Best Hadoop Alternatives in 2025
Find the top alternatives to Hadoop currently available. Compare ratings, reviews, pricing, and features of Hadoop alternatives in 2025. Slashdot lists the best Hadoop alternatives on the market that offer competing products that are similar to Hadoop. Sort through Hadoop alternatives below to make the best choice for your needs
-
1
Teradata VantageCloud
Teradata
975 RatingsTeradata VantageCloud: Open, Scalable Cloud Analytics for AI VantageCloud is Teradata’s cloud-native analytics and data platform designed for performance and flexibility. It unifies data from multiple sources, supports complex analytics at scale, and makes it easier to deploy AI and machine learning models in production. With built-in support for multi-cloud and hybrid deployments, VantageCloud lets organizations manage data across AWS, Azure, Google Cloud, and on-prem environments without vendor lock-in. Its open architecture integrates with modern data tools and standard formats, giving developers and data teams freedom to innovate while keeping costs predictable. -
2
Apache Spark
Apache Software Foundation
Apache Spark™ serves as a comprehensive analytics platform designed for large-scale data processing. It delivers exceptional performance for both batch and streaming data by employing an advanced Directed Acyclic Graph (DAG) scheduler, a sophisticated query optimizer, and a robust execution engine. With over 80 high-level operators available, Spark simplifies the development of parallel applications. Additionally, it supports interactive use through various shells including Scala, Python, R, and SQL. Spark supports a rich ecosystem of libraries such as SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming, allowing for seamless integration within a single application. It is compatible with various environments, including Hadoop, Apache Mesos, Kubernetes, and standalone setups, as well as cloud deployments. Furthermore, Spark can connect to a multitude of data sources, enabling access to data stored in systems like HDFS, Alluxio, Apache Cassandra, Apache HBase, and Apache Hive, among many others. This versatility makes Spark an invaluable tool for organizations looking to harness the power of large-scale data analytics. -
3
Amazon Redshift
Amazon
$0.25 per hourAmazon Redshift is the preferred choice among customers for cloud data warehousing, outpacing all competitors in popularity. It supports analytical tasks for a diverse range of organizations, from Fortune 500 companies to emerging startups, facilitating their evolution into large-scale enterprises, as evidenced by Lyft's growth. No other data warehouse simplifies the process of extracting insights from extensive datasets as effectively as Redshift. Users can perform queries on vast amounts of structured and semi-structured data across their operational databases, data lakes, and the data warehouse using standard SQL queries. Moreover, Redshift allows for the seamless saving of query results back to S3 data lakes in open formats like Apache Parquet, enabling further analysis through various analytics services, including Amazon EMR, Amazon Athena, and Amazon SageMaker. Recognized as the fastest cloud data warehouse globally, Redshift continues to enhance its performance year after year. For workloads that demand high performance, the new RA3 instances provide up to three times the performance compared to any other cloud data warehouse available today, ensuring businesses can operate at peak efficiency. This combination of speed and user-friendly features makes Redshift a compelling choice for organizations of all sizes. -
4
Apache Beam
Apache Software Foundation
Batch and streaming data processing can be streamlined effortlessly. With the capability to write once and run anywhere, it is ideal for mission-critical production tasks. Beam allows you to read data from a wide variety of sources, whether they are on-premises or cloud-based. It seamlessly executes your business logic across both batch and streaming scenarios. The outcomes of your data processing efforts can be written to the leading data sinks available in the market. This unified programming model simplifies operations for all members of your data and application teams. Apache Beam is designed for extensibility, with frameworks like TensorFlow Extended and Apache Hop leveraging its capabilities. You can run pipelines on various execution environments (runners), which provides flexibility and prevents vendor lock-in. The open and community-driven development model ensures that your applications can evolve and adapt to meet specific requirements. This adaptability makes Beam a powerful choice for organizations aiming to optimize their data processing strategies. -
5
Amazon EMR
Amazon
Amazon EMR stands as the leading cloud-based big data solution for handling extensive datasets through popular open-source frameworks like Apache Spark, Apache Hive, Apache HBase, Apache Flink, Apache Hudi, and Presto. This platform enables you to conduct Petabyte-scale analyses at a cost that is less than half of traditional on-premises systems and delivers performance more than three times faster than typical Apache Spark operations. For short-duration tasks, you have the flexibility to quickly launch and terminate clusters, incurring charges only for the seconds the instances are active. In contrast, for extended workloads, you can establish highly available clusters that automatically adapt to fluctuating demand. Additionally, if you already utilize open-source technologies like Apache Spark and Apache Hive on-premises, you can seamlessly operate EMR clusters on AWS Outposts. Furthermore, you can leverage open-source machine learning libraries such as Apache Spark MLlib, TensorFlow, and Apache MXNet for data analysis. Integrating with Amazon SageMaker Studio allows for efficient large-scale model training, comprehensive analysis, and detailed reporting, enhancing your data processing capabilities even further. This robust infrastructure is ideal for organizations seeking to maximize efficiency while minimizing costs in their data operations. -
6
Apache Flume
Apache Software Foundation
Flume is a dependable and distributed service designed to efficiently gather, aggregate, and transport significant volumes of log data. Its architecture is straightforward and adaptable, centered on streaming data flows, which enhances its usability. The system is built to withstand faults and includes various mechanisms for recovery and adjustable reliability features. Additionally, it employs a simple yet extensible data model that supports online analytic applications effectively. The Apache Flume team is excited to announce the launch of Flume version 1.8.0, which continues to enhance its capabilities. This version further solidifies Flume's role as a reliable tool for managing large-scale streaming event data efficiently. -
7
Apache Cassandra
Apache Software Foundation
1 RatingWhen seeking a database that ensures both scalability and high availability without sacrificing performance, Apache Cassandra stands out as an ideal option. Its linear scalability paired with proven fault tolerance on standard hardware or cloud services positions it as an excellent choice for handling mission-critical data effectively. Additionally, Cassandra's superior capability to replicate data across several datacenters not only enhances user experience by reducing latency but also offers reassurance in the event of regional failures. This combination of features makes it a robust solution for organizations that prioritize data resilience and efficiency. -
8
Cloudera
Cloudera
Oversee and protect the entire data lifecycle from the Edge to AI across any cloud platform or data center. Functions seamlessly within all leading public cloud services as well as private clouds, providing a uniform public cloud experience universally. Unifies data management and analytical processes throughout the data lifecycle, enabling access to data from any location. Ensures the implementation of security measures, regulatory compliance, migration strategies, and metadata management in every environment. With a focus on open source, adaptable integrations, and compatibility with various data storage and computing systems, it enhances the accessibility of self-service analytics. This enables users to engage in integrated, multifunctional analytics on well-managed and protected business data, while ensuring a consistent experience across on-premises, hybrid, and multi-cloud settings. Benefit from standardized data security, governance, lineage tracking, and control, all while delivering the robust and user-friendly cloud analytics solutions that business users need, effectively reducing the reliance on unauthorized IT solutions. Additionally, these capabilities foster a collaborative environment where data-driven decision-making is streamlined and more efficient. -
9
ETL tools
DB Software Laboratory
$100 per user per yearOur goal is to create intuitive ETL software that is straightforward to deploy, requires no training for users, and begins functioning immediately after installation. This software is accessible to non-technical personnel, eliminating the need for assistance from the IT department. With our ETL solution, businesses of all sizes can streamline routine processes, allowing them to focus on what truly matters: expanding their operations. Users can design data transformations and establish business rules, incorporating them into packages alongside various actions like reporting, file handling, FTP, and email, all of which can be scheduled for regular execution by seamlessly combining simple package actions. Advanced ETL Processor Enterprise empowers organizations, including Fortune 100 companies, to construct sophisticated data warehouses and effortlessly automate intricate business processes. Developed by experts with extensive experience in data warehouse implementation, the Advanced ETL Processor facilitates advanced data validation and transformation, ensuring reliability and efficiency in data management. By leveraging this powerful tool, businesses can enhance their operational capabilities and drive growth effectively. -
10
IBM Storage Scale
IBM
$19.10 per terabyteIBM Storage Scale is an innovative software-defined solution for file and object storage, allowing organizations to create a comprehensive global data platform tailored for artificial intelligence (AI), high-performance computing (HPC), advanced analytics, and other resource-intensive tasks. In contrast to traditional applications that typically manage structured data, current high-performance AI and analytics operations are focused on unstructured data types, which can include a variety of formats such as documents, audio files, images, videos, and more. The software delivers global data abstraction services that efficiently unify various data sources across different geographic locations, even integrating non-IBM storage systems. It features a robust massively parallel file system and is compatible with a wide range of hardware platforms, comprising x86, IBM Power, IBM zSystem mainframes, ARM-based POSIX clients, virtual machines, and Kubernetes environments. This versatility enables organizations to adapt their storage solutions to meet diverse and evolving data management needs. Furthermore, IBM Storage Scale's ability to handle vast amounts of unstructured data positions it as a critical asset for enterprises aiming to leverage data for competitive advantage in today's digital landscape. -
11
Google Cloud Bigtable
Google
Google Cloud Bigtable provides a fully managed, scalable NoSQL data service that can handle large operational and analytical workloads. Cloud Bigtable is fast and performant. It's the storage engine that grows with your data, from your first gigabyte up to a petabyte-scale for low latency applications and high-throughput data analysis. Seamless scaling and replicating: You can start with one cluster node and scale up to hundreds of nodes to support peak demand. Replication adds high availability and workload isolation to live-serving apps. Integrated and simple: Fully managed service that easily integrates with big data tools such as Dataflow, Hadoop, and Dataproc. Development teams will find it easy to get started with the support for the open-source HBase API standard. -
12
MinIO
MinIO
MinIO offers a powerful object storage solution that is entirely software-defined, allowing users to establish cloud-native data infrastructures tailored for machine learning, analytics, and various application data demands. What sets MinIO apart is its design centered around performance and compatibility with the S3 API, all while being completely open-source. This platform is particularly well-suited for expansive private cloud settings that prioritize robust security measures, ensuring critical availability for a wide array of workloads. Recognized as the fastest object storage server globally, MinIO achieves impressive READ/WRITE speeds of 183 GB/s and 171 GB/s on standard hardware, enabling it to serve as the primary storage layer for numerous tasks, including those involving Spark, Presto, TensorFlow, and H2O.ai, in addition to acting as an alternative to Hadoop HDFS. By incorporating insights gained from web-scale operations, MinIO simplifies the scaling process for object storage, starting with an individual cluster that can easily be federated with additional MinIO clusters as needed. This flexibility in scaling allows organizations to adapt their storage solutions efficiently as their data needs evolve. -
13
GridGain
GridGain Systems
This robust enterprise platform, built on Apache Ignite, delivers lightning-fast in-memory performance and extensive scalability for data-heavy applications, ensuring real-time access across various datastores and applications. Transitioning from Ignite to GridGain requires no code modifications, allowing for secure deployment of clusters on a global scale without experiencing any downtime. You can conduct rolling upgrades on your production clusters without affecting application availability, and replicate data across geographically dispersed data centers to balance workloads and mitigate the risk of outages in specific regions. Your data remains secure both at rest and in transit, while compliance with security and privacy regulations is guaranteed. Seamless integration with your organization’s existing authentication and authorization frameworks is straightforward, and comprehensive auditing of data and user activities can be enabled. Additionally, you can establish automated schedules for both full and incremental backups, ensuring that restoring your cluster to its most stable state is achievable through snapshots and point-in-time recovery. This platform not only promotes efficiency but also enhances resilience and security for all data operations. -
14
Scality
Scality
Scality offers both file and object storage solutions tailored for enterprise data management across various scales. Our service seamlessly integrates with your existing infrastructure, whether it involves conventional on-premises storage or modern cloud-native applications. From vital healthcare and financial information to sensitive government data, cherished national artifacts, and streaming video content, Scality has demonstrated its capability in safeguarding valuable assets, achieving an impressive eleven 9s of data durability for long-term security. With our commitment to reliability, you can trust that your data is in capable hands. -
15
PySpark
PySpark
PySpark serves as the Python interface for Apache Spark, enabling the development of Spark applications through Python APIs and offering an interactive shell for data analysis in a distributed setting. In addition to facilitating Python-based development, PySpark encompasses a wide range of Spark functionalities, including Spark SQL, DataFrame support, Streaming capabilities, MLlib for machine learning, and the core features of Spark itself. Spark SQL, a dedicated module within Spark, specializes in structured data processing and introduces a programming abstraction known as DataFrame, functioning also as a distributed SQL query engine. Leveraging the capabilities of Spark, the streaming component allows for the execution of advanced interactive and analytical applications that can process both real-time and historical data, while maintaining the inherent advantages of Spark, such as user-friendliness and robust fault tolerance. Furthermore, PySpark's integration with these features empowers users to handle complex data operations efficiently across various datasets. -
16
VMware Tanzu Greenplum
Broadcom
Liberate your applications and streamline your operations. Success in today's business landscape requires excellence in software development. What strategies can you employ to enhance the speed of feature delivery for the systems that drive your enterprise? Or how can you efficiently oversee and operate modernized workloads across any cloud platform? By leveraging VMware Tanzu together with VMware Pivotal Labs, you can revolutionize both your teams and applications, all while making operations more straightforward across a multi-cloud environment, whether it's on-premises, in the public cloud, or at the edge. This transformative approach not only boosts efficiency but also fosters innovation within your organization. -
17
SAP HANA
SAP
SAP HANA is an in-memory database designed to handle both transactional and analytical workloads using a single copy of data, regardless of type. It effectively dissolves the barriers between transactional and analytical processes within organizations, facilitating rapid decision-making whether deployed on-premises or in the cloud. This innovative database management system empowers users to create intelligent, real-time solutions, enabling swift decision-making from a unified data source. By incorporating advanced analytics, it enhances the capabilities of next-generation transaction processing. Organizations can build data solutions that capitalize on cloud-native attributes such as scalability, speed, and performance. With SAP HANA Cloud, businesses can access reliable, actionable information from one cohesive platform while ensuring robust security, privacy, and data anonymization, reflecting proven enterprise standards. In today's fast-paced environment, an intelligent enterprise relies on timely insights derived from data, emphasizing the need for real-time delivery of such valuable information. As the demand for immediate access to insights grows, leveraging an efficient database like SAP HANA becomes increasingly critical for organizations aiming to stay competitive. -
18
E-MapReduce
Alibaba
EMR serves as a comprehensive enterprise-grade big data platform, offering cluster, job, and data management functionalities that leverage various open-source technologies, including Hadoop, Spark, Kafka, Flink, and Storm. Alibaba Cloud Elastic MapReduce (EMR) is specifically designed for big data processing within the Alibaba Cloud ecosystem. Built on Alibaba Cloud's ECS instances, EMR integrates the capabilities of open-source Apache Hadoop and Apache Spark. This platform enables users to utilize components from the Hadoop and Spark ecosystems, such as Apache Hive, Apache Kafka, Flink, Druid, and TensorFlow, for effective data analysis and processing. Users can seamlessly process data stored across multiple Alibaba Cloud storage solutions, including Object Storage Service (OSS), Log Service (SLS), and Relational Database Service (RDS). EMR also simplifies cluster creation, allowing users to establish clusters rapidly without the hassle of hardware and software configuration. Additionally, all maintenance tasks can be managed efficiently through its user-friendly web interface, making it accessible for various users regardless of their technical expertise. -
19
OpenText Analytics Database is a cutting-edge analytics platform designed to accelerate decision-making and operational efficiency through fast, real-time data processing and advanced machine learning. Organizations benefit from its flexible deployment options, including on-premises, hybrid, and multi-cloud environments, enabling them to tailor analytics infrastructure to their specific needs and lower overall costs. The platform’s massively parallel processing (MPP) architecture delivers lightning-fast query performance across large, complex datasets. It supports columnar storage and data lakehouse compatibility, allowing seamless analysis of data stored in various formats such as Parquet, ORC, and AVRO. Users can interact with data using familiar languages like SQL, R, Python, Java, and C/C++, making it accessible for both technical and business users. In-database machine learning capabilities allow for building and deploying predictive models without moving data, providing real-time insights. Additional analytics functions include time series, geospatial, and event-pattern matching, enabling deep and diverse data exploration. OpenText Analytics Database is ideal for organizations looking to harness AI and analytics to drive smarter business decisions.
-
20
IBM Analytics Engine
IBM
$0.014 per hourIBM Analytics Engine offers a unique architecture for Hadoop clusters by separating the compute and storage components. Rather than relying on a fixed cluster with nodes that serve both purposes, this engine enables users to utilize an object storage layer, such as IBM Cloud Object Storage, and to dynamically create computing clusters as needed. This decoupling enhances the flexibility, scalability, and ease of maintenance of big data analytics platforms. Built on a stack that complies with ODPi and equipped with cutting-edge data science tools, it integrates seamlessly with the larger Apache Hadoop and Apache Spark ecosystems. Users can define clusters tailored to their specific application needs, selecting the suitable software package, version, and cluster size. They have the option to utilize the clusters for as long as necessary and terminate them immediately after job completion. Additionally, users can configure these clusters with third-party analytics libraries and packages, and leverage IBM Cloud services, including machine learning, to deploy their workloads effectively. This approach allows for a more responsive and efficient handling of data processing tasks. -
21
Apache Sentry
Apache Software Foundation
Apache Sentry™ serves as a robust system for implementing detailed role-based authorization for both data and metadata within a Hadoop cluster environment. Achieving Top-Level Apache project status after graduating from the Incubator in March 2016, Apache Sentry is recognized for its effectiveness in managing granular authorization. It empowers users and applications to have precise control over access privileges to data stored in Hadoop, ensuring that only authenticated entities can interact with sensitive information. Compatibility extends to a range of frameworks, including Apache Hive, Hive Metastore/HCatalog, Apache Solr, Impala, and HDFS, though its primary focus is on Hive table data. Designed as a flexible and pluggable authorization engine, Sentry allows for the creation of tailored authorization rules that assess and validate access requests for various Hadoop resources. Its modular architecture increases its adaptability, making it capable of supporting a diverse array of data models within the Hadoop ecosystem. This flexibility positions Sentry as a vital tool for organizations aiming to manage their data security effectively. -
22
Azure HDInsight
Microsoft
Utilize widely-used open-source frameworks like Apache Hadoop, Spark, Hive, and Kafka with Azure HDInsight, a customizable and enterprise-level service designed for open-source analytics. Effortlessly manage vast data sets while leveraging the extensive open-source project ecosystem alongside Azure’s global capabilities. Transitioning your big data workloads to the cloud is straightforward and efficient. You can swiftly deploy open-source projects and clusters without the hassle of hardware installation or infrastructure management. The big data clusters are designed to minimize expenses through features like autoscaling and pricing tiers that let you pay solely for your actual usage. With industry-leading security and compliance validated by over 30 certifications, your data is well protected. Additionally, Azure HDInsight ensures you remain current with the optimized components tailored for technologies such as Hadoop and Spark, providing an efficient and reliable solution for your analytics needs. This service not only streamlines processes but also enhances collaboration across teams. -
23
Apache Mahout
Apache Software Foundation
Apache Mahout is an advanced and adaptable machine learning library that excels in processing distributed datasets efficiently. It encompasses a wide array of algorithms suitable for tasks such as classification, clustering, recommendation, and pattern mining. By integrating seamlessly with the Apache Hadoop ecosystem, Mahout utilizes MapReduce and Spark to facilitate the handling of extensive datasets. This library functions as a distributed linear algebra framework, along with a mathematically expressive Scala domain-specific language, which empowers mathematicians, statisticians, and data scientists to swiftly develop their own algorithms. While Apache Spark is the preferred built-in distributed backend, Mahout also allows for integration with other distributed systems. Matrix computations play a crucial role across numerous scientific and engineering disciplines, especially in machine learning, computer vision, and data analysis. Thus, Apache Mahout is specifically engineered to support large-scale data processing by harnessing the capabilities of both Hadoop and Spark, making it an essential tool for modern data-driven applications. -
24
Tencent Cloud Elastic MapReduce
Tencent
EMR allows you to adjust the size of your managed Hadoop clusters either manually or automatically, adapting to your business needs and monitoring indicators. Its architecture separates storage from computation, which gives you the flexibility to shut down a cluster to optimize resource utilization effectively. Additionally, EMR features hot failover capabilities for CBS-based nodes, utilizing a primary/secondary disaster recovery system that enables the secondary node to activate within seconds following a primary node failure, thereby ensuring continuous availability of big data services. The metadata management for components like Hive is also designed to support remote disaster recovery options. With computation-storage separation, EMR guarantees high data persistence for COS data storage, which is crucial for maintaining data integrity. Furthermore, EMR includes a robust monitoring system that quickly alerts you to cluster anomalies, promoting stable operations. Virtual Private Clouds (VPCs) offer an effective means of network isolation, enhancing your ability to plan network policies for managed Hadoop clusters. This comprehensive approach not only facilitates efficient resource management but also establishes a reliable framework for disaster recovery and data security. -
25
Oracle Big Data Service
Oracle
$0.1344 per hourOracle Big Data Service simplifies the deployment of Hadoop clusters for customers, offering a range of VM configurations from 1 OCPU up to dedicated bare metal setups. Users can select between high-performance NVMe storage or more budget-friendly block storage options, and have the flexibility to adjust the size of their clusters as needed. They can swiftly establish Hadoop-based data lakes that either complement or enhance existing data warehouses, ensuring that all data is both easily accessible and efficiently managed. Additionally, the platform allows for querying, visualizing, and transforming data, enabling data scientists to develop machine learning models through an integrated notebook that supports R, Python, and SQL. Furthermore, this service provides the capability to transition customer-managed Hadoop clusters into a fully-managed cloud solution, which lowers management expenses and optimizes resource use, ultimately streamlining operations for organizations of all sizes. By doing so, businesses can focus more on deriving insights from their data rather than on the complexities of cluster management. -
26
Apache Knox
Apache Software Foundation
The Knox API Gateway functions as a reverse proxy, prioritizing flexibility in policy enforcement and backend service management for the requests it handles. It encompasses various aspects of policy enforcement, including authentication, federation, authorization, auditing, dispatch, host mapping, and content rewriting rules. A chain of providers, specified in the topology deployment descriptor associated with each Apache Hadoop cluster secured by Knox, facilitates this policy enforcement. Additionally, the cluster definition within the descriptor helps the Knox Gateway understand the structure of the cluster, enabling effective routing and translation from user-facing URLs to the internal workings of the cluster. Each secured Apache Hadoop cluster is equipped with its own REST APIs, consolidated under a unique application context path. Consequently, the Knox Gateway can safeguard numerous clusters while offering REST API consumers a unified endpoint for seamless access. This design enhances both security and usability by simplifying interactions with multiple backend services. -
27
Apache Trafodion
Apache Software Foundation
FreeApache Trafodion serves as a webscale SQL-on-Hadoop solution that facilitates transactional or operational processes within the Apache Hadoop ecosystem. By leveraging the inherent scalability, elasticity, and flexibility of Hadoop, Trafodion enhances its capabilities to ensure transactional integrity, which opens the door for a new wave of big data applications to operate seamlessly on Hadoop. The platform supports the full ANSI SQL language, allowing for JDBC/ODBC connectivity suitable for both Linux and Windows clients. It provides distributed ACID transaction protection that spans multiple statements, tables, and rows, all while delivering performance enhancements specifically designed for OLTP workloads through both compile-time and run-time optimizations. Trafodion is also equipped with a parallel-aware query optimizer that efficiently handles large datasets, enabling developers to utilize their existing SQL knowledge and boost productivity. Furthermore, its distributed ACID transactions maintain data consistency across various rows and tables, making it interoperable with a wide range of existing tools and applications. This solution is neutral to both Hadoop and Linux distributions, providing a straightforward integration path into any existing Hadoop infrastructure. Thus, Apache Trafodion not only enhances the power of Hadoop but also simplifies the development process for users. -
28
IBM Db2 Big SQL
IBM
IBM Db2 Big SQL is a sophisticated hybrid SQL-on-Hadoop engine that facilitates secure and advanced data querying across a range of enterprise big data sources, such as Hadoop, object storage, and data warehouses. This enterprise-grade engine adheres to ANSI standards and provides massively parallel processing (MPP) capabilities, enhancing the efficiency of data queries. With Db2 Big SQL, users can execute a single database connection or query that spans diverse sources, including Hadoop HDFS, WebHDFS, relational databases, NoSQL databases, and object storage solutions. It offers numerous advantages, including low latency, high performance, robust data security, compatibility with SQL standards, and powerful federation features, enabling both ad hoc and complex queries. Currently, Db2 Big SQL is offered in two distinct variations: one that integrates seamlessly with Cloudera Data Platform and another as a cloud-native service on the IBM Cloud Pak® for Data platform. This versatility allows organizations to access and analyze data effectively, performing queries on both batch and real-time data across various sources, thus streamlining their data operations and decision-making processes. In essence, Db2 Big SQL provides a comprehensive solution for managing and querying extensive datasets in an increasingly complex data landscape. -
29
Apache Ranger
The Apache Software Foundation
Apache Ranger™ serves as a framework designed to facilitate, oversee, and manage extensive data security within the Hadoop ecosystem. The goal of Ranger is to implement a thorough security solution throughout the Apache Hadoop landscape. With the introduction of Apache YARN, the Hadoop platform can effectively accommodate a genuine data lake architecture, allowing businesses to operate various workloads in a multi-tenant setting. As the need for data security in Hadoop evolves, it must adapt to cater to diverse use cases regarding data access, while also offering a centralized framework for the administration of security policies and the oversight of user access. This centralized security management allows for the execution of all security-related tasks via a unified user interface or through REST APIs. Additionally, Ranger provides fine-grained authorization, enabling specific actions or operations with any Hadoop component or tool managed through a central administration tool. It standardizes authorization methods across all Hadoop components and enhances support for various authorization strategies, including role-based access control, thereby ensuring a robust security framework. By doing so, it significantly strengthens the overall security posture of organizations leveraging Hadoop technologies. -
30
Oracle Big Data SQL Cloud Service empowers companies to swiftly analyze information across various platforms such as Apache Hadoop, NoSQL, and Oracle Database, all while utilizing their existing SQL expertise, security frameworks, and applications, achieving remarkable performance levels. This solution streamlines data science initiatives and facilitates the unlocking of data lakes, making the advantages of Big Data accessible to a wider audience of end users. It provides a centralized platform for users to catalog and secure data across Hadoop, NoSQL systems, and Oracle Database. With seamless integration of metadata, users can execute queries that combine data from Oracle Database with that from Hadoop and NoSQL databases. Additionally, the service includes utilities and conversion routines that automate the mapping of metadata stored in HCatalog or the Hive Metastore to Oracle Tables. Enhanced access parameters offer administrators the ability to customize column mapping and govern data access behaviors effectively. Furthermore, the capability to support multiple clusters allows a single Oracle Database to query various Hadoop clusters and NoSQL systems simultaneously, thereby enhancing data accessibility and analytics efficiency. This comprehensive approach ensures that organizations can maximize their data insights without compromising on performance or security.
-
31
ZetaAnalytics
Halliburton
To effectively utilize the ZetaAnalytics product, a compatible database appliance is essential for the Data Warehouse setup. Landmark has successfully validated the ZetaAnalytics software with several systems including Teradata, EMC Greenplum, and IBM Netezza; for the latest approved versions, refer to the ZetaAnalytics Release Notes. Prior to the installation and configuration of the ZetaAnalytics software, it is crucial to ensure that your Data Warehouse is fully operational and prepared for data drilling. As part of the installation, you will need to execute scripts designed to create the specific database components necessary for Zeta within the Data Warehouse, and this process will require database administrator (DBA) access. Additionally, the ZetaAnalytics product relies on Apache Hadoop for model scoring and real-time data streaming, so if an Apache Hadoop cluster isn't already set up in your environment, it must be installed before you proceed with the ZetaAnalytics installer. During the installation, you will be prompted to provide the name and port number for your Hadoop Name Server as well as the Map Reducer. It is crucial to follow these steps meticulously to ensure a successful deployment of the ZetaAnalytics product and its features. -
32
Yandex Data Proc
Yandex
$0.19 per hourYou determine the cluster size, node specifications, and a range of services, while Yandex Data Proc effortlessly sets up and configures Spark, Hadoop clusters, and additional components. Collaboration is enhanced through the use of Zeppelin notebooks and various web applications via a user interface proxy. You maintain complete control over your cluster with root access for every virtual machine. Moreover, you can install your own software and libraries on active clusters without needing to restart them. Yandex Data Proc employs instance groups to automatically adjust computing resources of compute subclusters in response to CPU usage metrics. Additionally, Data Proc facilitates the creation of managed Hive clusters, which helps minimize the risk of failures and data loss due to metadata issues. This service streamlines the process of constructing ETL pipelines and developing models, as well as managing other iterative operations. Furthermore, the Data Proc operator is natively integrated into Apache Airflow, allowing for seamless orchestration of data workflows. This means that users can leverage the full potential of their data processing capabilities with minimal overhead and maximum efficiency. -
33
Apache Bigtop
Apache Software Foundation
Bigtop is a project under the Apache Foundation designed for Infrastructure Engineers and Data Scientists who need a thorough solution for packaging, testing, and configuring leading open source big data technologies. It encompasses a variety of components and projects, such as Hadoop, HBase, and Spark, among others. By packaging Hadoop RPMs and DEBs, Bigtop simplifies the management and maintenance of Hadoop clusters. Additionally, it offers an integrated smoke testing framework, complete with a collection of over 50 test files to ensure reliability. For those looking to deploy Hadoop from scratch, Bigtop provides vagrant recipes, raw images, and in-progress docker recipes. The framework is compatible with numerous Operating Systems, including Debian, Ubuntu, CentOS, Fedora, and openSUSE, among others. Moreover, Bigtop incorporates a comprehensive set of tools and a testing framework that evaluates various aspects, such as packaging, platform, and runtime, which are essential for both new deployments and upgrades of the entire data platform, rather than just isolated components. This makes Bigtop a vital resource for anyone aiming to streamline their big data infrastructure. -
34
MLlib
Apache Software Foundation
MLlib, the machine learning library of Apache Spark, is designed to be highly scalable and integrates effortlessly with Spark's various APIs, accommodating programming languages such as Java, Scala, Python, and R. It provides an extensive range of algorithms and utilities, which encompass classification, regression, clustering, collaborative filtering, and the capabilities to build machine learning pipelines. By harnessing Spark's iterative computation features, MLlib achieves performance improvements that can be as much as 100 times faster than conventional MapReduce methods. Furthermore, it is built to function in a variety of environments, whether on Hadoop, Apache Mesos, Kubernetes, standalone clusters, or within cloud infrastructures, while also being able to access multiple data sources, including HDFS, HBase, and local files. This versatility not only enhances its usability but also establishes MLlib as a powerful tool for executing scalable and efficient machine learning operations in the Apache Spark framework. The combination of speed, flexibility, and a rich set of features renders MLlib an essential resource for data scientists and engineers alike. -
35
Apache Storm
Apache Software Foundation
Apache Storm is a distributed computation system that is both free and open source, designed for real-time data processing. It simplifies the reliable handling of endless data streams, similar to how Hadoop revolutionized batch processing. The platform is user-friendly, compatible with various programming languages, and offers an enjoyable experience for developers. With numerous applications including real-time analytics, online machine learning, continuous computation, distributed RPC, and ETL, Apache Storm proves its versatility. It's remarkably fast, with benchmarks showing it can process over a million tuples per second on a single node. Additionally, it is scalable and fault-tolerant, ensuring that data processing is both reliable and efficient. Setting up and managing Apache Storm is straightforward, and it seamlessly integrates with existing queueing and database technologies. Users can design Apache Storm topologies to consume and process data streams in complex manners, allowing for flexible repartitioning between different stages of computation. For further insights, be sure to explore the detailed tutorial available. -
36
Apache Phoenix
Apache Software Foundation
FreeApache Phoenix provides low-latency OLTP and operational analytics on Hadoop by merging the advantages of traditional SQL with the flexibility of NoSQL. It utilizes HBase as its underlying storage, offering full ACID transaction support alongside late-bound, schema-on-read capabilities. Fully compatible with other Hadoop ecosystem tools such as Spark, Hive, Pig, Flume, and MapReduce, it establishes itself as a reliable data platform for OLTP and operational analytics through well-defined, industry-standard APIs. When a SQL query is executed, Apache Phoenix converts it into a series of HBase scans, managing these scans to deliver standard JDBC result sets seamlessly. The framework's direct interaction with the HBase API, along with the implementation of coprocessors and custom filters, enables performance metrics that can reach milliseconds for simple queries and seconds for larger datasets containing tens of millions of rows. This efficiency positions Apache Phoenix as a formidable choice for businesses looking to enhance their data processing capabilities in a Big Data environment. -
37
Deeplearning4j
Deeplearning4j
DL4J leverages state-of-the-art distributed computing frameworks like Apache Spark and Hadoop to enhance the speed of training processes. When utilized with multiple GPUs, its performance matches that of Caffe. Fully open-source under the Apache 2.0 license, the libraries are actively maintained by both the developer community and the Konduit team. Deeplearning4j, which is developed in Java, is compatible with any language that runs on the JVM, including Scala, Clojure, and Kotlin. The core computations are executed using C, C++, and CUDA, while Keras is designated as the Python API. Eclipse Deeplearning4j stands out as the pioneering commercial-grade, open-source, distributed deep-learning library tailored for Java and Scala applications. By integrating with Hadoop and Apache Spark, DL4J effectively introduces artificial intelligence capabilities to business settings, enabling operations on distributed CPUs and GPUs. Training a deep-learning network involves tuning numerous parameters, and we have made efforts to clarify these settings, allowing Deeplearning4j to function as a versatile DIY resource for developers using Java, Scala, Clojure, and Kotlin. With its robust framework, DL4J not only simplifies the deep learning process but also fosters innovation in machine learning across various industries. -
38
Kylo
Teradata
Kylo serves as an open-source platform designed for effective management of enterprise-level data lakes, facilitating self-service data ingestion and preparation while also incorporating robust metadata management, governance, security, and best practices derived from Think Big's extensive experience with over 150 big data implementation projects. It allows users to perform self-service data ingestion complemented by features for data cleansing, validation, and automatic profiling. Users can manipulate data effortlessly using visual SQL and an interactive transformation interface that is easy to navigate. The platform enables users to search and explore both data and metadata, examine data lineage, and access profiling statistics. Additionally, it provides tools to monitor the health of data feeds and services within the data lake, allowing users to track service level agreements (SLAs) and address performance issues effectively. Users can also create batch or streaming pipeline templates using Apache NiFi and register them with Kylo, thereby empowering self-service capabilities. Despite organizations investing substantial engineering resources to transfer data into Hadoop, they often face challenges in maintaining governance and ensuring data quality, but Kylo significantly eases the data ingestion process by allowing data owners to take control through its intuitive guided user interface. This innovative approach not only enhances operational efficiency but also fosters a culture of data ownership within organizations. -
39
Lentiq
Lentiq
Lentiq offers a collaborative data lake as a service that empowers small teams to achieve significant results. It allows users to swiftly execute data science, machine learning, and data analysis within the cloud platform of their choice. With Lentiq, teams can seamlessly ingest data in real time, process and clean it, and share their findings effortlessly. This platform also facilitates the building, training, and internal sharing of models, enabling data teams to collaborate freely and innovate without limitations. Data lakes serve as versatile storage and processing environments, equipped with machine learning, ETL, and schema-on-read querying features, among others. If you’re delving into the realm of data science, a data lake is essential for your success. In today’s landscape, characterized by the Post-Hadoop era, large centralized data lakes have become outdated. Instead, Lentiq introduces data pools—interconnected mini-data lakes across multiple clouds—that work harmoniously to provide a secure, stable, and efficient environment for data science endeavors. This innovative approach enhances the overall agility and effectiveness of data-driven projects. -
40
Effortlessly load your data into or extract it from Hadoop and data lakes, ensuring it is primed for generating reports, visualizations, or conducting advanced analytics—all within the data lakes environment. This streamlined approach allows you to manage, transform, and access data stored in Hadoop or data lakes through a user-friendly web interface, minimizing the need for extensive training. Designed specifically for big data management on Hadoop and data lakes, this solution is not simply a rehash of existing IT tools. It allows for the grouping of multiple directives to execute either concurrently or sequentially, enhancing workflow efficiency. Additionally, you can schedule and automate these directives via the public API provided. The platform also promotes collaboration and security by enabling the sharing of directives. Furthermore, these directives can be invoked from SAS Data Integration Studio, bridging the gap between technical and non-technical users. It comes equipped with built-in directives for various tasks, including casing, gender and pattern analysis, field extraction, match-merge, and cluster-survive operations. For improved performance, profiling processes are executed in parallel on the Hadoop cluster, allowing for the seamless handling of large datasets. This comprehensive solution transforms the way you interact with data, making it more accessible and manageable than ever.
-
41
Apache Kylin
Apache Software Foundation
Apache Kylin™ is a distributed, open-source Analytical Data Warehouse designed for Big Data, aimed at delivering OLAP (Online Analytical Processing) capabilities in the modern big data landscape. By enhancing multi-dimensional cube technology and precalculation methods on platforms like Hadoop and Spark, Kylin maintains a consistent query performance, even as data volumes continue to expand. This innovation reduces query response times from several minutes to just milliseconds, effectively reintroducing online analytics into the realm of big data. Capable of processing over 10 billion rows in under a second, Kylin eliminates the delays previously associated with report generation, facilitating timely decision-making. It seamlessly integrates data stored on Hadoop with popular BI tools such as Tableau, PowerBI/Excel, MSTR, QlikSense, Hue, and SuperSet, significantly accelerating business intelligence operations on Hadoop. As a robust Analytical Data Warehouse, Kylin supports ANSI SQL queries on Hadoop/Spark and encompasses a wide array of ANSI SQL functions. Moreover, Kylin’s architecture allows it to handle thousands of simultaneous interactive queries with minimal resource usage, ensuring efficient analytics even under heavy loads. This efficiency positions Kylin as an essential tool for organizations seeking to leverage their data for strategic insights. -
42
Apache Gobblin
Apache Software Foundation
A framework for distributed data integration that streamlines essential functions of Big Data integration, including data ingestion, replication, organization, and lifecycle management, is designed for both streaming and batch data environments. It operates as a standalone application on a single machine and can also function in an embedded mode. Additionally, it is capable of executing as a MapReduce application across various Hadoop versions and offers compatibility with Azkaban for initiating MapReduce jobs. In standalone cluster mode, it features primary and worker nodes, providing high availability and the flexibility to run on bare metal systems. Furthermore, it can function as an elastic cluster in the public cloud, maintaining high availability in this setup. Currently, Gobblin serves as a versatile framework for creating various data integration applications, such as ingestion and replication. Each application is usually set up as an independent job and managed through a scheduler like Azkaban, allowing for organized execution and management of data workflows. This adaptability makes Gobblin an appealing choice for organizations looking to enhance their data integration processes. -
43
Apache Atlas
Apache Software Foundation
Atlas serves as a versatile and scalable suite of essential governance services, empowering organizations to efficiently comply with regulations within the Hadoop ecosystem while facilitating integration across the enterprise's data landscape. Apache Atlas offers comprehensive metadata management and governance tools that assist businesses in creating a detailed catalog of their data assets, effectively classifying and managing these assets, and fostering collaboration among data scientists, analysts, and governance teams. It comes equipped with pre-defined types for a variety of both Hadoop and non-Hadoop metadata, alongside the capability to establish new metadata types tailored to specific needs. These types can incorporate primitive attributes, complex attributes, and object references, and they can also inherit characteristics from other types. Entities, which are instances of these types, encapsulate the specifics of metadata objects and their interconnections. Additionally, REST APIs enable seamless interaction with types and instances, promoting easier integration and enhancing overall functionality. This robust framework not only streamlines governance processes but also supports a culture of data-driven collaboration across the organization. -
44
Oracle Big Data Discovery
Oracle
Oracle Big Data Discovery is an impressively visual and user-friendly tool that harnesses the capabilities of Hadoop to swiftly convert unrefined data into actionable business insights in just minutes, eliminating the necessity for mastering complicated software or depending solely on highly trained individuals. This product enables users to effortlessly locate pertinent data sets within Hadoop, investigate the data to grasp its potential quickly, enhance and refine data for improved quality, analyze the information for fresh insights, and disseminate findings back to Hadoop for enterprise-wide utilization. By implementing BDD as the hub of your data laboratory, your organization can create a cohesive environment that facilitates the exploration of all data sources in Hadoop and the development of projects and BDD applications. Unlike conventional analytics tools, BDD allows a broader range of individuals to engage with big data, significantly reducing the time spent on loading and updating data, thereby allowing a greater focus on the actual analysis of substantial data sets. This shift not only streamlines workflows but also empowers teams to derive insights more efficiently and collaboratively. -
45
Apache Impala
Apache
FreeImpala offers rapid response times and accommodates numerous concurrent users for business intelligence and analytical inquiries within the Hadoop ecosystem, supporting technologies such as Iceberg, various open data formats, and multiple cloud storage solutions. Additionally, it exhibits linear scalability, even when deployed in environments with multiple tenants. The platform seamlessly integrates with Hadoop's native security measures and employs Kerberos for user authentication, while the Ranger module provides a means to manage permissions, ensuring that only authorized users and applications can access specific data. You can leverage the same file formats, data types, metadata, and frameworks for security and resource management as those used in your Hadoop setup, avoiding unnecessary infrastructure and preventing data duplication or conversion. For users familiar with Apache Hive, Impala is compatible with the same metadata and ODBC driver, streamlining the transition. It also supports SQL, which eliminates the need to develop a new implementation from scratch. With Impala, a greater number of users can access and analyze a wider array of data through a unified repository, relying on metadata that tracks information right from the source to analysis. This unified approach enhances efficiency and optimizes data accessibility across various applications.