Best Guild AI Alternatives in 2025
Find the top alternatives to Guild AI currently available. Compare ratings, reviews, pricing, and features of Guild AI alternatives in 2025. Slashdot lists the best Guild AI alternatives on the market that offer competing products that are similar to Guild AI. Sort through Guild AI alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
726 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
2
Comet Backup
224 RatingsStart running backups and restores in less than 15 minutes! Comet is a fast, secure all-in-one backup platform for businesses and IT providers. You control your backup environment and storage destination (local, Wasabi, AWS, Google Cloud Storage, Azure, Backblaze, or other S3 storage providers). Our software supports businesses across 120 countries in 13 languages. Test drive Comet Backup with a 30-day FREE trial! -
3
Pragma
Pragma
Pragma is a highly effective backend game engine specifically crafted to facilitate live-service gaming, complete with a comprehensive online infrastructure. It streamlines cross-platform account management, enabling players to connect and engage with others across various gaming platforms effortlessly. By fostering social interactions, the engine incorporates features such as friend systems, guilds, and in-game events that enrich the gaming experience. In terms of multiplayer capabilities, Pragma adeptly manages party systems, matchmaking, and server allocation to ensure smooth gameplay. Furthermore, it offers advanced player data management, which includes tracking inventories, progression systems, and battle passes, as well as tools for configuring in-game content, stores, and meta-game elements. With its built-in support for live operations, monetization, telemetry, and extensive customization options, Pragma equips developers with the necessary tools to create scalable and captivating online experiences. This versatility makes it an invaluable asset for developers aiming to deliver engaging live-service games. -
4
Amazon SageMaker
Amazon
Amazon SageMaker is a comprehensive machine learning platform that integrates powerful tools for model building, training, and deployment in one cohesive environment. It combines data processing, AI model development, and collaboration features, allowing teams to streamline the development of custom AI applications. With SageMaker, users can easily access data stored across Amazon S3 data lakes and Amazon Redshift data warehouses, facilitating faster insights and AI model development. It also supports generative AI use cases, enabling users to develop and scale applications with cutting-edge AI technologies. The platform’s governance and security features ensure that data and models are handled with precision and compliance throughout the entire ML lifecycle. Furthermore, SageMaker provides a unified development studio for real-time collaboration, speeding up data discovery and model deployment. -
5
Keepsake
Replicate
FreeKeepsake is a Python library that is open-source and specifically designed for managing version control in machine learning experiments and models. It allows users to automatically monitor various aspects such as code, hyperparameters, training datasets, model weights, performance metrics, and Python dependencies, ensuring comprehensive documentation and reproducibility of the entire machine learning process. By requiring only minimal code changes, Keepsake easily integrates into existing workflows, permitting users to maintain their usual training routines while it automatically archives code and model weights to storage solutions like Amazon S3 or Google Cloud Storage. This capability simplifies the process of retrieving code and weights from previous checkpoints, which is beneficial for re-training or deploying models. Furthermore, Keepsake is compatible with a range of machine learning frameworks, including TensorFlow, PyTorch, scikit-learn, and XGBoost, enabling efficient saving of files and dictionaries. In addition to these features, it provides tools for experiment comparison, allowing users to assess variations in parameters, metrics, and dependencies across different experiments, enhancing the overall analysis and optimization of machine learning projects. Overall, Keepsake streamlines the experimentation process, making it easier for practitioners to manage and evolve their machine learning workflows effectively. -
6
TensorFlow
TensorFlow
Free 2 RatingsTensorFlow is a comprehensive open-source machine learning platform that covers the entire process from development to deployment. This platform boasts a rich and adaptable ecosystem featuring various tools, libraries, and community resources, empowering researchers to advance the field of machine learning while allowing developers to create and implement ML-powered applications with ease. With intuitive high-level APIs like Keras and support for eager execution, users can effortlessly build and refine ML models, facilitating quick iterations and simplifying debugging. The flexibility of TensorFlow allows for seamless training and deployment of models across various environments, whether in the cloud, on-premises, within browsers, or directly on devices, regardless of the programming language utilized. Its straightforward and versatile architecture supports the transformation of innovative ideas into practical code, enabling the development of cutting-edge models that can be published swiftly. Overall, TensorFlow provides a powerful framework that encourages experimentation and accelerates the machine learning process. -
7
Determined AI
Determined AI
With Determined, you can engage in distributed training without needing to modify your model code, as it efficiently manages the provisioning of machines, networking, data loading, and fault tolerance. Our open-source deep learning platform significantly reduces training times to mere hours or minutes, eliminating the lengthy process of days or weeks. Gone are the days of tedious tasks like manual hyperparameter tuning, re-running failed jobs, and the constant concern over hardware resources. Our advanced distributed training solution not only surpasses industry benchmarks but also requires no adjustments to your existing code and seamlessly integrates with our cutting-edge training platform. Additionally, Determined features built-in experiment tracking and visualization that automatically logs metrics, making your machine learning projects reproducible and fostering greater collaboration within your team. This enables researchers to build upon each other's work and drive innovation in their respective fields, freeing them from the stress of managing errors and infrastructure. Ultimately, this streamlined approach empowers teams to focus on what they do best—creating and refining their models. -
8
Weights & Biases
Weights & Biases
Utilize Weights & Biases (WandB) for experiment tracking, hyperparameter tuning, and versioning of both models and datasets. With just five lines of code, you can efficiently monitor, compare, and visualize your machine learning experiments. Simply enhance your script with a few additional lines, and each time you create a new model version, a fresh experiment will appear in real-time on your dashboard. Leverage our highly scalable hyperparameter optimization tool to enhance your models' performance. Sweeps are designed to be quick, easy to set up, and seamlessly integrate into your current infrastructure for model execution. Capture every aspect of your comprehensive machine learning pipeline, encompassing data preparation, versioning, training, and evaluation, making it incredibly straightforward to share updates on your projects. Implementing experiment logging is a breeze; just add a few lines to your existing script and begin recording your results. Our streamlined integration is compatible with any Python codebase, ensuring a smooth experience for developers. Additionally, W&B Weave empowers developers to confidently create and refine their AI applications through enhanced support and resources. -
9
Comet
Comet
$179 per user per monthManage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders. -
10
neptune.ai
neptune.ai
$49 per monthNeptune.ai serves as a robust platform for machine learning operations (MLOps), aimed at simplifying the management of experiment tracking, organization, and sharing within the model-building process. It offers a thorough environment for data scientists and machine learning engineers to log data, visualize outcomes, and compare various model training sessions, datasets, hyperparameters, and performance metrics in real-time. Seamlessly integrating with widely-used machine learning libraries, Neptune.ai allows teams to effectively oversee both their research and production processes. Its features promote collaboration, version control, and reproducibility of experiments, ultimately boosting productivity and ensuring that machine learning initiatives are transparent and thoroughly documented throughout their entire lifecycle. This platform not only enhances team efficiency but also provides a structured approach to managing complex machine learning workflows. -
11
DVC
iterative.ai
Data Version Control (DVC) is an open-source system specifically designed for managing version control in data science and machine learning initiatives. It provides a Git-like interface that allows users to systematically organize data, models, and experiments, making it easier to oversee and version various types of files such as images, audio, video, and text. This system helps structure the machine learning modeling process into a reproducible workflow, ensuring consistency in experimentation. DVC's integration with existing software engineering tools is seamless, empowering teams to articulate every facet of their machine learning projects through human-readable metafiles that detail data and model versions, pipelines, and experiments. This methodology promotes adherence to best practices and the use of well-established engineering tools, thus bridging the gap between the realms of data science and software development. By utilizing Git, DVC facilitates the versioning and sharing of complete machine learning projects, encompassing source code, configurations, parameters, metrics, data assets, and processes by committing the DVC metafiles as placeholders. Furthermore, its user-friendly approach encourages collaboration among team members, enhancing productivity and innovation within projects. -
12
TensorBoard
Tensorflow
FreeTensorBoard serves as a robust visualization platform within TensorFlow, specifically crafted to aid in the experimentation process of machine learning. It allows users to monitor and illustrate various metrics, such as loss and accuracy, while also offering insights into the model architecture through visual representations of its operations and layers. Users can observe the evolution of weights, biases, and other tensors via histograms over time, and it also allows for the projection of embeddings into a more manageable lower-dimensional space, along with the capability to display various forms of data, including images, text, and audio. Beyond these visualization features, TensorBoard includes profiling tools that help streamline and enhance the performance of TensorFlow applications. Collectively, these functionalities equip practitioners with essential tools for understanding, troubleshooting, and refining their TensorFlow projects, ultimately improving the efficiency of the machine learning process. In the realm of machine learning, accurate measurement is crucial for enhancement, and TensorBoard fulfills this need by supplying the necessary metrics and visual insights throughout the workflow. This platform not only tracks various experimental metrics but also facilitates the visualization of complex model structures and the dimensionality reduction of embeddings, reinforcing its importance in the machine learning toolkit. -
13
Azure Machine Learning
Microsoft
Streamline the entire machine learning lifecycle from start to finish. Equip developers and data scientists with an extensive array of efficient tools for swiftly building, training, and deploying machine learning models. Enhance the speed of market readiness and promote collaboration among teams through leading-edge MLOps—akin to DevOps but tailored for machine learning. Drive innovation within a secure, reliable platform that prioritizes responsible AI practices. Cater to users of all expertise levels with options for both code-centric and drag-and-drop interfaces, along with automated machine learning features. Implement comprehensive MLOps functionalities that seamlessly align with existing DevOps workflows, facilitating the management of the entire machine learning lifecycle. Emphasize responsible AI by providing insights into model interpretability and fairness, securing data through differential privacy and confidential computing, and maintaining control over the machine learning lifecycle with audit trails and datasheets. Additionally, ensure exceptional compatibility with top open-source frameworks and programming languages such as MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R, thus broadening accessibility and usability for diverse projects. By fostering an environment that promotes collaboration and innovation, teams can achieve remarkable advancements in their machine learning endeavors. -
14
Aim
AimStack
Aim captures all your AI-related metadata, including experiments and prompts, and offers a user interface for comparison and observation, as well as a software development kit for programmatic queries. This open-source, self-hosted tool is specifically designed to manage hundreds of thousands of tracked metadata sequences efficiently. Notably, Aim excels in two prominent areas of AI metadata applications: experiment tracking and prompt engineering. Additionally, Aim features a sleek and efficient user interface that allows users to explore and compare different training runs and prompt sessions seamlessly. This capability enhances the overall workflow and provides valuable insights into the AI development process. -
15
Polyaxon
Polyaxon
A comprehensive platform designed for reproducible and scalable applications in Machine Learning and Deep Learning. Explore the array of features and products that support the leading platform for managing data science workflows today. Polyaxon offers an engaging workspace equipped with notebooks, tensorboards, visualizations, and dashboards. It facilitates team collaboration, allowing members to share, compare, and analyze experiments and their outcomes effortlessly. With built-in version control, you can achieve reproducible results for both code and experiments. Polyaxon can be deployed in various environments, whether in the cloud, on-premises, or in hybrid setups, ranging from a single laptop to container management systems or Kubernetes. Additionally, you can easily adjust resources by spinning up or down, increasing the number of nodes, adding GPUs, and expanding storage capabilities as needed. This flexibility ensures that your data science projects can scale effectively to meet growing demands. -
16
MLflow
MLflow
MLflow is an open-source suite designed to oversee the machine learning lifecycle, encompassing aspects such as experimentation, reproducibility, deployment, and a centralized model registry. The platform features four main components that facilitate various tasks: tracking and querying experiments encompassing code, data, configurations, and outcomes; packaging data science code to ensure reproducibility across multiple platforms; deploying machine learning models across various serving environments; and storing, annotating, discovering, and managing models in a unified repository. Among these, the MLflow Tracking component provides both an API and a user interface for logging essential aspects like parameters, code versions, metrics, and output files generated during the execution of machine learning tasks, enabling later visualization of results. It allows for logging and querying experiments through several interfaces, including Python, REST, R API, and Java API. Furthermore, an MLflow Project is a structured format for organizing data science code, ensuring it can be reused and reproduced easily, with a focus on established conventions. Additionally, the Projects component comes equipped with an API and command-line tools specifically designed for executing these projects effectively. Overall, MLflow streamlines the management of machine learning workflows, making it easier for teams to collaborate and iterate on their models. -
17
Amazon SageMaker equips users with an extensive suite of tools and libraries essential for developing machine learning models, emphasizing an iterative approach to experimenting with various algorithms and assessing their performance to identify the optimal solution for specific needs. Within SageMaker, you can select from a diverse range of algorithms, including more than 15 that are specifically designed and enhanced for the platform, as well as access over 150 pre-existing models from well-known model repositories with just a few clicks. Additionally, SageMaker includes a wide array of model-building resources, such as Amazon SageMaker Studio Notebooks and RStudio, which allow you to execute machine learning models on a smaller scale to evaluate outcomes and generate performance reports, facilitating the creation of high-quality prototypes. The integration of Amazon SageMaker Studio Notebooks accelerates the model development process and fosters collaboration among team members. These notebooks offer one-click access to Jupyter environments, enabling you to begin working almost immediately, and they also feature functionality for easy sharing of your work with others. Furthermore, the platform's overall design encourages continuous improvement and innovation in machine learning projects.
-
18
DagsHub
DagsHub
$9 per monthDagsHub serves as a collaborative platform tailored for data scientists and machine learning practitioners to effectively oversee and optimize their projects. By merging code, datasets, experiments, and models within a cohesive workspace, it promotes enhanced project management and teamwork among users. Its standout features comprise dataset oversight, experiment tracking, a model registry, and the lineage of both data and models, all offered through an intuitive user interface. Furthermore, DagsHub allows for smooth integration with widely-used MLOps tools, which enables users to incorporate their established workflows seamlessly. By acting as a centralized repository for all project elements, DagsHub fosters greater transparency, reproducibility, and efficiency throughout the machine learning development lifecycle. This platform is particularly beneficial for AI and ML developers who need to manage and collaborate on various aspects of their projects, including data, models, and experiments, alongside their coding efforts. Notably, DagsHub is specifically designed to handle unstructured data types, such as text, images, audio, medical imaging, and binary files, making it a versatile tool for diverse applications. In summary, DagsHub is an all-encompassing solution that not only simplifies the management of projects but also enhances collaboration among team members working across different domains. -
19
ClearML
ClearML
$15ClearML is an open-source MLOps platform that enables data scientists, ML engineers, and DevOps to easily create, orchestrate and automate ML processes at scale. Our frictionless and unified end-to-end MLOps Suite allows users and customers to concentrate on developing ML code and automating their workflows. ClearML is used to develop a highly reproducible process for end-to-end AI models lifecycles by more than 1,300 enterprises, from product feature discovery to model deployment and production monitoring. You can use all of our modules to create a complete ecosystem, or you can plug in your existing tools and start using them. ClearML is trusted worldwide by more than 150,000 Data Scientists, Data Engineers and ML Engineers at Fortune 500 companies, enterprises and innovative start-ups. -
20
HoneyHive
HoneyHive
AI engineering can be transparent rather than opaque. With a suite of tools for tracing, assessment, prompt management, and more, HoneyHive emerges as a comprehensive platform for AI observability and evaluation, aimed at helping teams create dependable generative AI applications. This platform equips users with resources for model evaluation, testing, and monitoring, promoting effective collaboration among engineers, product managers, and domain specialists. By measuring quality across extensive test suites, teams can pinpoint enhancements and regressions throughout the development process. Furthermore, it allows for the tracking of usage, feedback, and quality on a large scale, which aids in swiftly identifying problems and fostering ongoing improvements. HoneyHive is designed to seamlessly integrate with various model providers and frameworks, offering the necessary flexibility and scalability to accommodate a wide range of organizational requirements. This makes it an ideal solution for teams focused on maintaining the quality and performance of their AI agents, delivering a holistic platform for evaluation, monitoring, and prompt management, ultimately enhancing the overall effectiveness of AI initiatives. As organizations increasingly rely on AI, tools like HoneyHive become essential for ensuring robust performance and reliability. -
21
Symantec Cloud Workload Protection
Broadcom
Numerous applications and services hosted in public cloud environments utilize storage solutions like Amazon S3 buckets and Azure Blob storage. As time progresses, these storage solutions may become infected with malware, improperly configured buckets can lead to data breaches, and failure to classify sensitive information can lead to compliance issues and hefty fines. CWP for Storage plays a crucial role by automatically identifying and scanning Amazon S3 buckets and Azure Blobs, ensuring that cloud storage remains both clean and secure. Furthermore, CWP for Storage DLP implements Symantec DLP policy within Amazon S3 to effectively discover and categorize sensitive data. To facilitate remediation and additional actions, AWS Tags can be applied as necessary. Additionally, Cloud Security Posture Management (CSPM) is available for major platforms such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP). While containers enhance operational agility, they also introduce a variety of public cloud security challenges and vulnerabilities that can heighten overall risk, necessitating a proactive approach to security management. Organizations must remain vigilant and continually update their security measures to mitigate these evolving threats. -
22
Visdom
Meta
Visdom serves as a powerful visualization tool designed to create detailed visual representations of real-time data, assisting researchers and developers in monitoring their scientific experiments conducted on remote servers. These visualizations can be accessed through web browsers and effortlessly shared with colleagues, fostering collaboration. With its interactive capabilities, Visdom is tailored to enhance the scientific experimentation process. Users can easily broadcast visual representations of plots, images, and text, making it accessible for both personal review and team collaboration. The organization of the visualization space can be managed via the Visdom user interface or through programmatic means, enabling researchers and developers to thoroughly examine experiment outcomes across various projects and troubleshoot their code. Additionally, features such as windows, environments, states, filters, and views offer versatile options for managing and viewing critical experimental data. Ultimately, Visdom empowers users to build and tailor visualizations specifically suited for their projects, streamlining the research workflow. Its adaptability and range of features make it an invaluable asset for enhancing the clarity and accessibility of scientific data. -
23
lakeFS
Treeverse
lakeFS allows you to control your data lake similarly to how you manage your source code, facilitating parallel pipelines for experimentation as well as continuous integration and deployment for your data. This platform streamlines the workflows of engineers, data scientists, and analysts who are driving innovation through data. As an open-source solution, lakeFS enhances the resilience and manageability of object-storage-based data lakes. With lakeFS, you can execute reliable, atomic, and versioned operations on your data lake, encompassing everything from intricate ETL processes to advanced data science and analytics tasks. It is compatible with major cloud storage options, including AWS S3, Azure Blob Storage, and Google Cloud Storage (GCS). Furthermore, lakeFS seamlessly integrates with a variety of modern data frameworks such as Spark, Hive, AWS Athena, and Presto, thanks to its API compatibility with S3. The platform features a Git-like model for branching and committing that can efficiently scale to handle exabytes of data while leveraging the storage capabilities of S3, GCS, or Azure Blob. In addition, lakeFS empowers teams to collaborate more effectively by allowing multiple users to work on the same dataset without conflicts, making it an invaluable tool for data-driven organizations. -
24
Neum AI
Neum AI
No business desires outdated information when their AI interacts with customers. Neum AI enables organizations to maintain accurate and current context within their AI solutions. By utilizing pre-built connectors for various data sources such as Amazon S3 and Azure Blob Storage, as well as vector stores like Pinecone and Weaviate, you can establish your data pipelines within minutes. Enhance your data pipeline further by transforming and embedding your data using built-in connectors for embedding models such as OpenAI and Replicate, along with serverless functions like Azure Functions and AWS Lambda. Implement role-based access controls to ensure that only authorized personnel can access specific vectors. You also have the flexibility to incorporate your own embedding models, vector stores, and data sources. Don't hesitate to inquire about how you can deploy Neum AI in your own cloud environment for added customization and control. With these capabilities, you can truly optimize your AI applications for the best customer interactions. -
25
Cloud Storage Manager
SmiKar Software
$500The consumption of Azure storage is surging at an astonishing rate, surpassing earlier forecasts. As organizations expand their data footprint, they are eager to leverage Azure's seemingly endless storage capabilities and resources. However, with the increase in storage needs, it becomes challenging to monitor the specific areas of storage consumption, which can lead to rising Azure costs and potential budget overruns. With Cloud Storage Manager, you can quickly identify your storage usage patterns, enabling you to regain control and reduce expenses. This tool offers an Azure Explorer-like perspective of all your Azure Blobs and the contents of your Azure Files. Through this interface, you can access detailed information for each Blob, including its size, creation date, last modified date, and the current Storage Tiering classification of the Blob. Additionally, by utilizing this comprehensive overview, organizations can optimize their storage strategies and make informed decisions regarding their Azure resources. -
26
DittoDub
DittoDub
$97 per monthDittoDub is an innovative platform harnessing AI to enhance the reach of content by seamlessly translating and voicing videos in as many as 38 languages, employing tailored vocabularies along with an easy-to-use dubbing editor that maintains the original tone and context. This service converts source videos into immersive native experiences by providing synchronized subtitles, translated metadata, and thumbnail adaptations, while also utilizing a recommendation engine that is fine-tuned by launching with 20 to 30 videos. Evidence from various case studies indicates remarkable growth, with channels such as Dr. Sten Ekberg and Topper Guild experiencing subscriber surges from millions to tens of millions, alongside a staggering 120% increase in viewer engagement. The setup process is straightforward; users simply upload their content, adjust vocabulary settings, and export high-quality, multilingual videos effortlessly. Additionally, the platform integrates flawlessly into existing workflows, fostering a deeper connection with audiences and promoting international engagement across diverse markets. Overall, DittoDub represents a pivotal advancement in content distribution, allowing creators to connect with a global audience like never before. -
27
Azure OpenAI Service
Microsoft
$0.0004 per 1000 tokensUtilize sophisticated coding and language models across a diverse range of applications. Harness the power of expansive generative AI models that possess an intricate grasp of both language and code, paving the way for enhanced reasoning and comprehension skills essential for developing innovative applications. These advanced models can be applied to multiple scenarios, including writing support, automatic code creation, and data reasoning. Moreover, ensure responsible AI practices by implementing measures to detect and mitigate potential misuse, all while benefiting from enterprise-level security features offered by Azure. With access to generative models pretrained on vast datasets comprising trillions of words, you can explore new possibilities in language processing, code analysis, reasoning, inferencing, and comprehension. Further personalize these generative models by using labeled datasets tailored to your unique needs through an easy-to-use REST API. Additionally, you can optimize your model's performance by fine-tuning hyperparameters for improved output accuracy. The few-shot learning functionality allows you to provide sample inputs to the API, resulting in more pertinent and context-aware outcomes. This flexibility enhances your ability to meet specific application demands effectively. -
28
Experience rapid and efficient backup and restoration for SQL Server databases, achieving savings of up to 85 percent in both size and duration when compared to other solutions. LiteSpeed for SQL Server streamlines this process with minimal hassle and risk involved. Ensure swift restoration of the correct SQL Server data through a diverse array of backup and recovery options. Direct integration with Microsoft Azure Blob storage, Amazon S3, and ISM TSM facilitates seamless cloud-based backup and restoration for both on-premises and virtualized SQL Servers. This results in significant improvements in backup and restore times, as well as reductions in storage expenses. You can optimize CPU resource usage and lower backup storage size through eight different levels of compression tailored to your specific environment. Manage and oversee your SQL Server backup and recovery processes efficiently by defining, scheduling, and controlling all jobs from a single centralized interface. This comprehensive management capability simplifies the overall backup strategy, ensuring that your data is not only saved but also easily retrievable when needed.
-
29
Intel Geti
Intel
Intel® Geti™ software streamlines the creation of computer vision models through efficient data annotation and training processes. It offers features such as intelligent annotations, active learning, and task chaining, allowing users to develop models for tasks like classification, object detection, and anomaly detection without needing to write extra code. Furthermore, the platform includes optimizations, hyperparameter tuning, and models that are ready for production and optimized for Intel’s OpenVINO™ toolkit. Intended to facilitate teamwork, Geti™ enhances collaboration by guiding teams through the entire model development lifecycle, from labeling data to deploying models effectively. This comprehensive approach ensures that users can focus on refining their models while minimizing technical hurdles. -
30
Flowise
Flowise AI
FreeFlowise is a versatile open-source platform that simplifies the creation of tailored Large Language Model (LLM) applications using an intuitive drag-and-drop interface designed for low-code development. This platform accommodates connections with multiple LLMs, such as LangChain and LlamaIndex, and boasts more than 100 integrations to support the building of AI agents and orchestration workflows. Additionally, Flowise offers a variety of APIs, SDKs, and embedded widgets that enable smooth integration into pre-existing systems, ensuring compatibility across different platforms, including deployment in isolated environments using local LLMs and vector databases. As a result, developers can efficiently create and manage sophisticated AI solutions with minimal technical barriers. -
31
Guild
Guild
$0Guild is a platform that allows professional communities to connect and network. It's mobile-first and easy to use, much like a consumer messaging application, but it was specifically designed for professionals and businesses. Privacy by design, ad-free, custom-branded, with admin, and analytics Elegant user experience - Simple, elegant design; mobile first; support and service; custom branding Moderation features and high levels of professional conduct; professional profiles that allow users to be present, accountable, and connect with others. Data protection - GDPR compliant, you control your data. -
32
Automaton AI
Automaton AI
Utilizing Automaton AI's ADVIT platform, you can effortlessly create, manage, and enhance high-quality training data alongside DNN models, all from a single interface. The system automatically optimizes data for each stage of the computer vision pipeline, allowing for a streamlined approach to data labeling processes and in-house data pipelines. You can efficiently handle both structured and unstructured datasets—be it video, images, or text—while employing automatic functions that prepare your data for every phase of the deep learning workflow. Once the data is accurately labeled and undergoes quality assurance, you can proceed with training your own model effectively. Deep neural network training requires careful hyperparameter tuning, including adjustments to batch size and learning rates, which are essential for maximizing model performance. Additionally, you can optimize and apply transfer learning to enhance the accuracy of your trained models. After the training phase, the model can be deployed into production seamlessly. ADVIT also supports model versioning, ensuring that model development and accuracy metrics are tracked in real-time. By leveraging a pre-trained DNN model for automatic labeling, you can further improve the overall accuracy of your models, paving the way for more robust applications in the future. This comprehensive approach to data and model management significantly enhances the efficiency of machine learning projects. -
33
Ludwig
Uber AI
Ludwig serves as a low-code platform specifically designed for the development of tailored AI models, including large language models (LLMs) and various deep neural networks. With Ludwig, creating custom models becomes a straightforward task; you only need a simple declarative YAML configuration file to train an advanced LLM using your own data. It offers comprehensive support for learning across multiple tasks and modalities. The framework includes thorough configuration validation to identify invalid parameter combinations and avert potential runtime errors. Engineered for scalability and performance, it features automatic batch size determination, distributed training capabilities (including DDP and DeepSpeed), parameter-efficient fine-tuning (PEFT), 4-bit quantization (QLoRA), and the ability to handle larger-than-memory datasets. Users enjoy expert-level control, allowing them to manage every aspect of their models, including activation functions. Additionally, Ludwig facilitates hyperparameter optimization, offers insights into explainability, and provides detailed metric visualizations. Its modular and extensible architecture enables users to experiment with various model designs, tasks, features, and modalities with minimal adjustments in the configuration, making it feel like a set of building blocks for deep learning innovations. Ultimately, Ludwig empowers developers to push the boundaries of AI model creation while maintaining ease of use. -
34
TruLens
TruLens
FreeTruLens is a versatile open-source Python library aimed at the systematic evaluation and monitoring of Large Language Model (LLM) applications. It features detailed instrumentation, feedback mechanisms, and an intuitive interface that allows developers to compare and refine various versions of their applications, thereby promoting swift enhancements in LLM-driven projects. The library includes programmatic tools that evaluate the quality of inputs, outputs, and intermediate results, enabling efficient and scalable assessments. With its precise, stack-agnostic instrumentation and thorough evaluations, TruLens assists in pinpointing failure modes while fostering systematic improvements in applications. Developers benefit from an accessible interface that aids in comparing different application versions, supporting informed decision-making and optimization strategies. TruLens caters to a wide range of applications, including but not limited to question-answering, summarization, retrieval-augmented generation, and agent-based systems, making it a valuable asset for diverse development needs. As developers leverage TruLens, they can expect to achieve more reliable and effective LLM applications. -
35
Cribl Search
Cribl
Cribl Search introduces an innovative search-in-place technology that allows users to effortlessly explore, discover, and analyze data that was once deemed inaccessible, directly from its source and across various cloud environments, including data secured behind APIs. Users can easily navigate through their Cribl Lake or examine data stored in prominent object storage solutions such as AWS S3, Amazon Security Lake, Azure Blob, and Google Cloud Storage, while also enriching their insights by querying multiple live API endpoints from a variety of SaaS providers. The core advantage of Cribl Search is its strategic capability to forward only the essential data to analytical systems, thus minimizing the expenses associated with storage. With built-in compatibility for platforms like Amazon Security Lake, AWS S3, Azure Blob, and Google Cloud Storage, Cribl Search offers a unique opportunity to analyze all data directly where it resides. Furthermore, it empowers users to conduct searches and analyses on data regardless of its location, whether it be debug logs at the edge or data archived in cold storage, thereby enhancing their data-driven decision-making. This versatility in data access significantly streamlines the process of gaining insights from diverse data sources. -
36
3 Drive connects with any standard S3 data store. This allows you to work with cloud files virtually as if they were on your local filesystem. The S3 API allows you to access, update, edit and save files in any storage service that supports the S3 protocol, including: Amazon S3, Google Cloud Storage (including Blob Storage), Microsoft Azure Blob Storage (including IBM Cloud Object Storage), Backblaze B2, Wasabi and DigitalOcean. S3 Drive adds an additional layer of local cache on top the S3 API. This allows files to be saved locally and uploaded automatically, so you do not have to upload or download files every time. Powerful Capabilities - Store multiple connection profiles for a quick, convenient connection. S3 Drive features FIPS mode. - Run S3 Drive as a Windows service or desktop application. Use S3 Drive from the command-line or as a desktop application. S3 Drive supports Windows Arm64. - Available on Windows, Linux and macOS. S3 Drive is trusted worldwide by the largest technology companies.
-
37
Threagile
Threagile
FreeThreagile empowers teams to implement Agile Threat Modeling with remarkable ease, seamlessly integrating into DevSecOps workflows. This open-source toolkit allows users to represent an architecture and its assets in a flexible, declarative manner using a YAML file, which can be edited directly within an IDE or any YAML-compatible editor. When the Threagile toolkit is executed, it processes a series of risk rules that perform security evaluations on the architecture model, generating a comprehensive report detailing potential vulnerabilities and suggested mitigation strategies. Additionally, visually appealing data-flow diagrams are automatically produced, along with various output formats such as Excel and JSON for further analysis. The tool also supports ongoing risk management directly within the Threagile YAML model file, enabling teams to track their progress on risk mitigation effectively. Threagile can be operated through the command line, and for added convenience, a Docker container is available, or it can be set up as a REST server for broader accessibility. This versatility ensures that teams can choose the deployment method that best fits their development environment. -
38
Azure Blob Storage
Microsoft
$0.00099Azure Blob Storage offers a highly scalable and secure object storage solution tailored for a variety of applications, including cloud-native workloads, data lakes, high-performance computing, archives, and machine learning projects. It enables users to construct data lakes that facilitate analytics while also serving as a robust storage option for developing powerful mobile and cloud-native applications. With tiered storage options, users can effectively manage costs associated with long-term data retention while having the flexibility to scale up resources for intensive computing and machine learning tasks. Designed from the ground up, Blob storage meets the stringent requirements for scale, security, and availability that developers of mobile, web, and cloud-native applications demand. It serves as a foundational element for serverless architectures, such as Azure Functions, further enhancing its utility. Additionally, Blob storage is compatible with a wide range of popular development frameworks, including Java, .NET, Python, and Node.js, and it uniquely offers a premium SSD-based object storage tier, making it ideal for low-latency and interactive applications. This versatility allows developers to optimize their workflows and improve application performance across various platforms and environments. -
39
Ray
Anyscale
FreeYou can develop on your laptop, then scale the same Python code elastically across hundreds or GPUs on any cloud. Ray converts existing Python concepts into the distributed setting, so any serial application can be easily parallelized with little code changes. With a strong ecosystem distributed libraries, scale compute-heavy machine learning workloads such as model serving, deep learning, and hyperparameter tuning. Scale existing workloads (e.g. Pytorch on Ray is easy to scale by using integrations. Ray Tune and Ray Serve native Ray libraries make it easier to scale the most complex machine learning workloads like hyperparameter tuning, deep learning models training, reinforcement learning, and training deep learning models. In just 10 lines of code, you can get started with distributed hyperparameter tune. Creating distributed apps is hard. Ray is an expert in distributed execution. -
40
Cleanlab
Cleanlab
Cleanlab Studio offers a comprehensive solution for managing data quality and executing data-centric AI processes within a unified framework designed for both analytics and machine learning endeavors. Its automated pipeline simplifies the machine learning workflow by handling essential tasks such as data preprocessing, fine-tuning foundation models, optimizing hyperparameters, and selecting the best models for your needs. Utilizing machine learning models, it identifies data-related problems, allowing you to retrain on your refined dataset with a single click. You can view a complete heatmap that illustrates recommended corrections for every class in your dataset. All this valuable information is accessible for free as soon as you upload your data. Additionally, Cleanlab Studio comes equipped with a variety of demo datasets and projects, enabling you to explore these examples in your account right after logging in. Moreover, this user-friendly platform makes it easy for anyone to enhance their data management skills and improve their machine learning outcomes. -
41
thinkdeeply
Think Deeply
Explore a diverse array of resources to kickstart your AI initiative. The AI hub offers an extensive selection of essential tools, such as industry-specific AI starter kits, datasets, coding notebooks, pre-trained models, and ready-to-deploy solutions and pipelines. Gain access to top-notch resources from external sources or those developed internally by your organization. Efficiently prepare and manage your data for model training by collecting, organizing, tagging, or selecting features, with a user-friendly drag-and-drop interface. Collaborate seamlessly with team members to tag extensive datasets and implement a robust quality control process to maintain high dataset standards. Easily build models with just a few clicks using intuitive model wizards, requiring no prior data science expertise. The system intelligently identifies the most suitable models for your specific challenges while optimizing their training parameters. For those with advanced skills, there's the option to fine-tune models and adjust hyper-parameters. Furthermore, enjoy the convenience of one-click deployment into production environments for inference. With this comprehensive framework, your AI project can flourish with minimal hassle. -
42
Gaia
Gaia
Effortlessly train, launch, and monetize your neural machine translation system with just a few clicks, eliminating the need for any coding skills. Simply drag and drop your parallel data CSV file into the user-friendly interface. Optimize your model's performance by fine-tuning it with advanced settings tailored to your needs. Take advantage of our robust NVIDIA GPU infrastructure to commence training without delay. You can create models for various language pairs, including those that are less commonly supported. Monitor your training progress and performance metrics as they unfold in real time. Seamlessly integrate your trained model through our extensive API. Adjust your model parameters and hyperparameters with ease. Upload your parallel data CSV file directly to the dashboard for convenience. Review training metrics and BLEU scores to gauge your model's effectiveness. Utilize your deployed model through either the dashboard or API for flexible access. Just click "start training" and let our powerful GPUs handle the heavy lifting. It's often advantageous to initiate with default settings before exploring different configurations to enhance results. Additionally, maintaining a record of your experiments and their outcomes will help you discover the ideal settings for your unique translation challenges, ensuring continuous improvement and success. -
43
CubeBackup
CubeBackup
$2 per user per yearCubeBackup serves as a backup solution for Google Workspace, ensuring that your organizational data is safeguarded across the entire domain. It retains all data with version history, allowing storage on either local devices or private cloud platforms. This application facilitates the backing up of Gmail, Google Drive, shared Drives, Contacts, Calendar, and Sites to on-premises options like local disks, NAS, SAN, or file servers. Alternatively, users can opt to save their data on private cloud services, including Amazon S3, Google Cloud, Azure Blob Storage, and Backblaze B2. Unlike Google Drive, which restricts file version history to a mere 30 days, CubeBackup enables users to revert Google Drive and Shared Drive files to any earlier version. Additionally, it can restore entire projects, maintaining the complete structure of files and folders, back to any chosen state. By using CubeBackup, you can retain control of your data and avoid reliance on external providers. Unlike many other cloud backup services for Google Workspace that manage your data, CubeBackup empowers you to oversee your backups through local storage solutions, providing peace of mind regarding your valuable information security. -
44
Apache DataFusion
Apache Software Foundation
FreeApache DataFusion is a versatile and efficient query engine crafted in Rust, leveraging Apache Arrow for its in-memory data representation. It caters to developers engaged in creating data-focused systems, including databases, data frames, machine learning models, and real-time streaming applications. With its SQL and DataFrame APIs, DataFusion features a vectorized, multi-threaded execution engine that processes data streams efficiently and supports various partitioned data sources. It is compatible with several native formats such as CSV, Parquet, JSON, and Avro, and facilitates smooth integration with popular object storage solutions like AWS S3, Azure Blob Storage, and Google Cloud Storage. The architecture includes a robust query planner and an advanced optimizer that boasts capabilities such as expression coercion, simplification, and optimizations that consider distribution and sorting, along with automatic reordering of joins. Furthermore, DataFusion allows for extensive customization, enabling developers to incorporate user-defined scalar, aggregate, and window functions along with custom data sources and query languages, making it a powerful tool for diverse data processing needs. This adaptability ensures that developers can tailor the engine to fit their unique use cases effectively. -
45
ZinkML
ZinkML Technologies
ZinkML is an open-source data science platform that does not require any coding. It was designed to help organizations leverage data more effectively. Its visual and intuitive interface eliminates the need for extensive programming expertise, making data sciences accessible to a wider range of users. ZinkML streamlines data science from data ingestion, model building, deployment and monitoring. Users can drag and drop components to create complex pipelines, explore the data visually, or build predictive models, all without writing a line of code. The platform offers automated model selection, feature engineering and hyperparameter optimization, which accelerates the model development process. ZinkML also offers robust collaboration features that allow teams to work seamlessly together on data science projects. By democratizing the data science, we empower businesses to get maximum value out of their data and make better decisions.