Data Loading, Data Transformations, Data Wrangling, Data Cleaning, and even Data Analysis effortlessly through conversation. This versatile tool is particularly beneficial for Data Scientists seeking clean datasets, while Data Analysts and BI engineers can utilize it to generate calculated tables. Additionally, Data Engineers can enhance their productivity and accomplish significantly more with this efficient solution. Ultimately, Ask On Data streamlines data management tasks, making it an invaluable resource in the data ecosystem. -
15
Chalk
Chalk
FreeExperience robust data engineering processes free from the challenges of infrastructure management. By utilizing straightforward, modular Python, you can define intricate streaming, scheduling, and data backfill pipelines with ease. Transition from traditional ETL methods and access your data instantly, regardless of its complexity. Seamlessly blend deep learning and large language models with structured business datasets to enhance decision-making. Improve forecasting accuracy using up-to-date information, eliminate the costs associated with vendor data pre-fetching, and conduct timely queries for online predictions. Test your ideas in Jupyter notebooks before moving them to a live environment. Avoid discrepancies between training and serving data while developing new workflows in mere milliseconds. Monitor all of your data operations in real-time to effortlessly track usage and maintain data integrity. Have full visibility into everything you've processed and the ability to replay data as needed. Easily integrate with existing tools and deploy on your infrastructure, while setting and enforcing withdrawal limits with tailored hold periods. With such capabilities, you can not only enhance productivity but also ensure streamlined operations across your data ecosystem. -
16
K2View believes that every enterprise should be able to leverage its data to become as disruptive and agile as possible. We enable this through our Data Product Platform, which creates and manages a trusted dataset for every business entity – on demand, in real time. The dataset is always in sync with its sources, adapts to changes on the fly, and is instantly accessible to any authorized data consumer. We fuel operational use cases, including customer 360, data masking, test data management, data migration, and legacy application modernization – to deliver business outcomes at half the time and cost of other alternatives.
-
17
Dremio
Dremio
Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed. -
18
Datameer
Datameer
Datameer is your go-to data tool for exploring, preparing, visualizing, and cataloging Snowflake insights. From exploring raw datasets to driving business decisions – an all-in-one tool. -
19
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights. -
20
Querona
YouNeedIT
We make BI and Big Data analytics easier and more efficient. Our goal is to empower business users, make BI specialists and always-busy business more independent when solving data-driven business problems. Querona is a solution for those who have ever been frustrated by a lack in data, slow or tedious report generation, or a long queue to their BI specialist. Querona has a built-in Big Data engine that can handle increasing data volumes. Repeatable queries can be stored and calculated in advance. Querona automatically suggests improvements to queries, making optimization easier. Querona empowers data scientists and business analysts by giving them self-service. They can quickly create and prototype data models, add data sources, optimize queries, and dig into raw data. It is possible to use less IT. Users can now access live data regardless of where it is stored. Querona can cache data if databases are too busy to query live. -
21
Kestra
Kestra
Kestra is a free, open-source orchestrator based on events that simplifies data operations while improving collaboration between engineers and users. Kestra brings Infrastructure as Code to data pipelines. This allows you to build reliable workflows with confidence. The declarative YAML interface allows anyone who wants to benefit from analytics to participate in the creation of the data pipeline. The UI automatically updates the YAML definition whenever you make changes to a work flow via the UI or an API call. The orchestration logic can be defined in code declaratively, even if certain workflow components are modified. -
22
datuum.ai
Datuum
Datuum is an AI-powered data integration tool that offers a unique solution for organizations looking to streamline their data integration process. With our pre-trained AI engine, Datuum simplifies customer data onboarding by allowing for automated integration from various sources without coding. This reduces data preparation time and helps establish resilient connectors, ultimately freeing up time for organizations to focus on generating insights and improving the customer experience. At Datuum, we have over 40 years of experience in data management and operations, and we've incorporated our expertise into the core of our product. Our platform is designed to address the critical challenges faced by data engineers and managers while being accessible and user-friendly for non-technical specialists. By reducing up to 80% of the time typically spent on data-related tasks, Datuum can help organizations optimize their data management processes and achieve more efficient outcomes. -
23
DoubleCloud
DoubleCloud
$0.024 per 1 GB per monthOptimize your time and reduce expenses by simplifying data pipelines using hassle-free open source solutions. Covering everything from data ingestion to visualization, all components are seamlessly integrated, fully managed, and exceptionally reliable, ensuring your engineering team enjoys working with data. You can opt for any of DoubleCloud’s managed open source services or take advantage of the entire platform's capabilities, which include data storage, orchestration, ELT, and instantaneous visualization. We offer premier open source services such as ClickHouse, Kafka, and Airflow, deployable on platforms like Amazon Web Services or Google Cloud. Our no-code ELT tool enables real-time data synchronization between various systems, providing a fast, serverless solution that integrates effortlessly with your existing setup. With our managed open-source data visualization tools, you can easily create real-time visual representations of your data through interactive charts and dashboards. Ultimately, our platform is crafted to enhance the daily operations of engineers, making their tasks more efficient and enjoyable. This focus on convenience is what sets us apart in the industry. -
24
Upsolver
Upsolver
Upsolver makes it easy to create a governed data lake, manage, integrate, and prepare streaming data for analysis. Only use auto-generated schema on-read SQL to create pipelines. A visual IDE that makes it easy to build pipelines. Add Upserts to data lake tables. Mix streaming and large-scale batch data. Automated schema evolution and reprocessing of previous state. Automated orchestration of pipelines (no Dags). Fully-managed execution at scale Strong consistency guarantee over object storage Nearly zero maintenance overhead for analytics-ready information. Integral hygiene for data lake tables, including columnar formats, partitioning and compaction, as well as vacuuming. Low cost, 100,000 events per second (billions every day) Continuous lock-free compaction to eliminate the "small file" problem. Parquet-based tables are ideal for quick queries. -
25
AtScale
AtScale
AtScale streamlines and speeds up business intelligence processes, leading to quicker insights, improved decision-making, and enhanced returns on your cloud analytics investments. It removes the need for tedious data engineering tasks, such as gathering, maintaining, and preparing data for analysis. By centralizing business definitions, AtScale ensures that KPI reporting remains consistent across various BI tools. The platform not only accelerates the time it takes to gain insights from data but also optimizes the management of cloud computing expenses. Additionally, it allows organizations to utilize their existing data security protocols for analytics, regardless of where the data is stored. AtScale’s Insights workbooks and models enable users to conduct Cloud OLAP multidimensional analysis on datasets sourced from numerous providers without the requirement for data preparation or engineering. With user-friendly built-in dimensions and measures, businesses can swiftly extract valuable insights that inform their strategic decisions, enhancing their overall operational efficiency. This capability empowers teams to focus on analysis rather than data handling, leading to sustained growth and innovation. -
26
Vaex
Vaex
At Vaex.io, our mission is to make big data accessible to everyone, regardless of the machine or scale they are using. By reducing development time by 80%, we transform prototypes directly into solutions. Our platform allows for the creation of automated pipelines for any model, significantly empowering data scientists in their work. With our technology, any standard laptop can function as a powerful big data tool, eliminating the need for clusters or specialized engineers. We deliver dependable and swift data-driven solutions that stand out in the market. Our cutting-edge technology enables the rapid building and deployment of machine learning models, outpacing competitors. We also facilitate the transformation of your data scientists into proficient big data engineers through extensive employee training, ensuring that you maximize the benefits of our solutions. Our system utilizes memory mapping, an advanced expression framework, and efficient out-of-core algorithms, enabling users to visualize and analyze extensive datasets while constructing machine learning models on a single machine. This holistic approach not only enhances productivity but also fosters innovation within your organization. -
27
Alooma
Google
Alooma provides data teams with the ability to monitor and manage their data effectively. It consolidates information from disparate data silos into BigQuery instantly, allowing for real-time data integration. Users can set up data flows in just a few minutes, or opt to customize, enhance, and transform their data on-the-fly prior to it reaching the data warehouse. With Alooma, no event is ever lost thanks to its integrated safety features that facilitate straightforward error management without interrupting the pipeline. Whether dealing with a few data sources or a multitude, Alooma's flexible architecture adapts to meet your requirements seamlessly. This capability ensures that organizations can efficiently handle their data demands regardless of scale or complexity. -
28
Teradata VantageCloud
Teradata
1 RatingVantageCloud by Teradata is a next-gen cloud analytics ecosystem built to unify disparate data sources, deliver real-time AI-powered insights, and drive enterprise innovation with unprecedented efficiency. The platform includes VantageCloud Lake, designed for elastic scalability and GPU-accelerated AI workloads, and VantageCloud Enterprise, which supports robust analytics capabilities across secure hybrid and multi-cloud deployments. It seamlessly integrates with leading cloud providers like AWS, Azure, and Google Cloud, and supports open table formats like Apache Iceberg for greater data flexibility. With built-in support for advanced analytics, workload management, and cross-functional collaboration, VantageCloud provides the agility and power modern enterprises need to accelerate digital transformation and optimize operational outcomes. -
29
Trifacta
Trifacta
Trifacta offers an efficient solution for preparing data and constructing data pipelines in the cloud. By leveraging visual and intelligent assistance, it enables users to expedite data preparation, leading to quicker insights. Data analytics projects can falter due to poor data quality; therefore, Trifacta equips you with the tools to comprehend and refine your data swiftly and accurately. It empowers users to harness the full potential of their data without the need for coding expertise. Traditional manual data preparation methods can be tedious and lack scalability, but with Trifacta, you can create, implement, and maintain self-service data pipelines in mere minutes instead of months, revolutionizing your data workflow. This ensures that your analytics projects are not only successful but also sustainable over time. -
30
Unravel
Unravel Data
Unravel empowers data functionality across various environments, whether it’s Azure, AWS, GCP, or your own data center, by enhancing performance, automating issue resolution, and managing expenses effectively. It enables users to oversee, control, and optimize their data pipelines both in the cloud and on-site, facilitating a more consistent performance in the applications that drive business success. With Unravel, you gain a holistic perspective of your complete data ecosystem. The platform aggregates performance metrics from all systems, applications, and platforms across any cloud, employing agentless solutions and machine learning to thoroughly model your data flows from start to finish. This allows for an in-depth exploration, correlation, and analysis of every component within your contemporary data and cloud infrastructure. Unravel's intelligent data model uncovers interdependencies, identifies challenges, and highlights potential improvements, providing insight into how applications and resources are utilized, as well as distinguishing between effective and ineffective elements. Instead of merely tracking performance, you can swiftly identify problems and implement solutions. Utilize AI-enhanced suggestions to automate enhancements, reduce expenses, and strategically prepare for future needs. Ultimately, Unravel not only optimizes your data management strategies but also supports a proactive approach to data-driven decision-making. -
31
Talend Pipeline Designer is an intuitive web-based application designed for users to transform raw data into a format suitable for analytics. It allows for the creation of reusable pipelines that can extract, enhance, and modify data from various sources before sending it to selected data warehouses, which can then be used to generate insightful dashboards for your organization. With this tool, you can efficiently build and implement data pipelines in a short amount of time. The user-friendly visual interface enables both design and preview capabilities for batch or streaming processes directly within your web browser. Its architecture is built to scale, supporting the latest advancements in hybrid and multi-cloud environments, while enhancing productivity through real-time development and debugging features. The live preview functionality provides immediate visual feedback, allowing you to diagnose data issues swiftly. Furthermore, you can accelerate decision-making through comprehensive dataset documentation, quality assurance measures, and effective promotion strategies. The platform also includes built-in functions to enhance data quality and streamline the transformation process, making data management an effortless and automated practice. In this way, Talend Pipeline Designer empowers organizations to maintain high data integrity with ease.
-
32
Nexla
Nexla
$1000/month Nexla's automated approach to data engineering has made it possible for data users for the first time to access ready-to-use data without the need for any connectors or code. Nexla is unique in that it combines no-code and low-code with a developer SDK, bringing together users of all skill levels on one platform. Nexla's data-as a-product core combines integration preparation, monitoring, delivery, and monitoring of data into one system, regardless of data velocity or format. Nexla powers mission-critical data for JPMorgan and Doordash, LinkedIn LiveRamp, J&J, as well as other leading companies across industries. -
33
Openbridge
Openbridge
$149 per monthDiscover how to enhance sales growth effortlessly by utilizing automated data pipelines that connect seamlessly to data lakes or cloud storage solutions without the need for coding. This adaptable platform adheres to industry standards, enabling the integration of sales and marketing data to generate automated insights for more intelligent expansion. Eliminate the hassle and costs associated with cumbersome manual data downloads. You’ll always have a clear understanding of your expenses, only paying for the services you actually use. Empower your tools with rapid access to data that is ready for analytics. Our certified developers prioritize security by exclusively working with official APIs. You can quickly initiate data pipelines sourced from widely-used platforms. With pre-built, pre-transformed pipelines at your disposal, you can unlock crucial data from sources like Amazon Vendor Central, Amazon Seller Central, Instagram Stories, Facebook, Amazon Advertising, Google Ads, and more. The processes for data ingestion and transformation require no coding, allowing teams to swiftly and affordably harness the full potential of their data. Your information is consistently safeguarded and securely stored in a reliable, customer-controlled data destination such as Databricks or Amazon Redshift, ensuring peace of mind as you manage your data assets. This streamlined approach not only saves time but also enhances overall operational efficiency. -
34
Delta Lake
Delta Lake
Delta Lake serves as an open-source storage layer that integrates ACID transactions into Apache Spark™ and big data operations. In typical data lakes, multiple pipelines operate simultaneously to read and write data, which often forces data engineers to engage in a complex and time-consuming effort to maintain data integrity because transactional capabilities are absent. By incorporating ACID transactions, Delta Lake enhances data lakes and ensures a high level of consistency with its serializability feature, the most robust isolation level available. For further insights, refer to Diving into Delta Lake: Unpacking the Transaction Log. In the realm of big data, even metadata can reach substantial sizes, and Delta Lake manages metadata with the same significance as the actual data, utilizing Spark's distributed processing strengths for efficient handling. Consequently, Delta Lake is capable of managing massive tables that can scale to petabytes, containing billions of partitions and files without difficulty. Additionally, Delta Lake offers data snapshots, which allow developers to retrieve and revert to previous data versions, facilitating audits, rollbacks, or the replication of experiments while ensuring data reliability and consistency across the board. -
35
RudderStack
RudderStack
$750/month RudderStack is the smart customer information pipeline. You can easily build pipelines that connect your entire customer data stack. Then, make them smarter by pulling data from your data warehouse to trigger enrichment in customer tools for identity sewing and other advanced uses cases. Start building smarter customer data pipelines today. -
36
Hevo Data is a no-code, bi-directional data pipeline platform specially built for modern ETL, ELT, and Reverse ETL Needs. It helps data teams streamline and automate org-wide data flows that result in a saving of ~10 hours of engineering time/week and 10x faster reporting, analytics, and decision making. The platform supports 100+ ready-to-use integrations across Databases, SaaS Applications, Cloud Storage, SDKs, and Streaming Services. Over 500 data-driven companies spread across 35+ countries trust Hevo for their data integration needs.
-
37
Astro
Astronomer
Astronomer is the driving force behind Apache Airflow, the de facto standard for expressing data flows as code. Airflow is downloaded more than 4 million times each month and is used by hundreds of thousands of teams around the world. For data teams looking to increase the availability of trusted data, Astronomer provides Astro, the modern data orchestration platform, powered by Airflow. Astro enables data engineers, data scientists, and data analysts to build, run, and observe pipelines-as-code. Founded in 2018, Astronomer is a global remote-first company with hubs in Cincinnati, New York, San Francisco, and San Jose. Customers in more than 35 countries trust Astronomer as their partner for data orchestration. -
38
IBM Databand
IBM
Keep a close eye on your data health and the performance of your pipelines. Achieve comprehensive oversight for pipelines utilizing cloud-native technologies such as Apache Airflow, Apache Spark, Snowflake, BigQuery, and Kubernetes. This observability platform is specifically designed for Data Engineers. As the challenges in data engineering continue to escalate due to increasing demands from business stakeholders, Databand offers a solution to help you keep pace. With the rise in the number of pipelines comes greater complexity. Data engineers are now handling more intricate infrastructures than they ever have before while also aiming for quicker release cycles. This environment makes it increasingly difficult to pinpoint the reasons behind process failures, delays, and the impact of modifications on data output quality. Consequently, data consumers often find themselves frustrated by inconsistent results, subpar model performance, and slow data delivery. A lack of clarity regarding the data being provided or the origins of failures fosters ongoing distrust. Furthermore, pipeline logs, errors, and data quality metrics are often gathered and stored in separate, isolated systems, complicating the troubleshooting process. To address these issues effectively, a unified observability approach is essential for enhancing trust and performance in data operations. -
39
QuerySurge
RTTS
8 RatingsQuerySurge is the smart Data Testing solution that automates the data validation and ETL testing of Big Data, Data Warehouses, Business Intelligence Reports and Enterprise Applications with full DevOps functionality for continuous testing. Use Cases - Data Warehouse & ETL Testing - Big Data (Hadoop & NoSQL) Testing - DevOps for Data / Continuous Testing - Data Migration Testing - BI Report Testing - Enterprise Application/ERP Testing Features Supported Technologies - 200+ data stores are supported QuerySurge Projects - multi-project support Data Analytics Dashboard - provides insight into your data Query Wizard - no programming required Design Library - take total control of your custom test desig BI Tester - automated business report testing Scheduling - run now, periodically or at a set time Run Dashboard - analyze test runs in real-time Reports - 100s of reports API - full RESTful API DevOps for Data - integrates into your CI/CD pipeline Test Management Integration QuerySurge will help you: - Continuously detect data issues in the delivery pipeline - Dramatically increase data validation coverage - Leverage analytics to optimize your critical data - Improve your data quality at speed -
40
Data Taps
Data Taps
Construct your data pipelines akin to assembling Lego blocks using Data Taps. Integrate fresh metrics layers, delve deeper, and conduct inquiries using real-time streaming SQL capabilities. Collaborate with peers, disseminate, and access data on a global scale. Enhance and modify your setup effortlessly. Employ various models and schemas while evolving your schema. Designed for scalability, it leverages the power of AWS Lambda and S3 for optimal performance. This flexibility allows teams to adapt quickly to changing data needs. -
41
Prophecy
Prophecy
$299 per monthProphecy expands accessibility for a wider range of users, including visual ETL developers and data analysts, by allowing them to easily create pipelines through a user-friendly point-and-click interface combined with a few SQL expressions. While utilizing the Low-Code designer to construct workflows, you simultaneously generate high-quality, easily readable code for Spark and Airflow, which is then seamlessly integrated into your Git repository. The platform comes equipped with a gem builder, enabling rapid development and deployment of custom frameworks, such as those for data quality, encryption, and additional sources and targets that enhance the existing capabilities. Furthermore, Prophecy ensures that best practices and essential infrastructure are offered as managed services, simplifying your daily operations and overall experience. With Prophecy, you can achieve high-performance workflows that leverage the cloud's scalability and performance capabilities, ensuring that your projects run efficiently and effectively. This powerful combination of features makes it an invaluable tool for modern data workflows. -
42
Panoply
SQream
$299 per monthPanoply makes it easy to store, sync and access all your business information in the cloud. With built-in integrations to all major CRMs and file systems, building a single source of truth for your data has never been easier. Panoply is quick to set up and requires no ongoing maintenance. It also offers award-winning support, and a plan to fit any need. -
43
Hazelcast
Hazelcast
In-Memory Computing Platform. Digital world is different. Microseconds are important. The world's most important organizations rely on us for powering their most sensitive applications at scale. If they meet the current requirement for immediate access, new data-enabled apps can transform your business. Hazelcast solutions can be used to complement any database and deliver results that are much faster than traditional systems of record. Hazelcast's distributed architecture ensures redundancy and continuous cluster up-time, as well as always available data to support the most demanding applications. The capacity grows with demand without compromising performance and availability. The cloud delivers the fastest in-memory data grid and third-generation high speed event processing. -
44
Qlik Compose
Qlik
Qlik Compose for Data Warehouses offers a contemporary solution that streamlines and enhances the process of establishing and managing data warehouses. This tool not only automates the design of the warehouse but also generates ETL code and implements updates swiftly, all while adhering to established best practices and reliable design frameworks. By utilizing Qlik Compose for Data Warehouses, organizations can significantly cut down on the time, expense, and risk associated with BI initiatives, regardless of whether they are deployed on-premises or in the cloud. On the other hand, Qlik Compose for Data Lakes simplifies the creation of analytics-ready datasets by automating data pipeline processes. By handling data ingestion, schema setup, and ongoing updates, companies can achieve a quicker return on investment from their data lake resources, further enhancing their data strategy. Ultimately, these tools empower organizations to maximize their data potential efficiently. -
45
TensorStax
TensorStax
TensorStax is an advanced platform leveraging artificial intelligence to streamline data engineering activities, allowing organizations to effectively oversee their data pipelines, execute database migrations, and handle ETL/ELT processes along with data ingestion in cloud environments. The platform's autonomous agents work in harmony with popular tools such as Airflow and dbt, which enhances the development of comprehensive data pipelines and proactively identifies potential issues to reduce downtime. By operating within a company's Virtual Private Cloud (VPC), TensorStax guarantees the protection and confidentiality of sensitive data. With the automation of intricate data workflows, teams can redirect their efforts towards strategic analysis and informed decision-making. This not only increases productivity but also fosters innovation within data-driven projects.