Best Inception Labs Alternatives in 2026
Find the top alternatives to Inception Labs currently available. Compare ratings, reviews, pricing, and features of Inception Labs alternatives in 2026. Slashdot lists the best Inception Labs alternatives on the market that offer competing products that are similar to Inception Labs. Sort through Inception Labs alternatives below to make the best choice for your needs
-
1
ByteDance Seed
ByteDance
FreeSeed Diffusion Preview is an advanced language model designed for code generation that employs discrete-state diffusion, allowing it to produce code in a non-sequential manner, resulting in significantly faster inference times without compromising on quality. This innovative approach utilizes a two-stage training process that involves mask-based corruption followed by edit-based augmentation, enabling a standard dense Transformer to achieve an optimal balance between speed and precision while avoiding shortcuts like carry-over unmasking, which helps maintain rigorous density estimation. The model impressively achieves an inference rate of 2,146 tokens per second on H20 GPUs, surpassing current diffusion benchmarks while either matching or exceeding their accuracy on established code evaluation metrics, including various editing tasks. This performance not only sets a new benchmark for the speed-quality trade-off in code generation but also showcases the effective application of discrete diffusion methods in practical coding scenarios. Its success opens up new avenues for enhancing efficiency in coding tasks across multiple platforms. -
2
Mercury Coder
Inception Labs
FreeMercury, the groundbreaking creation from Inception Labs, represents the first large language model at a commercial scale that utilizes diffusion technology, achieving a remarkable tenfold increase in processing speed while also lowering costs in comparison to standard autoregressive models. Designed for exceptional performance in reasoning, coding, and the generation of structured text, Mercury can handle over 1000 tokens per second when operating on NVIDIA H100 GPUs, positioning it as one of the most rapid LLMs on the market. In contrast to traditional models that produce text sequentially, Mercury enhances its responses through a coarse-to-fine diffusion strategy, which boosts precision and minimizes instances of hallucination. Additionally, with the inclusion of Mercury Coder, a tailored coding module, developers are empowered to take advantage of advanced AI-assisted code generation that boasts remarkable speed and effectiveness. This innovative approach not only transforms coding practices but also sets a new benchmark for the capabilities of AI in various applications. -
3
Janus-Pro-7B
DeepSeek
FreeJanus-Pro-7B is a groundbreaking open-source multimodal AI model developed by DeepSeek, expertly crafted to both comprehend and create content involving text, images, and videos. Its distinctive autoregressive architecture incorporates dedicated pathways for visual encoding, which enhances its ability to tackle a wide array of tasks, including text-to-image generation and intricate visual analysis. Demonstrating superior performance against rivals such as DALL-E 3 and Stable Diffusion across multiple benchmarks, it boasts scalability with variants ranging from 1 billion to 7 billion parameters. Released under the MIT License, Janus-Pro-7B is readily accessible for use in both academic and commercial contexts, marking a substantial advancement in AI technology. Furthermore, this model can be utilized seamlessly on popular operating systems such as Linux, MacOS, and Windows via Docker, broadening its reach and usability in various applications. -
4
VideoPoet
Google
VideoPoet is an innovative modeling technique that transforms any autoregressive language model or large language model (LLM) into an effective video generator. It comprises several straightforward components. An autoregressive language model is trained across multiple modalities—video, image, audio, and text—to predict the subsequent video or audio token in a sequence. The training framework for the LLM incorporates a range of multimodal generative learning objectives, such as text-to-video, text-to-image, image-to-video, video frame continuation, inpainting and outpainting of videos, video stylization, and video-to-audio conversion. Additionally, these tasks can be combined to enhance zero-shot capabilities. This straightforward approach demonstrates that language models are capable of generating and editing videos with impressive temporal coherence, showcasing the potential for advanced multimedia applications. As a result, VideoPoet opens up exciting possibilities for creative expression and automated content creation. -
5
Inception CRM
D3S
Inception CRM is an innovative sales and customer management solution for Life Science sales teams, supporting medical and pharmacy representives remotely and in the field. Delivered SaaS via native applications for iOS, iPadOS, Android and Windows, Inception CRM enables holistic customer relationships through a robust approach to customer data management and segmentation, with targeting based on real sales potential and priorities. Inception CRM supports complete time, activity and cycle plan management, and enables management of pharmacy orders, samples, and expenses. Built-in closed loop marketing, media sharing, and remote detailing features enhance the effectiveness of face-to-face and remote calls. Intuitive KPI dashboards and reports keep users and stakeholders aligned and maintain transparency across the sales organization. Inception CRM offers many prebuilt templates and workflows, ideal for clients of various sizes and orientation, and can be easily extended to support custom workflows and business processes on demand. -
6
Gemini Diffusion
Google DeepMind
Gemini Diffusion represents our cutting-edge research initiative aimed at redefining the concept of diffusion in the realm of language and text generation. Today, large language models serve as the backbone of generative AI technology. By employing a diffusion technique, we are pioneering a new type of language model that enhances user control, fosters creativity, and accelerates the text generation process. Unlike traditional models that predict text in a straightforward manner, diffusion models take a unique approach by generating outputs through a gradual refinement of noise. This iterative process enables them to quickly converge on solutions and make real-time corrections during generation. As a result, they demonstrate superior capabilities in tasks such as editing, particularly in mathematics and coding scenarios. Furthermore, by generating entire blocks of tokens simultaneously, they provide more coherent responses to user prompts compared to autoregressive models. Remarkably, the performance of Gemini Diffusion on external benchmarks rivals that of much larger models, while also delivering enhanced speed, making it a noteworthy advancement in the field. This innovation not only streamlines the generation process but also opens new avenues for creative expression in language-based tasks. -
7
Gemini 3 Pro is a next-generation AI model from Google designed to push the boundaries of reasoning, creativity, and code generation. With a 1-million-token context window and deep multimodal understanding, it processes text, images, and video with unprecedented accuracy and depth. Gemini 3 Pro is purpose-built for agentic coding, performing complex, multi-step programming tasks across files and frameworks—handling refactoring, debugging, and feature implementation autonomously. It integrates seamlessly with development tools like Google Antigravity, Gemini CLI, Android Studio, and third-party IDEs including Cursor and JetBrains. In visual reasoning, it leads benchmarks such as MMMU-Pro and WebDev Arena, demonstrating world-class proficiency in image and video comprehension. The model’s vibe coding capability enables developers to build entire applications using only natural language prompts, transforming high-level ideas into functional, interactive apps. Gemini 3 Pro also features advanced spatial reasoning, powering applications in robotics, XR, and autonomous navigation. With its structured outputs, grounding with Google Search, and client-side bash tool, Gemini 3 Pro enables developers to automate workflows and build intelligent systems faster than ever.
-
8
Stairwell
Stairwell
Adversaries achieve success primarily due to their deep understanding of your security measures. The array of security tools available on the market is integrated into their methods of testing your defenses. However, with Inception, your security personnel can develop out-of-band defenses that cannot be exploited against you. Traditional security strategies tend to rely heavily on external insights to evaluate your infrastructure. Many security teams often find themselves playing catch-up, addressing a checklist of known threats in a reactive manner akin to whack-a-mole. In contrast, Inception offers a perspective that allows for a comprehensive view from within, enabling you to see what is happening internally in relation to external threats. Rather than sorting through a plethora of irrelevant alerts, Inception empowers you to concentrate on significant issues, whether they are unusual, malicious, or fall somewhere in between. The platform actively seeks and analyzes unique signals within your environment, notifying you of threats that might go unnoticed by others. This proactive approach not only enhances your security posture but also enables you to anticipate future attacks and neutralize them before they can cause harm. By leveraging Inception, your organization can stay one step ahead of potential intruders. -
9
GPT-NeoX
EleutherAI
FreeThis repository showcases an implementation of model parallel autoregressive transformers utilizing GPUs, leveraging the capabilities of the DeepSpeed library. It serves as a record of EleutherAI's framework designed for training extensive language models on GPU architecture. Currently, it builds upon NVIDIA's Megatron Language Model, enhanced with advanced techniques from DeepSpeed alongside innovative optimizations. Our goal is to create a centralized hub for aggregating methodologies related to the training of large-scale autoregressive language models, thereby fostering accelerated research and development in the field of large-scale training. We believe that by providing these resources, we can significantly contribute to the progress of language model research. -
10
Seed2.0 Lite
ByteDance
Seed2.0 Lite belongs to the Seed2.0 lineup from ByteDance, which encompasses versatile multimodal AI agent models engineered to tackle intricate, real-world challenges while maintaining a harmonious balance between efficiency and performance. This model boasts superior multimodal comprehension and instruction-following skills compared to its predecessors in the Seed series, allowing it to effectively interpret and analyze text, visual components, and structured data for use in production environments. Positioned as a mid-sized option within the family, Lite is fine-tuned to provide high-quality results with quick responsiveness at a reduced cost and faster inference times than the Pro version, while also enhancing the capabilities of earlier models. Consequently, it is well-suited for applications that demand consistent reasoning, extended context comprehension, and the execution of multimodal tasks without necessitating the utmost raw performance levels. Moreover, this accessibility makes Seed2.0 Lite an attractive choice for developers seeking efficiency alongside capabilities in their AI solutions. -
11
PaLM 2
Google
PaLM 2 represents the latest evolution in large language models, continuing Google's tradition of pioneering advancements in machine learning and ethical AI practices. It demonstrates exceptional capabilities in complex reasoning activities such as coding, mathematics, classification, answering questions, translation across languages, and generating natural language, surpassing the performance of previous models, including its predecessor PaLM. This enhanced performance is attributed to its innovative construction, which combines optimal computing scalability, a refined mixture of datasets, and enhancements in model architecture. Furthermore, PaLM 2 aligns with Google's commitment to responsible AI development and deployment, having undergone extensive assessments to identify potential harms, biases, and practical applications in both research and commercial products. This model serves as a foundation for other cutting-edge applications, including Med-PaLM 2 and Sec-PaLM, while also powering advanced AI features and tools at Google, such as Bard and the PaLM API. Additionally, its versatility makes it a significant asset in various fields, showcasing the potential of AI to enhance productivity and innovation. -
12
Grok 4.1
xAI
Grok 4.1, developed by Elon Musk’s xAI, represents a major step forward in multimodal artificial intelligence. Built on the Colossus supercomputer, it supports input from text, images, and soon video—offering a more complete understanding of real-world data. This version significantly improves reasoning precision, enabling Grok to solve complex problems in science, engineering, and language with remarkable clarity. Developers and researchers can leverage Grok 4.1’s advanced APIs to perform deep contextual analysis, creative generation, and data-driven research. Its refined architecture allows it to outperform leading models in visual problem-solving and structured reasoning benchmarks. xAI has also strengthened the model’s moderation framework, addressing bias and ensuring more balanced responses. With its multimodal flexibility and intelligent output control, Grok 4.1 bridges the gap between analytical computation and human intuition. It’s a model designed not just to answer questions, but to understand and reason through them. -
13
ERNIE X1 Turbo
Baidu
$0.14 per 1M tokensBaidu’s ERNIE X1 Turbo is designed for industries that require advanced cognitive and creative AI abilities. Its multimodal processing capabilities allow it to understand and generate responses based on a range of data inputs, including text, images, and potentially audio. This AI model’s advanced reasoning mechanisms and competitive performance make it a strong alternative to high-cost models like DeepSeek R1. Additionally, ERNIE X1 Turbo integrates seamlessly into various applications, empowering developers and businesses to use AI more effectively while lowering the costs typically associated with these technologies. -
14
Seed2.0 Pro
ByteDance
Seed2.0 Pro is a high-performance general-purpose AI model engineered for demanding enterprise and research environments. Built to manage long-chain reasoning and complex multi-step instructions, it ensures consistent and stable outputs across extended workflows. As the flagship model in the Seed 2.0 series, it introduces substantial enhancements in multimodal intelligence, combining language, vision, motion, and contextual understanding. The system achieves top-tier benchmark results in mathematics, coding, STEM reasoning, and multimodal evaluations, positioning it among leading industry models. Its advanced visual reasoning capabilities enable it to interpret images, reconstruct structured layouts, and generate fully functional interactive web interfaces from visual inputs. Beyond creative tasks, Seed2.0 Pro supports technical operations such as CAD design automation, scientific research problem-solving, and detailed data analysis. The model is optimized for real-world deployment, balancing inference depth with operational reliability. It performs strongly in long-context scenarios, maintaining coherence across extended documents and conversations. Additionally, its robust instruction-following capabilities allow it to execute highly specific professional commands with precision. Overall, Seed2.0 Pro combines research-level intelligence with production-grade performance for complex, high-value tasks. -
15
Seed1.8
ByteDance
Seed1.8 is the newest AI model from ByteDance, crafted to connect comprehension with practical execution by integrating multimodal perception, agent-like task management, and extensive reasoning abilities into a cohesive foundation model that surpasses mere language generation capabilities. This model accommodates various input types, including text, images, and video, while efficiently managing extremely large context windows that can process hundreds of thousands of tokens simultaneously. Furthermore, Seed1.8 is specifically optimized to navigate intricate workflows in real-world settings, tackling tasks like information retrieval, code generation, GUI interactions, and complex decision-making with precision and reliability. By consolidating skills such as search functionality, code comprehension, visual context analysis, and independent reasoning, Seed1.8 empowers developers and AI systems to create interactive agents and pioneering workflows that are capable of synthesizing information, comprehensively following instructions, and executing tasks related to automation effectively. As a result, this model significantly enhances the potential for innovation in various applications across multiple industries. -
16
Decart Mirage
Decart Mirage
FreeMirage represents a groundbreaking advancement as the first real-time, autoregressive model designed for transforming video into a new digital landscape instantly, requiring no pre-rendering. Utilizing cutting-edge Live-Stream Diffusion (LSD) technology, it achieves an impressive processing rate of 24 FPS with latency under 40 ms, which guarantees smooth and continuous video transformations while maintaining the integrity of motion and structure. Compatible with an array of inputs including webcams, gameplay, films, and live broadcasts, Mirage can dynamically incorporate text-prompted style modifications in real-time. Its sophisticated history-augmentation feature ensures that temporal coherence is upheld throughout the frames, effectively eliminating the common glitches associated with diffusion-only models. With GPU-accelerated custom CUDA kernels, it boasts performance that is up to 16 times faster than conventional techniques, facilitating endless streaming without interruptions. Additionally, it provides real-time previews for both mobile and desktop platforms, allows for effortless integration with any video source, and supports a variety of deployment options, enhancing accessibility for users. Overall, Mirage stands out as a transformative tool in the realm of digital video innovation. -
17
Hunyuan-TurboS
Tencent
Tencent's Hunyuan-TurboS represents a cutting-edge AI model crafted to deliver swift answers and exceptional capabilities across multiple fields, including knowledge acquisition, mathematical reasoning, and creative endeavors. Departing from earlier models that relied on "slow thinking," this innovative system significantly boosts response rates, achieving a twofold increase in word output speed and cutting down first-word latency by 44%. With its state-of-the-art architecture, Hunyuan-TurboS not only enhances performance but also reduces deployment expenses. The model skillfully integrates fast thinking—prompt, intuition-driven responses—with slow thinking—methodical logical analysis—ensuring timely and precise solutions in a wide array of situations. Its remarkable abilities are showcased in various benchmarks, positioning it competitively alongside other top AI models such as GPT-4 and DeepSeek V3, thus marking a significant advancement in AI performance. As a result, Hunyuan-TurboS is poised to redefine expectations in the realm of artificial intelligence applications. -
18
DeepSeek-V3.2
DeepSeek
FreeDeepSeek-V3.2 is a highly optimized large language model engineered to balance top-tier reasoning performance with significant computational efficiency. It builds on DeepSeek's innovations by introducing DeepSeek Sparse Attention (DSA), a custom attention algorithm that reduces complexity and excels in long-context environments. The model is trained using a sophisticated reinforcement learning approach that scales post-training compute, enabling it to perform on par with GPT-5 and match the reasoning skill of Gemini-3.0-Pro. Its Speciale variant overachieves in demanding reasoning benchmarks and does not include tool-calling capabilities, making it ideal for deep problem-solving tasks. DeepSeek-V3.2 is also trained using an agentic synthesis pipeline that creates high-quality, multi-step interactive data to improve decision-making, compliance, and tool-integration skills. It introduces a new chat template design featuring explicit thinking sections, improved tool-calling syntax, and a dedicated developer role used strictly for search-agent workflows. Users can encode messages using provided Python utilities that convert OpenAI-style chat messages into the expected DeepSeek format. Fully open-source under the MIT license, DeepSeek-V3.2 is a flexible, cutting-edge model for researchers, developers, and enterprise AI teams. -
19
ALBERT
Google
ALBERT is a self-supervised Transformer architecture that undergoes pretraining on a vast dataset of English text, eliminating the need for manual annotations by employing an automated method to create inputs and corresponding labels from unprocessed text. This model is designed with two primary training objectives in mind. The first objective, known as Masked Language Modeling (MLM), involves randomly obscuring 15% of the words in a given sentence and challenging the model to accurately predict those masked words. This approach sets it apart from recurrent neural networks (RNNs) and autoregressive models such as GPT, as it enables ALBERT to capture bidirectional representations of sentences. The second training objective is Sentence Ordering Prediction (SOP), which focuses on the task of determining the correct sequence of two adjacent text segments during the pretraining phase. By incorporating these dual objectives, ALBERT enhances its understanding of language structure and contextual relationships. This innovative design contributes to its effectiveness in various natural language processing tasks. -
20
Seed2.0 Mini
ByteDance
Seed2.0 Mini represents the most compact version of ByteDance's Seed2.0 line of versatile multimodal agent models, crafted for efficient high-throughput inference and dense deployment, while still embodying the essential strengths found in its larger counterparts regarding multimodal understanding and instruction adherence. This Mini variant, alongside Pro and Lite siblings, is particularly fine-tuned for handling high-concurrency and batch generation tasks, proving itself ideal for scenarios where the ability to process numerous requests simultaneously is as crucial as its overall capability. In line with other models in the Seed2.0 family, it showcases notable improvements in visual reasoning and motion perception, excels at extracting structured information from intricate inputs such as text and images, and effectively carries out multi-step instructions. However, in exchange for enhanced inference speed and cost efficiency, it sacrifices some degree of raw reasoning power and output quality, ensuring that it remains a practical option for various applications. As a result, Seed2.0 Mini strikes a balance between performance and efficiency, appealing to developers seeking to optimize their systems for scalable solutions. -
21
BLOOM
BigScience
BLOOM is a sophisticated autoregressive language model designed to extend text based on given prompts, leveraging extensive text data and significant computational power. This capability allows it to generate coherent and contextually relevant content in 46 different languages, along with 13 programming languages, often making it difficult to differentiate its output from that of a human author. Furthermore, BLOOM's versatility enables it to tackle various text-related challenges, even those it has not been specifically trained on, by interpreting them as tasks of text generation. Its adaptability makes it a valuable tool for a range of applications across multiple domains. -
22
Gemini 2.0
Google
Free 1 RatingGemini 2.0 represents a cutting-edge AI model created by Google, aimed at delivering revolutionary advancements in natural language comprehension, reasoning abilities, and multimodal communication. This new version builds upon the achievements of its earlier model by combining extensive language processing with superior problem-solving and decision-making skills, allowing it to interpret and produce human-like responses with enhanced precision and subtlety. In contrast to conventional AI systems, Gemini 2.0 is designed to simultaneously manage diverse data formats, such as text, images, and code, rendering it an adaptable asset for sectors like research, business, education, and the arts. Key enhancements in this model include improved contextual awareness, minimized bias, and a streamlined architecture that guarantees quicker and more consistent results. As a significant leap forward in the AI landscape, Gemini 2.0 is set to redefine the nature of human-computer interactions, paving the way for even more sophisticated applications in the future. Its innovative features not only enhance user experience but also facilitate more complex and dynamic engagements across various fields. -
23
Qwen2.5
Alibaba
FreeQwen2.5 represents a state-of-the-art multimodal AI system that aims to deliver highly precise and context-sensitive outputs for a diverse array of uses. This model enhances the functionalities of earlier versions by merging advanced natural language comprehension with improved reasoning abilities, creativity, and the capacity to process multiple types of media. Qwen2.5 can effortlessly analyze and produce text, interpret visual content, and engage with intricate datasets, allowing it to provide accurate solutions promptly. Its design prioritizes adaptability, excelling in areas such as personalized support, comprehensive data analysis, innovative content creation, and scholarly research, thereby serving as an invaluable resource for both professionals and casual users. Furthermore, the model is crafted with a focus on user engagement, emphasizing principles of transparency, efficiency, and adherence to ethical AI standards, which contributes to a positive user experience. -
24
Kimi K2.5
Moonshot AI
FreeKimi K2.5 is a powerful multimodal AI model built to handle complex reasoning, coding, and visual understanding at scale. It supports both text and image or video inputs, enabling developers to build applications that go beyond traditional language-only models. As Kimi’s most advanced model to date, it delivers open-source state-of-the-art performance across agent tasks, software development, and general intelligence benchmarks. The model supports an ultra-long 256K context window, making it ideal for large codebases, long documents, and multi-turn conversations. Kimi K2.5 includes a long-thinking mode that excels at logical reasoning, mathematics, and structured problem solving. It integrates seamlessly with existing workflows through full compatibility with the OpenAI SDK and API format. Developers can use Kimi K2.5 for chat, tool calling, file-based Q&A, and multimodal analysis. Built-in support for streaming, partial mode, and web search expands its flexibility. With predictable pricing and enterprise-ready capabilities, Kimi K2.5 is designed for scalable AI development. -
25
RedPajama
RedPajama
FreeFoundation models, including GPT-4, have significantly accelerated advancements in artificial intelligence, yet the most advanced models remain either proprietary or only partially accessible. In response to this challenge, the RedPajama initiative aims to develop a collection of top-tier, fully open-source models. We are thrilled to announce that we have successfully completed the initial phase of this endeavor: recreating the LLaMA training dataset, which contains over 1.2 trillion tokens. Currently, many of the leading foundation models are locked behind commercial APIs, restricting opportunities for research, customization, and application with sensitive information. The development of fully open-source models represents a potential solution to these limitations, provided that the open-source community can bridge the gap in quality between open and closed models. Recent advancements have shown promising progress in this area, suggesting that the AI field is experiencing a transformative period akin to the emergence of Linux. The success of Stable Diffusion serves as a testament to the fact that open-source alternatives can not only match the quality of commercial products like DALL-E but also inspire remarkable creativity through the collaborative efforts of diverse communities. By fostering an open-source ecosystem, we can unlock new possibilities for innovation and ensure broader access to cutting-edge AI technology. -
26
Gemini 2.5 Flash-Lite
Google
Gemini 2.5, developed by Google DeepMind, represents a breakthrough in AI with enhanced reasoning capabilities and native multimodality, allowing it to process long context windows of up to one million tokens. The family includes three variants: Pro for complex coding tasks, Flash for fast general use, and Flash-Lite for high-volume, cost-efficient workflows. Gemini 2.5 models improve accuracy by thinking through diverse strategies and provide developers with adaptive controls to optimize performance and resource use. The models handle multiple input types—text, images, video, audio, and PDFs—and offer powerful tool use like search and code execution. Gemini 2.5 achieves state-of-the-art results across coding, math, science, reasoning, and multilingual benchmarks, outperforming its predecessors. It is accessible through Google AI Studio, Gemini API, and Vertex AI platforms. Google emphasizes responsible AI development, prioritizing safety and security in all applications. Gemini 2.5 enables developers to build advanced interactive simulations, automated coding, and other innovative AI-driven solutions. -
27
GPT-4 Turbo
OpenAI
$0.0200 per 1000 tokens 1 RatingThe GPT-4 model represents a significant advancement in AI, being a large multimodal system capable of handling both text and image inputs while producing text outputs, which allows it to tackle complex challenges with a level of precision unmatched by earlier models due to its extensive general knowledge and enhanced reasoning skills. Accessible through the OpenAI API for subscribers, GPT-4 is also designed for chat interactions, similar to gpt-3.5-turbo, while proving effective for conventional completion tasks via the Chat Completions API. This state-of-the-art version of GPT-4 boasts improved features such as better adherence to instructions, JSON mode, consistent output generation, and the ability to call functions in parallel, making it a versatile tool for developers. However, it is important to note that this preview version is not fully prepared for high-volume production use, as it has a limit of 4,096 output tokens. Users are encouraged to explore its capabilities while keeping in mind its current limitations. -
28
xAI’s Grok 4 represents a major step forward in AI technology, delivering advanced reasoning, multimodal understanding, and improved natural language capabilities. Built on the powerful Colossus supercomputer, Grok 4 can process text and images, with video input support expected soon, enhancing its ability to interpret cultural and contextual content such as memes. It has outperformed many competitors in benchmark tests for scientific and visual reasoning, establishing itself as a top-tier model. Focused on technical users, researchers, and developers, Grok 4 is tailored to meet the demands of advanced AI applications. xAI has strengthened moderation systems to prevent inappropriate outputs and promote ethical AI use. This release signals xAI’s commitment to innovation and responsible AI deployment. Grok 4 sets a new standard in AI performance and versatility. It is poised to support cutting-edge research and complex problem-solving across various fields.
-
29
Click4Assistance
Click4Assistance
Click4Assistance, which was established in the UK in the early days of live chat, was one of the pioneering providers to offer live chat software for websites. We have been providing a complete solution for SME's and corporate organizations for over 15 years. -
30
ERNIE 5.0
Baidu
ERNIE 5.0, developed by Baidu, is an advanced multimodal conversational AI platform that sets new standards for natural interaction and contextual intelligence. As part of the ERNIE (Enhanced Representation through Knowledge Integration) series, it merges cutting-edge natural language processing, machine learning, and knowledge graph technologies to deliver more accurate and human-like responses. The system understands not just text but also images, speech, and other inputs, enabling seamless communication across multiple channels. With its enhanced reasoning and comprehension capabilities, ERNIE 5.0 can navigate complex queries, maintain coherent dialogue, and generate contextually relevant content. Businesses use ERNIE 5.0 for a wide range of applications, including AI-powered virtual assistants, intelligent customer support, content automation, and decision-support systems. It also offers enterprise-grade scalability, making it suitable for deployment across industries such as finance, healthcare, and education. Baidu’s integration of multimodal learning gives ERNIE 5.0 a unique edge in understanding real-world context and emotion. Overall, it represents a powerful evolution in AI communication—bridging human intention and machine understanding more effectively than ever before. -
31
GLM-4.6V
Zhipu AI
FreeThe GLM-4.6V is an advanced, open-source multimodal vision-language model that belongs to the Z.ai (GLM-V) family, specifically engineered for tasks involving reasoning, perception, and action. It is available in two configurations: a comprehensive version with 106 billion parameters suitable for cloud environments or high-performance computing clusters, and a streamlined “Flash” variant featuring 9 billion parameters, which is tailored for local implementation or scenarios requiring low latency. With a remarkable native context window that accommodates up to 128,000 tokens during its training phase, GLM-4.6V can effectively manage extensive documents or multimodal data inputs. One of its standout features is the built-in Function Calling capability, allowing the model to accept various forms of visual media — such as images, screenshots, and documents — as inputs directly, eliminating the need for manual text conversion. This functionality not only facilitates reasoning about the visual content but also enables the model to initiate tool calls, effectively merging visual perception with actionable results. The versatility of GLM-4.6V opens the door to a wide array of applications, including the generation of interleaved image-and-text content, which can seamlessly integrate document comprehension with text summarization or the creation of responses that include image annotations, thereby greatly enhancing user interaction and output quality. -
32
Gemini 2.5 Pro Deep Think
Google
Gemini 2.5 Pro Deep Think is the latest evolution of Google’s Gemini models, specifically designed to tackle more complex tasks with better accuracy and efficiency. The key feature of Deep Think enables the AI to think through its responses, improving its reasoning and enhancing decision-making processes. This model is a game-changer for coding, problem-solving, and AI-driven conversations, with support for multimodality, long context windows, and advanced coding capabilities. It integrates native audio outputs for richer, more expressive interactions and is optimized for speed and accuracy across various benchmarks. With the addition of this advanced reasoning mode, Gemini 2.5 Pro Deep Think is not just faster but also smarter, handling complex queries with ease. -
33
LLaVA
LLaVA
FreeLLaVA, or Large Language-and-Vision Assistant, represents a groundbreaking multimodal model that combines a vision encoder with the Vicuna language model, enabling enhanced understanding of both visual and textual information. By employing end-to-end training, LLaVA showcases remarkable conversational abilities, mirroring the multimodal features found in models such as GPT-4. Significantly, LLaVA-1.5 has reached cutting-edge performance on 11 different benchmarks, leveraging publicly accessible data and achieving completion of its training in about one day on a single 8-A100 node, outperforming approaches that depend on massive datasets. The model's development included the construction of a multimodal instruction-following dataset, which was produced using a language-only variant of GPT-4. This dataset consists of 158,000 distinct language-image instruction-following examples, featuring dialogues, intricate descriptions, and advanced reasoning challenges. Such a comprehensive dataset has played a crucial role in equipping LLaVA to handle a diverse range of tasks related to vision and language with great efficiency. In essence, LLaVA not only enhances the interaction between visual and textual modalities but also sets a new benchmark in the field of multimodal AI. -
34
Grok 3 DeepSearch represents a sophisticated research agent and model aimed at enhancing the reasoning and problem-solving skills of artificial intelligence, emphasizing deep search methodologies and iterative reasoning processes. In contrast to conventional models that depend primarily on pre-existing knowledge, Grok 3 DeepSearch is equipped to navigate various pathways, evaluate hypotheses, and rectify inaccuracies in real-time, drawing from extensive datasets while engaging in logical, chain-of-thought reasoning. Its design is particularly suited for tasks necessitating critical analysis, including challenging mathematical equations, programming obstacles, and detailed academic explorations. As a state-of-the-art AI instrument, Grok 3 DeepSearch excels in delivering precise and comprehensive solutions through its distinctive deep search functionalities, rendering it valuable across both scientific and artistic disciplines. This innovative tool not only streamlines problem-solving but also fosters a deeper understanding of complex concepts.
-
35
Ministral 3
Mistral AI
FreeMistral 3 represents the newest iteration of open-weight AI models developed by Mistral AI, encompassing a diverse range of models that span from compact, edge-optimized versions to a leading large-scale multimodal model. This lineup features three efficient “Ministral 3” models with 3 billion, 8 billion, and 14 billion parameters, tailored for deployment on devices with limited resources, such as laptops, drones, or other edge devices. Additionally, there is the robust “Mistral Large 3,” which is a sparse mixture-of-experts model boasting a staggering 675 billion total parameters, with 41 billion of them being active. These models are designed to handle multimodal and multilingual tasks, excelling not only in text processing but also in image comprehension, and they have showcased exceptional performance on general queries, multilingual dialogues, and multimodal inputs. Furthermore, both the base and instruction-fine-tuned versions are made available under the Apache 2.0 license, allowing for extensive customization and integration into various enterprise and open-source initiatives. This flexibility in licensing encourages innovation and collaboration among developers and organizations alike. -
36
Gemini 3.1 Pro
Google
Gemini 3.1 Pro is Google’s flagship multimodal AI model built for developers seeking advanced intelligence, speed, and precision. It surpasses previous Gemini versions with enhanced reasoning, coding accuracy, and deeper contextual understanding. The model is optimized for agentic workflows, allowing it to autonomously generate, debug, and refactor complex codebases while maintaining awareness of long contexts. Its multimodal capabilities extend beyond text, delivering sophisticated analysis of images, video, and spatial data. These strengths make it ideal for next-generation use cases in robotics, extended reality (XR), interactive development environments, and document processing systems. Gemini 3.1 Pro empowers developers to move from concept to execution faster by transforming simple prompts into production-ready outputs. The model integrates smoothly through the Gemini API, Google AI Studio, and Vertex AI. This flexibility allows teams to embed advanced AI capabilities into their existing pipelines without friction. Whether building intelligent agents, automating software development, or analyzing multimedia inputs, Gemini 3.1 Pro provides a scalable foundation. It represents a major step forward in multimodal AI designed specifically for modern development workflows. -
37
Gemma 3
Google
FreeGemma 3, launched by Google, represents a cutting-edge AI model constructed upon the Gemini 2.0 framework, aimed at delivering superior efficiency and adaptability. This innovative model can operate seamlessly on a single GPU or TPU, which opens up opportunities for a diverse group of developers and researchers. Focusing on enhancing natural language comprehension, generation, and other AI-related functions, Gemma 3 is designed to elevate the capabilities of AI systems. With its scalable and robust features, Gemma 3 aspires to propel the evolution of AI applications in numerous sectors and scenarios, potentially transforming the landscape of technology as we know it. -
38
Reka Flash 3
Reka
Reka Flash 3 is a cutting-edge multimodal AI model with 21 billion parameters, crafted by Reka AI to perform exceptionally well in tasks such as general conversation, coding, following instructions, and executing functions. This model adeptly handles and analyzes a myriad of inputs, including text, images, video, and audio, providing a versatile and compact solution for a wide range of applications. Built from the ground up, Reka Flash 3 was trained on a rich array of datasets, encompassing both publicly available and synthetic information, and it underwent a meticulous instruction tuning process with high-quality selected data to fine-tune its capabilities. The final phase of its training involved employing reinforcement learning techniques, specifically using the REINFORCE Leave One-Out (RLOO) method, which combined both model-based and rule-based rewards to significantly improve its reasoning skills. With an impressive context length of 32,000 tokens, Reka Flash 3 competes effectively with proprietary models like OpenAI's o1-mini, making it an excellent choice for applications requiring low latency or on-device processing. The model operates at full precision with a memory requirement of 39GB (fp16), although it can be efficiently reduced to just 11GB through the use of 4-bit quantization, demonstrating its adaptability for various deployment scenarios. Overall, Reka Flash 3 represents a significant advancement in multimodal AI technology, capable of meeting diverse user needs across multiple platforms. -
39
GLM-4.5V-Flash
Zhipu AI
FreeGLM-4.5V-Flash is a vision-language model that is open source and specifically crafted to integrate robust multimodal functionalities into a compact and easily deployable framework. It accommodates various types of inputs including images, videos, documents, and graphical user interfaces, facilitating a range of tasks such as understanding scenes, parsing charts and documents, reading screens, and analyzing multiple images. In contrast to its larger counterparts, GLM-4.5V-Flash maintains a smaller footprint while still embodying essential visual language model features such as visual reasoning, video comprehension, handling GUI tasks, and parsing complex documents. This model can be utilized within “GUI agent” workflows, allowing it to interpret screenshots or desktop captures, identify icons or UI components, and assist with both automated desktop and web tasks. While it may not achieve the performance enhancements seen in the largest models, GLM-4.5V-Flash is highly adaptable for practical multimodal applications where efficiency, reduced resource requirements, and extensive modality support are key considerations. Its design ensures that users can harness powerful functionalities without sacrificing speed or accessibility. -
40
Mistral Large 3
Mistral AI
FreeMistral Large 3 pushes open-source AI into frontier territory with a massive sparse MoE architecture that activates 41B parameters per token while maintaining a highly efficient 675B total parameter design. It sets a new performance standard by combining long-context reasoning, multilingual fluency across 40+ languages, and robust multimodal comprehension within a single unified model. Trained end-to-end on thousands of NVIDIA H200 GPUs, it reaches parity with top closed-source instruction models while remaining fully accessible under the Apache 2.0 license. Developers benefit from optimized deployments through partnerships with NVIDIA, Red Hat, and vLLM, enabling smooth inference on A100, H100, and Blackwell-class systems. The model ships in both base and instruct variants, with a reasoning-enhanced version on the way for even deeper analytical capabilities. Beyond general intelligence, Mistral Large 3 is engineered for enterprise customization, allowing organizations to refine the model on internal datasets or domain-specific tasks. Its efficient token generation and powerful multimodal stack make it ideal for coding, document analysis, knowledge workflows, agentic systems, and multilingual communications. With Mistral Large 3, organizations can finally deploy frontier-class intelligence with full transparency, flexibility, and control. -
41
Gemini 2.0 Flash-Lite
Google
Gemini 2.0 Flash-Lite represents the newest AI model from Google DeepMind, engineered to deliver an affordable alternative while maintaining high performance standards. As the most budget-friendly option within the Gemini 2.0 range, Flash-Lite is specifically designed for developers and enterprises in search of efficient AI functions without breaking the bank. This model accommodates multimodal inputs and boasts an impressive context window of one million tokens, which enhances its versatility for numerous applications. Currently, Flash-Lite is accessible in public preview, inviting users to investigate its capabilities for elevating their AI-focused initiatives. This initiative not only showcases innovative technology but also encourages feedback to refine its features further. -
42
Amazon Nova Pro
Amazon
Amazon Nova Pro is a high-performance multimodal AI model that combines top-tier accuracy with fast processing and cost efficiency. It is perfect for use cases like video summarization, complex Q&A, code development, and executing multi-step AI workflows. Nova Pro supports text, image, and video inputs, allowing businesses to enhance customer interactions, content creation, and data analysis with AI. Its ability to perform well on industry benchmarks makes it suitable for enterprises aiming to streamline operations and drive automation. -
43
CodeGemma
Google
CodeGemma represents an impressive suite of efficient and versatile models capable of tackling numerous coding challenges, including middle code completion, code generation, natural language processing, mathematical reasoning, and following instructions. It features three distinct model types: a 7B pre-trained version designed for code completion and generation based on existing code snippets, a 7B variant fine-tuned for translating natural language queries into code and adhering to instructions, and an advanced 2B pre-trained model that offers code completion speeds up to twice as fast. Whether you're completing lines, developing functions, or crafting entire segments of code, CodeGemma supports your efforts, whether you're working in a local environment or leveraging Google Cloud capabilities. With training on an extensive dataset comprising 500 billion tokens predominantly in English, sourced from web content, mathematics, and programming languages, CodeGemma not only enhances the syntactical accuracy of generated code but also ensures its semantic relevance, thereby minimizing mistakes and streamlining the debugging process. This powerful tool continues to evolve, making coding more accessible and efficient for developers everywhere. -
44
Pythia
EleutherAI
FreePythia integrates the examination of interpretability and scaling principles to gain insights into the progression and transformation of knowledge throughout the training of autoregressive transformer models. This approach enables a deeper understanding of the mechanisms behind model learning and adaptation. -
45
Savana
Savana
Savana is a clinical intelligence platform that utilizes artificial intelligence to convert unstructured text from electronic medical records into valuable real-world evidence through sophisticated natural language processing techniques. Launched in 2014, Savana has facilitated the structuring and examination of billions of clinical documents in various languages and regions, revealing insights that were previously obscured within healthcare data. Its EHRead NLP models drive tools for anonymization and pseudonymization, effectively managing both structured and unstructured data on a large scale, having processed over 35 million documents to date. By providing hospitals, researchers, and health systems with actionable, research-grade evidence, Savana supports precision medicine initiatives, conducts epidemiological studies, including predictive analyses related to COVID-19, and enhances broader clinical data strategies, solidifying its position as one of Europe's leading contributors to Health Economics and Outcomes Research (HEOR). Additionally, Savana's innovative approach continues to reshape the landscape of data analysis in healthcare, promoting more informed decision-making that can ultimately improve patient outcomes.