Best GLM-5 Alternatives in 2026

Find the top alternatives to GLM-5 currently available. Compare ratings, reviews, pricing, and features of GLM-5 alternatives in 2026. Slashdot lists the best GLM-5 alternatives on the market that offer competing products that are similar to GLM-5. Sort through GLM-5 alternatives below to make the best choice for your needs

  • 1
    Claude Opus 4.6 Reviews
    Claude Opus 4.6 is Anthropic’s most advanced AI model, optimized for high-level reasoning and software engineering tasks. It outperforms earlier models and industry peers on benchmarks including SWE-bench and multilingual coding tests. The model is especially strong in agentic workflows that require sustained reasoning and decision-making. Opus 4.6 introduces improved safety and alignment mechanisms for handling sensitive or high-risk scenarios. Stronger defenses against prompt injection help ensure more reliable outputs. Developers gain enhanced control through the Claude API with new efficiency-focused parameters. Context compaction enables longer conversations without sacrificing performance. Advanced tool usage allows smoother automation and execution of complex workflows. Product updates extend Opus 4.6 across Claude apps, Claude Code, browser extensions, and Excel integrations. Together, these enhancements expand how users apply AI to engineering, research, and productivity.
  • 2
    Claude Opus 4.5 Reviews
    Anthropic’s release of Claude Opus 4.5 introduces a frontier AI model that excels at coding, complex reasoning, deep research, and long-context tasks. It sets new performance records on real-world engineering benchmarks, handling multi-system debugging, ambiguous instructions, and cross-domain problem solving with greater precision than earlier versions. Testers and early customers reported that Opus 4.5 “just gets it,” offering creative reasoning strategies that even benchmarks fail to anticipate. Beyond raw capability, the model brings stronger alignment and safety, with notable advances in prompt-injection resistance and behavior consistency in high-stakes scenarios. The Claude Developer Platform also gains richer controls including effort tuning, multi-agent orchestration, and context management improvements that significantly boost efficiency. Claude Code becomes more powerful with enhanced planning abilities, multi-session desktop support, and better execution of complex development workflows. In the Claude apps, extended memory and automatic context summarization enable longer, uninterrupted conversations. Together, these upgrades showcase Opus 4.5 as a highly capable, secure, and versatile model designed for both professional workloads and everyday use.
  • 3
    Claude Sonnet 4.6 Reviews
    Claude Sonnet 4.6 represents a comprehensive upgrade to Anthropic’s Sonnet model line, delivering expanded capabilities across coding, reasoning, computer interaction, and professional knowledge tasks. With a beta 1M token context window, the model can process massive datasets such as full repositories, extended legal agreements, or multi-document research projects in a single request. Developers report improved reliability, better instruction adherence, and fewer hallucinations, making long working sessions smoother and more predictable. Early users preferred Sonnet 4.6 over its predecessor in the majority of tests and often selected it over Opus 4.5 for practical coding work. The model’s computer-use skills have advanced significantly, enabling it to navigate spreadsheets, complete web forms, and manage multi-tab workflows with near human-level competence in many cases. Benchmark evaluations show consistent performance gains across reasoning, coding, and long-horizon planning tasks. In competitive simulations like Vending-Bench Arena, Sonnet 4.6 demonstrated strategic capacity-building and profit optimization over time. On the developer platform, it supports adaptive and extended thinking modes, context compaction, and improved tool integration for greater efficiency. Claude’s API tools now automatically execute filtering and code-processing steps to enhance search and token optimization. Sonnet 4.6 is available across Claude.ai, Cowork, Claude Code, the API, and major cloud providers at the same starting price as Sonnet 4.5.
  • 4
    Claude Sonnet 4.5 Reviews
    Claude Sonnet 4.5 represents Anthropic's latest advancement in AI, crafted to thrive in extended coding environments, complex workflows, and heavy computational tasks while prioritizing safety and alignment. It sets new benchmarks with its top-tier performance on the SWE-bench Verified benchmark for software engineering and excels in the OSWorld benchmark for computer usage, demonstrating an impressive capacity to maintain concentration for over 30 hours on intricate, multi-step assignments. Enhancements in tool management, memory capabilities, and context interpretation empower the model to engage in more advanced reasoning, leading to a better grasp of various fields, including finance, law, and STEM, as well as a deeper understanding of coding intricacies. The system incorporates features for context editing and memory management, facilitating prolonged dialogues or multi-agent collaborations, while it also permits code execution and the generation of files within Claude applications. Deployed at AI Safety Level 3 (ASL-3), Sonnet 4.5 is equipped with classifiers that guard against inputs or outputs related to hazardous domains and includes defenses against prompt injection, ensuring a more secure interaction. This model signifies a significant leap forward in the intelligent automation of complex tasks, aiming to reshape how users engage with AI technologies.
  • 5
    GPT-5.2 Reviews
    GPT-5.2 marks a new milestone in the evolution of the GPT-5 series, bringing heightened intelligence, richer context understanding, and smoother conversational behavior. The updated architecture introduces multiple enhanced variants that work together to produce clearer reasoning and more accurate interpretations of user needs. GPT-5.2 Instant remains the main model for everyday interactions, now upgraded with faster response times, stronger instruction adherence, and more reliable contextual continuity. For users tackling complex or layered tasks, GPT-5.2 Thinking provides deeper cognitive structure, offering step-by-step explanations, stronger logical flow, and improved endurance across long-form reasoning challenges. The platform automatically determines which model variant is optimal for any query, ensuring users always benefit from the most appropriate capabilities. These advancements reduce friction, simplify workflows, and produce answers that feel more grounded and intention-aware. In addition to intelligence upgrades, GPT-5.2 emphasizes conversational naturalness, making exchanges feel more intuitive and humanlike. Overall, this release delivers a more capable, responsive, and adaptive AI experience across all forms of interaction.
  • 6
    DeepSeek-V4 Reviews
    DeepSeek-V4 is an advanced open large language model engineered for high-efficiency reasoning, sophisticated problem solving, and powerful agent-based execution. At its core is DeepSeek Sparse Attention (DSA), a specialized long-context attention mechanism that minimizes computational costs without sacrificing accuracy or depth. The model leverages a scalable reinforcement learning framework to refine reasoning quality and align outputs with real-world task demands. A dedicated agent task synthesis pipeline generates structured reasoning traces and tool-use demonstrations, strengthening post-training performance. DeepSeek-V4 features an updated chat architecture with improved tool-calling logic designed for multi-step workflows. The introduction of an optional developer role enhances orchestration in agent-driven environments. Its architecture supports extended context handling for research-intensive and enterprise applications. Optimized for both experimentation and deployment, the model balances efficiency with frontier-level capability. DeepSeek-V4 stands out as a competitive open alternative for advanced AI reasoning and autonomous task execution.
  • 7
    GPT‑5.3‑Codex‑Spark Reviews
    GPT-5.3-Codex-Spark is OpenAI’s first model purpose-built for real-time coding within the Codex ecosystem. Engineered for ultra-low latency, it can generate more than 1000 tokens per second when running on Cerebras’ Wafer Scale Engine hardware. Unlike larger frontier models designed for long-running autonomous tasks, Codex-Spark specializes in rapid iteration, targeted edits, and immediate feedback loops. Developers can interrupt, redirect, and refine outputs interactively, making it ideal for collaborative coding sessions. The model features a 128k context window and is currently text-only during its research preview phase. End-to-end latency improvements—including WebSocket streaming and inference stack optimizations—reduce time-to-first-token by 50% and overall roundtrip overhead by up to 80%. Codex-Spark performs strongly on benchmarks such as SWE-Bench Pro and Terminal-Bench 2.0 while completing tasks significantly faster than its larger counterpart. It is available to ChatGPT Pro users in the Codex app, CLI, and VS Code extension with separate rate limits during preview. The model maintains OpenAI’s standard safety training and evaluation protocols. Codex-Spark represents the beginning of a dual-mode Codex future that blends real-time interaction with long-horizon reasoning capabilities.
  • 8
    GPT-5.3-Codex Reviews
    GPT-5.3-Codex is a next-generation AI agent built to expand Codex beyond code writing into full-spectrum professional execution. It unifies advanced coding intelligence with reasoning, planning, and computer-use capabilities. The model delivers faster performance while handling more complex workflows across development environments. GPT-5.3-Codex can autonomously iterate on large projects while remaining interactive and steerable. It supports tasks such as debugging, deployment, performance optimization, and system monitoring. The model demonstrates state-of-the-art results across real-world coding benchmarks. It also excels at web development, generating production-ready applications from minimal prompts. GPT-5.3-Codex understands intent more effectively, producing stronger default designs and functionality. Its agentic nature allows it to operate like a collaborative teammate. This makes it suitable for both individual developers and large teams.
  • 9
    GLM-4.7 Reviews
    GLM-4.7 is a next-generation AI model built to serve as a powerful coding and reasoning partner. It improves significantly on its predecessor across software engineering, multilingual coding, and terminal interaction benchmarks. GLM-4.7 introduces enhanced agentic behavior by thinking before tool use or execution, improving reliability in long and complex tasks. The model demonstrates strong performance in real-world coding environments and popular coding agents. GLM-4.7 also advances visual and frontend generation, producing modern UI designs and well-structured presentation slides. Its improved tool-use capabilities allow it to browse, analyze, and interact with external systems more effectively. Mathematical and logical reasoning have been strengthened through higher benchmark performance on challenging exams. The model supports flexible reasoning modes, allowing users to trade latency for accuracy. GLM-4.7 can be accessed via Z.ai, OpenRouter, and agent-based coding tools. It is designed for developers who need high performance without excessive cost.
  • 10
    GLM-4.5 Reviews
    Z.ai has unveiled its latest flagship model, GLM-4.5, which boasts an impressive 355 billion total parameters (with 32 billion active) and is complemented by the GLM-4.5-Air variant, featuring 106 billion total parameters (12 billion active), designed to integrate sophisticated reasoning, coding, and agent-like functions into a single framework. This model can switch between a "thinking" mode for intricate, multi-step reasoning and tool usage and a "non-thinking" mode that facilitates rapid responses, accommodating a context length of up to 128K tokens and enabling native function invocation. Accessible through the Z.ai chat platform and API, and with open weights available on platforms like HuggingFace and ModelScope, GLM-4.5 is adept at processing a wide range of inputs for tasks such as general problem solving, common-sense reasoning, coding from the ground up or within existing frameworks, as well as managing comprehensive workflows like web browsing and slide generation. The architecture is underpinned by a Mixture-of-Experts design, featuring loss-free balance routing, grouped-query attention mechanisms, and an MTP layer that facilitates speculative decoding, ensuring it meets enterprise-level performance standards while remaining adaptable to various applications. As a result, GLM-4.5 sets a new benchmark for AI capabilities across numerous domains.
  • 11
    MiniMax-M2.1 Reviews
    MiniMax-M2.1 is a state-of-the-art open-source AI model built specifically for agent-based development and real-world automation. It focuses on delivering strong performance in coding, tool calling, and long-term task execution. Unlike closed models, MiniMax-M2.1 is fully transparent and can be deployed locally or integrated through APIs. The model excels in multilingual software engineering tasks and complex workflow automation. It demonstrates strong generalization across different agent frameworks and development environments. MiniMax-M2.1 supports advanced use cases such as autonomous coding, application building, and office task automation. Benchmarks show significant improvements over previous MiniMax versions. The model balances high reasoning ability with stability and control. Developers can fine-tune or extend it for specialized agent workflows. MiniMax-M2.1 empowers teams to build reliable AI agents without vendor lock-in.
  • 12
    MiniMax M2 Reviews

    MiniMax M2

    MiniMax

    $0.30 per million input tokens
    MiniMax M2 is an open-source foundational model tailored for agent-driven applications and coding tasks, achieving an innovative equilibrium of efficiency, velocity, and affordability. It shines in comprehensive development environments, adeptly managing programming tasks, invoking tools, and executing intricate, multi-step processes, complete with features like Python integration, while offering impressive inference speeds of approximately 100 tokens per second and competitive API pricing at around 8% of similar proprietary models. The model includes a "Lightning Mode" designed for rapid, streamlined agent operations, alongside a "Pro Mode" aimed at thorough full-stack development, report creation, and the orchestration of web-based tools; its weights are entirely open source, allowing for local deployment via vLLM or SGLang. MiniMax M2 stands out as a model ready for production use, empowering agents to autonomously perform tasks such as data analysis, software development, tool orchestration, and implementing large-scale, multi-step logic across real organizational contexts. With its advanced capabilities, this model is poised to revolutionize the way developers approach complex programming challenges.
  • 13
    Mistral Large 3 Reviews
    Mistral Large 3 pushes open-source AI into frontier territory with a massive sparse MoE architecture that activates 41B parameters per token while maintaining a highly efficient 675B total parameter design. It sets a new performance standard by combining long-context reasoning, multilingual fluency across 40+ languages, and robust multimodal comprehension within a single unified model. Trained end-to-end on thousands of NVIDIA H200 GPUs, it reaches parity with top closed-source instruction models while remaining fully accessible under the Apache 2.0 license. Developers benefit from optimized deployments through partnerships with NVIDIA, Red Hat, and vLLM, enabling smooth inference on A100, H100, and Blackwell-class systems. The model ships in both base and instruct variants, with a reasoning-enhanced version on the way for even deeper analytical capabilities. Beyond general intelligence, Mistral Large 3 is engineered for enterprise customization, allowing organizations to refine the model on internal datasets or domain-specific tasks. Its efficient token generation and powerful multimodal stack make it ideal for coding, document analysis, knowledge workflows, agentic systems, and multilingual communications. With Mistral Large 3, organizations can finally deploy frontier-class intelligence with full transparency, flexibility, and control.
  • 14
    MiniMax M2.5 Reviews
    MiniMax M2.5 is a next-generation foundation model built to power complex, economically valuable tasks with speed and cost efficiency. Trained using large-scale reinforcement learning across hundreds of thousands of real-world task environments, it excels in coding, tool use, search, and professional office workflows. In programming benchmarks such as SWE-Bench Verified and Multi-SWE-Bench, M2.5 reaches state-of-the-art levels while demonstrating improved multilingual coding performance. The model exhibits architect-level reasoning, planning system structure and feature decomposition before writing code. With throughput speeds of up to 100 tokens per second, it completes complex evaluations significantly faster than earlier versions. Reinforcement learning optimizations enable more precise search rounds and fewer reasoning steps, improving overall efficiency. M2.5 is available in two variants—standard and Lightning—offering identical capabilities with different speed configurations. Pricing is designed to be dramatically lower than competing frontier models, reducing cost barriers for large-scale agent deployment. Integrated into MiniMax Agent, the model supports advanced office skills including Word formatting, Excel financial modeling, and PowerPoint editing. By combining high performance, efficiency, and affordability, MiniMax M2.5 aims to make agent-powered productivity accessible at scale.
  • 15
    Grok 4.20 Reviews
    Grok 4.20 is a next-generation AI model created by xAI to advance the boundaries of machine reasoning and language comprehension. Powered by the Colossus supercomputer, it delivers high-performance processing for complex workloads. The model supports multimodal inputs, enabling it to analyze and respond to both text and images. Future updates are expected to expand these capabilities to include video understanding. Grok 4.20 demonstrates exceptional accuracy in scientific analysis, technical problem-solving, and nuanced language tasks. Its advanced architecture allows for deeper contextual reasoning and more refined response generation. Improved moderation systems help ensure responsible, balanced, and trustworthy outputs. This version significantly improves consistency and interpretability over prior iterations. Grok 4.20 positions itself among the most capable AI models available today. It is designed to think, reason, and communicate more naturally.
  • 16
    Grok 4.1 Reviews
    Grok 4.1, developed by Elon Musk’s xAI, represents a major step forward in multimodal artificial intelligence. Built on the Colossus supercomputer, it supports input from text, images, and soon video—offering a more complete understanding of real-world data. This version significantly improves reasoning precision, enabling Grok to solve complex problems in science, engineering, and language with remarkable clarity. Developers and researchers can leverage Grok 4.1’s advanced APIs to perform deep contextual analysis, creative generation, and data-driven research. Its refined architecture allows it to outperform leading models in visual problem-solving and structured reasoning benchmarks. xAI has also strengthened the model’s moderation framework, addressing bias and ensuring more balanced responses. With its multimodal flexibility and intelligent output control, Grok 4.1 bridges the gap between analytical computation and human intuition. It’s a model designed not just to answer questions, but to understand and reason through them.
  • 17
    Gemini 3 Flash Reviews
    Gemini 3 Flash is a next-generation AI model created to deliver powerful intelligence without sacrificing speed. Built on the Gemini 3 foundation, it offers advanced reasoning and multimodal capabilities with significantly lower latency. The model adapts its thinking depth based on task complexity, optimizing both performance and efficiency. Gemini 3 Flash is engineered for agentic workflows, iterative development, and real-time applications. Developers benefit from faster inference and strong coding performance across benchmarks. Enterprises can deploy it at scale through Vertex AI and Gemini Enterprise. Consumers experience faster, smarter assistance across the Gemini app and Search. Gemini 3 Flash makes high-performance AI practical for everyday use.
  • 18
    Grok Code Fast 1 Reviews

    Grok Code Fast 1

    xAI

    $0.20 per million input tokens
    Grok Code Fast 1 introduces a new class of coding-focused AI models that prioritize responsiveness, affordability, and real-world usability. Tailored for agentic coding platforms, it eliminates the lag developers often experience with reasoning loops and tool calls, creating a smoother workflow in IDEs. Its architecture was trained on a carefully curated mix of programming content and fine-tuned on real pull requests to reflect authentic development practices. With proficiency across multiple languages, including Python, Rust, TypeScript, C++, Java, and Go, it adapts to full-stack development scenarios. Grok Code Fast 1 excels in speed, processing nearly 190 tokens per second while maintaining reliable performance across bug fixes, code reviews, and project generation. Pricing makes it widely accessible at $0.20 per million input tokens, $1.50 per million output tokens, and just $0.02 for cached inputs. Early testers, including GitHub Copilot and Cursor users, praise its responsiveness and quality. For developers seeking a reliable coding assistant that’s both fast and cost-effective, Grok Code Fast 1 is a daily driver built for practical software engineering needs.
  • 19
    Gemini 3.1 Pro Reviews
    Gemini 3.1 Pro represents the next evolution of Google’s Gemini model family, delivering enhanced reasoning and core intelligence for demanding tasks. Designed for situations where nuanced thinking is required, it significantly improves performance across logic-heavy and unfamiliar problem domains. Its verified 77.1% score on ARC-AGI-2 highlights its ability to solve entirely new reasoning patterns, marking a major leap over Gemini 3 Pro. Beyond benchmarks, the model translates advanced reasoning into practical use cases such as visual explanations, structured data synthesis, and creative generation. One standout capability includes generating lightweight, scalable animated SVG graphics directly from text prompts, suitable for production-ready web use. Gemini 3.1 Pro is available in preview for developers through the Gemini API, Google AI Studio, Gemini CLI, Antigravity, and Android Studio. Enterprises can access it through Vertex AI and Gemini Enterprise environments. Consumers benefit through the Gemini app and NotebookLM, with higher usage limits for Google AI Pro and Ultra subscribers. The release aims to validate improvements while expanding into more ambitious agentic workflows before general availability. Gemini 3.1 Pro positions itself as a smarter, more capable foundation for complex, real-world problem solving across industries.
  • 20
    Gemini 3 Pro Reviews
    Gemini 3 Pro is a next-generation AI model from Google designed to push the boundaries of reasoning, creativity, and code generation. With a 1-million-token context window and deep multimodal understanding, it processes text, images, and video with unprecedented accuracy and depth. Gemini 3 Pro is purpose-built for agentic coding, performing complex, multi-step programming tasks across files and frameworks—handling refactoring, debugging, and feature implementation autonomously. It integrates seamlessly with development tools like Google Antigravity, Gemini CLI, Android Studio, and third-party IDEs including Cursor and JetBrains. In visual reasoning, it leads benchmarks such as MMMU-Pro and WebDev Arena, demonstrating world-class proficiency in image and video comprehension. The model’s vibe coding capability enables developers to build entire applications using only natural language prompts, transforming high-level ideas into functional, interactive apps. Gemini 3 Pro also features advanced spatial reasoning, powering applications in robotics, XR, and autonomous navigation. With its structured outputs, grounding with Google Search, and client-side bash tool, Gemini 3 Pro enables developers to automate workflows and build intelligent systems faster than ever.
  • 21
    Kimi K2.5 Reviews
    Kimi K2.5 is a powerful multimodal AI model built to handle complex reasoning, coding, and visual understanding at scale. It supports both text and image or video inputs, enabling developers to build applications that go beyond traditional language-only models. As Kimi’s most advanced model to date, it delivers open-source state-of-the-art performance across agent tasks, software development, and general intelligence benchmarks. The model supports an ultra-long 256K context window, making it ideal for large codebases, long documents, and multi-turn conversations. Kimi K2.5 includes a long-thinking mode that excels at logical reasoning, mathematics, and structured problem solving. It integrates seamlessly with existing workflows through full compatibility with the OpenAI SDK and API format. Developers can use Kimi K2.5 for chat, tool calling, file-based Q&A, and multimodal analysis. Built-in support for streaming, partial mode, and web search expands its flexibility. With predictable pricing and enterprise-ready capabilities, Kimi K2.5 is designed for scalable AI development.
  • 22
    Kimi K2 Thinking Reviews
    Kimi K2 Thinking is a sophisticated open-source reasoning model created by Moonshot AI, specifically tailored for intricate, multi-step workflows where it effectively combines chain-of-thought reasoning with tool utilization across numerous sequential tasks. Employing a cutting-edge mixture-of-experts architecture, the model encompasses a staggering total of 1 trillion parameters, although only around 32 billion parameters are utilized during each inference, which enhances efficiency while retaining significant capability. It boasts a context window that can accommodate up to 256,000 tokens, allowing it to process exceptionally long inputs and reasoning sequences without sacrificing coherence. Additionally, it features native INT4 quantization, which significantly cuts down inference latency and memory consumption without compromising performance. Designed with agentic workflows in mind, Kimi K2 Thinking is capable of autonomously invoking external tools, orchestrating sequential logic steps—often involving around 200-300 tool calls in a single chain—and ensuring consistent reasoning throughout the process. Its robust architecture makes it an ideal solution for complex reasoning tasks that require both depth and efficiency.
  • 23
    Seed2.0 Pro Reviews
    Seed2.0 Pro is a high-performance general-purpose AI model engineered for demanding enterprise and research environments. Built to manage long-chain reasoning and complex multi-step instructions, it ensures consistent and stable outputs across extended workflows. As the flagship model in the Seed 2.0 series, it introduces substantial enhancements in multimodal intelligence, combining language, vision, motion, and contextual understanding. The system achieves top-tier benchmark results in mathematics, coding, STEM reasoning, and multimodal evaluations, positioning it among leading industry models. Its advanced visual reasoning capabilities enable it to interpret images, reconstruct structured layouts, and generate fully functional interactive web interfaces from visual inputs. Beyond creative tasks, Seed2.0 Pro supports technical operations such as CAD design automation, scientific research problem-solving, and detailed data analysis. The model is optimized for real-world deployment, balancing inference depth with operational reliability. It performs strongly in long-context scenarios, maintaining coherence across extended documents and conversations. Additionally, its robust instruction-following capabilities allow it to execute highly specific professional commands with precision. Overall, Seed2.0 Pro combines research-level intelligence with production-grade performance for complex, high-value tasks.
  • 24
    Llama 4 Maverick Reviews
    Llama 4 Maverick is a cutting-edge multimodal AI model with 17 billion active parameters and 128 experts, setting a new standard for efficiency and performance. It excels in diverse domains, outperforming other models such as GPT-4o and Gemini 2.0 Flash in coding, reasoning, and image-related tasks. Llama 4 Maverick integrates both text and image processing seamlessly, offering enhanced capabilities for complex tasks such as visual question answering, content generation, and problem-solving. The model’s performance-to-cost ratio makes it an ideal choice for businesses looking to integrate powerful AI into their operations without the hefty resource demands.
  • 25
    Qwen3.5 Reviews
    Qwen3.5 represents a major advancement in open-weight multimodal AI models, engineered to function as a native vision-language agent system. Its flagship model, Qwen3.5-397B-A17B, leverages a hybrid architecture that fuses Gated DeltaNet linear attention with a high-sparsity mixture-of-experts framework, allowing only 17 billion parameters to activate during inference for improved speed and cost efficiency. Despite its sparse activation, the full 397-billion-parameter model achieves competitive performance across reasoning, coding, multilingual benchmarks, and complex agent evaluations. The hosted Qwen3.5-Plus version supports a one-million-token context window and includes built-in tool use for search, code interpretation, and adaptive reasoning. The model significantly expands multilingual coverage to 201 languages and dialects while improving encoding efficiency with a larger vocabulary. Native multimodal training enables strong performance in image understanding, video processing, document analysis, and spatial reasoning tasks. Its infrastructure includes FP8 precision pipelines and heterogeneous parallelism to boost throughput and reduce memory consumption. Reinforcement learning at scale enhances multi-step planning and general agent behavior across text and multimodal environments. Overall, Qwen3.5 positions itself as a high-efficiency foundation for autonomous digital agents capable of reasoning, searching, coding, and interacting with complex environments.
  • 26
    Qwen3-Max Reviews
    Qwen3-Max represents Alibaba's cutting-edge large language model, featuring a staggering trillion parameters aimed at enhancing capabilities in tasks that require agency, coding, reasoning, and managing lengthy contexts. This model is an evolution of the Qwen3 series, leveraging advancements in architecture, training methods, and inference techniques; it integrates both thinker and non-thinker modes, incorporates a unique “thinking budget” system, and allows for dynamic mode adjustments based on task complexity. Capable of handling exceptionally lengthy inputs, processing hundreds of thousands of tokens, it also supports tool invocation and demonstrates impressive results across various benchmarks, including coding, multi-step reasoning, and agent evaluations like Tau2-Bench. While the initial version prioritizes instruction adherence in a non-thinking mode, Alibaba is set to introduce reasoning functionalities that will facilitate autonomous agent operations in the future. In addition to its existing multilingual capabilities and extensive training on trillions of tokens, Qwen3-Max is accessible through API interfaces that align seamlessly with OpenAI-style functionalities, ensuring broad usability across applications. This comprehensive framework positions Qwen3-Max as a formidable player in the realm of advanced artificial intelligence language models.
  • 27
    DeepSeek-V3.2 Reviews
    DeepSeek-V3.2 is a highly optimized large language model engineered to balance top-tier reasoning performance with significant computational efficiency. It builds on DeepSeek's innovations by introducing DeepSeek Sparse Attention (DSA), a custom attention algorithm that reduces complexity and excels in long-context environments. The model is trained using a sophisticated reinforcement learning approach that scales post-training compute, enabling it to perform on par with GPT-5 and match the reasoning skill of Gemini-3.0-Pro. Its Speciale variant overachieves in demanding reasoning benchmarks and does not include tool-calling capabilities, making it ideal for deep problem-solving tasks. DeepSeek-V3.2 is also trained using an agentic synthesis pipeline that creates high-quality, multi-step interactive data to improve decision-making, compliance, and tool-integration skills. It introduces a new chat template design featuring explicit thinking sections, improved tool-calling syntax, and a dedicated developer role used strictly for search-agent workflows. Users can encode messages using provided Python utilities that convert OpenAI-style chat messages into the expected DeepSeek format. Fully open-source under the MIT license, DeepSeek-V3.2 is a flexible, cutting-edge model for researchers, developers, and enterprise AI teams.
  • 28
    Qwen3.5-Plus Reviews

    Qwen3.5-Plus

    Alibaba

    $0.4 per 1M tokens
    Qwen3.5-Plus is an advanced multimodal foundation model engineered to deliver efficient large-context reasoning across text, image, and video inputs. Powered by a hybrid architecture that merges linear attention mechanisms with a sparse mixture-of-experts framework, the model achieves state-of-the-art performance while reducing computational overhead. It supports deep thinking mode, enabling extended reasoning chains of up to 80K tokens and total context windows of up to 1 million tokens. Developers can leverage features such as structured output generation, function calling, web search, and integrated code interpretation to build intelligent agent workflows. The model is optimized for high throughput, supporting large token-per-minute limits and robust rate limits for enterprise-scale applications. Qwen3.5-Plus also includes explicit caching options to reduce costs during repeated inference tasks. With tiered pricing based on input and output tokens, organizations can scale usage predictably. OpenAI-compatible API endpoints make integration straightforward across existing AI stacks and developer tools. Designed for demanding applications, Qwen3.5-Plus excels in long-document analysis, multimodal reasoning, and advanced AI agent development.
  • 29
    DeepSeek-V3.2-Speciale Reviews
    DeepSeek-V3.2-Speciale is the most advanced reasoning-focused version of the DeepSeek-V3.2 family, designed to excel in mathematical, algorithmic, and logic-intensive tasks. It incorporates DeepSeek Sparse Attention (DSA), an efficient attention mechanism tailored for very long contexts, enabling scalable reasoning with minimal compute costs. The model undergoes a robust reinforcement learning pipeline that scales post-training compute to frontier levels, enabling performance that exceeds GPT-5 on internal evaluations. Its achievements include gold-medal-level solutions in IMO 2025, IOI 2025, ICPC World Finals, and CMO 2025, with final submissions publicly released for verification. Unlike the standard V3.2 model, the Speciale variant removes tool-calling capabilities to maximize focused reasoning output without external interactions. DeepSeek-V3.2-Speciale uses a revised chat template with explicit thinking blocks and system-level reasoning formatting. The repository includes encoding tools showing how to convert OpenAI-style chat messages into DeepSeek’s specialized input format. With its MIT license and 685B-parameter architecture, DeepSeek-V3.2-Speciale offers cutting-edge performance for academic research, competitive programming, and enterprise-level reasoning applications.
  • 30
    Olmo 3 Reviews
    Olmo 3 represents a comprehensive family of open models featuring variations with 7 billion and 32 billion parameters, offering exceptional capabilities in base performance, reasoning, instruction, and reinforcement learning, while also providing transparency throughout the model development process, which includes access to raw training datasets, intermediate checkpoints, training scripts, extended context support (with a window of 65,536 tokens), and provenance tools. The foundation of these models is built upon the Dolma 3 dataset, which comprises approximately 9 trillion tokens and utilizes a careful blend of web content, scientific papers, programming code, and lengthy documents; this thorough pre-training, mid-training, and long-context approach culminates in base models that undergo post-training enhancements through supervised fine-tuning, preference optimization, and reinforcement learning with accountable rewards, resulting in the creation of the Think and Instruct variants. Notably, the 32 billion Think model has been recognized as the most powerful fully open reasoning model to date, demonstrating performance that closely rivals that of proprietary counterparts in areas such as mathematics, programming, and intricate reasoning tasks, thereby marking a significant advancement in open model development. This innovation underscores the potential for open-source models to compete with traditional, closed systems in various complex applications.
  • 31
    Qwen3-Coder Reviews
    Qwen3-Coder is a versatile coding model that comes in various sizes, prominently featuring the 480B-parameter Mixture-of-Experts version with 35B active parameters, which naturally accommodates 256K-token contexts that can be extended to 1M tokens. This model achieves impressive performance that rivals Claude Sonnet 4, having undergone pre-training on 7.5 trillion tokens, with 70% of that being code, and utilizing synthetic data refined through Qwen2.5-Coder to enhance both coding skills and overall capabilities. Furthermore, the model benefits from post-training techniques that leverage extensive, execution-guided reinforcement learning, which facilitates the generation of diverse test cases across 20,000 parallel environments, thereby excelling in multi-turn software engineering tasks such as SWE-Bench Verified without needing test-time scaling. In addition to the model itself, the open-source Qwen Code CLI, derived from Gemini Code, empowers users to deploy Qwen3-Coder in dynamic workflows with tailored prompts and function calling protocols, while also offering smooth integration with Node.js, OpenAI SDKs, and environment variables. This comprehensive ecosystem supports developers in optimizing their coding projects effectively and efficiently.
  • 32
    DeepSeek-V3.2-Exp Reviews
    Introducing DeepSeek-V3.2-Exp, our newest experimental model derived from V3.1-Terminus, featuring the innovative DeepSeek Sparse Attention (DSA) that enhances both training and inference speed for lengthy contexts. This DSA mechanism allows for precise sparse attention while maintaining output quality, leading to improved performance for tasks involving long contexts and a decrease in computational expenses. Benchmark tests reveal that V3.2-Exp matches the performance of V3.1-Terminus while achieving these efficiency improvements. The model is now fully operational across app, web, and API platforms. Additionally, to enhance accessibility, we have slashed DeepSeek API prices by over 50% effective immediately. During a transition period, users can still utilize V3.1-Terminus via a temporary API endpoint until October 15, 2025. DeepSeek encourages users to share their insights regarding DSA through our feedback portal. Complementing the launch, DeepSeek-V3.2-Exp has been made open-source, with model weights and essential technology—including crucial GPU kernels in TileLang and CUDA—accessible on Hugging Face. We look forward to seeing how the community engages with this advancement.
  • 33
    MAI-1-preview Reviews
    The MAI-1 Preview marks the debut of Microsoft AI's fully in-house developed foundation model, utilizing a mixture-of-experts architecture for streamlined performance. This model has undergone extensive training on around 15,000 NVIDIA H100 GPUs, equipping it to adeptly follow user instructions and produce relevant text responses for common inquiries, thus illustrating a prototype for future Copilot functionalities. Currently accessible for public testing on LMArena, MAI-1 Preview provides an initial look at the platform's direction, with plans to introduce select text-driven applications in Copilot over the next few weeks aimed at collecting user insights and enhancing its capabilities. Microsoft emphasizes its commitment to integrating its proprietary models, collaborations with partners, and advancements from the open-source sector to dynamically enhance user experiences through millions of distinct interactions every day. This innovative approach illustrates Microsoft's dedication to continuously evolving its AI offerings.
  • 34
    Olmo 2 Reviews
    OLMo 2 represents a collection of completely open language models created by the Allen Institute for AI (AI2), aimed at giving researchers and developers clear access to training datasets, open-source code, reproducible training methodologies, and thorough assessments. These models are trained on an impressive volume of up to 5 trillion tokens and compete effectively with top open-weight models like Llama 3.1, particularly in English academic evaluations. A key focus of OLMo 2 is on ensuring training stability, employing strategies to mitigate loss spikes during extended training periods, and applying staged training interventions in the later stages of pretraining to mitigate weaknesses in capabilities. Additionally, the models leverage cutting-edge post-training techniques derived from AI2's Tülu 3, leading to the development of OLMo 2-Instruct models. To facilitate ongoing enhancements throughout the development process, an actionable evaluation framework known as the Open Language Modeling Evaluation System (OLMES) was created, which includes 20 benchmarks that evaluate essential capabilities. This comprehensive approach not only fosters transparency but also encourages continuous improvement in language model performance.
  • 35
    DeepSeek-V2 Reviews
    DeepSeek-V2 is a cutting-edge Mixture-of-Experts (MoE) language model developed by DeepSeek-AI, noted for its cost-effective training and high-efficiency inference features. It boasts an impressive total of 236 billion parameters, with only 21 billion active for each token, and is capable of handling a context length of up to 128K tokens. The model utilizes advanced architectures such as Multi-head Latent Attention (MLA) to optimize inference by minimizing the Key-Value (KV) cache and DeepSeekMoE to enable economical training through sparse computations. Compared to its predecessor, DeepSeek 67B, this model shows remarkable improvements, achieving a 42.5% reduction in training expenses, a 93.3% decrease in KV cache size, and a 5.76-fold increase in generation throughput. Trained on an extensive corpus of 8.1 trillion tokens, DeepSeek-V2 demonstrates exceptional capabilities in language comprehension, programming, and reasoning tasks, positioning it as one of the leading open-source models available today. Its innovative approach not only elevates its performance but also sets new benchmarks within the field of artificial intelligence.
  • 36
    Grok 4.1 Fast Reviews
    Grok 4.1 Fast represents xAI’s leap forward in building highly capable agents that rely heavily on tool calling, long-context reasoning, and real-time information retrieval. It supports a robust 2-million-token window, enabling long-form planning, deep research, and multi-step workflows without degradation. Through extensive RL training and exposure to diverse tool ecosystems, the model performs exceptionally well on demanding benchmarks like τ²-bench Telecom. When paired with the Agent Tools API, it can autonomously browse the web, search X posts, execute Python code, and retrieve documents, eliminating the need for developers to manage external infrastructure. It is engineered to maintain intelligence across multi-turn conversations, making it ideal for enterprise tasks that require continuous context. Its benchmark accuracy on tool-calling and function-calling tasks clearly surpasses competing models in speed, cost, and reliability. Developers can leverage these strengths to build agents that automate customer support, perform real-time analysis, and execute complex domain-specific tasks. With its performance, low pricing, and availability on platforms like OpenRouter, Grok 4.1 Fast stands out as a production-ready solution for next-generation AI systems.
  • 37
    Qwen2.5-Max Reviews
    Qwen2.5-Max is an advanced Mixture-of-Experts (MoE) model created by the Qwen team, which has been pretrained on an extensive dataset of over 20 trillion tokens and subsequently enhanced through methods like Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). Its performance in evaluations surpasses that of models such as DeepSeek V3 across various benchmarks, including Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also achieving strong results in other tests like MMLU-Pro. This model is available through an API on Alibaba Cloud, allowing users to easily integrate it into their applications, and it can also be interacted with on Qwen Chat for a hands-on experience. With its superior capabilities, Qwen2.5-Max represents a significant advancement in AI model technology.
  • 38
    Qwen Code Reviews
    Qwen3-Coder is an advanced code model that comes in various sizes, prominently featuring the 480B-parameter Mixture-of-Experts version (with 35B active) that inherently accommodates 256K-token contexts, which can be extended to 1M, and demonstrates cutting-edge performance in Agentic Coding, Browser-Use, and Tool-Use activities, rivaling Claude Sonnet 4. With a pre-training phase utilizing 7.5 trillion tokens (70% of which are code) and synthetic data refined through Qwen2.5-Coder, it enhances both coding skills and general capabilities, while its post-training phase leverages extensive execution-driven reinforcement learning across 20,000 parallel environments to excel in multi-turn software engineering challenges like SWE-Bench Verified without the need for test-time scaling. Additionally, the open-source Qwen Code CLI, derived from Gemini Code, allows for the deployment of Qwen3-Coder in agentic workflows through tailored prompts and function calling protocols, facilitating smooth integration with platforms such as Node.js and OpenAI SDKs. This combination of robust features and flexible accessibility positions Qwen3-Coder as an essential tool for developers seeking to optimize their coding tasks and workflows.
  • 39
    Tülu 3 Reviews
    Tülu 3 is a cutting-edge language model created by the Allen Institute for AI (Ai2) that aims to improve proficiency in fields like knowledge, reasoning, mathematics, coding, and safety. It is based on the Llama 3 Base and undergoes a detailed four-stage post-training regimen: careful prompt curation and synthesis, supervised fine-tuning on a wide array of prompts and completions, preference tuning utilizing both off- and on-policy data, and a unique reinforcement learning strategy that enhances targeted skills through measurable rewards. Notably, this open-source model sets itself apart by ensuring complete transparency, offering access to its training data, code, and evaluation tools, thus bridging the performance divide between open and proprietary fine-tuning techniques. Performance assessments reveal that Tülu 3 surpasses other models with comparable sizes, like Llama 3.1-Instruct and Qwen2.5-Instruct, across an array of benchmarks, highlighting its effectiveness. The continuous development of Tülu 3 signifies the commitment to advancing AI capabilities while promoting an open and accessible approach to technology.
  • 40
    ERNIE X1.1 Reviews
    ERNIE X1.1 is Baidu’s latest reasoning AI model, designed to raise the bar for accuracy, reliability, and action-oriented intelligence. Compared to ERNIE X1, it delivers a 34.8% boost in factual accuracy, a 12.5% improvement in instruction compliance, and a 9.6% gain in agentic behavior. Benchmarks show that it outperforms DeepSeek R1-0528 and matches the capabilities of advanced models such as GPT-5 and Gemini 2.5 Pro. The model builds upon ERNIE 4.5 with additional mid-training and post-training phases, reinforced by end-to-end reinforcement learning. This approach helps minimize hallucinations while ensuring closer alignment to user intent. The agentic upgrades allow it to plan, make decisions, and execute tasks more effectively than before. Users can access ERNIE X1.1 through ERNIE Bot, Wenxiaoyan, or via API on Baidu’s Qianfan platform. Altogether, the model delivers stronger reasoning capabilities for developers and enterprises that demand high-performance AI.
  • 41
    MiniMax M1 Reviews
    The MiniMax‑M1 model, introduced by MiniMax AI and licensed under Apache 2.0, represents a significant advancement in hybrid-attention reasoning architecture. With an extraordinary capacity for handling a 1 million-token context window and generating outputs of up to 80,000 tokens, it facilitates in-depth analysis of lengthy texts. Utilizing a cutting-edge CISPO algorithm, MiniMax‑M1 was trained through extensive reinforcement learning, achieving completion on 512 H800 GPUs in approximately three weeks. This model sets a new benchmark in performance across various domains, including mathematics, programming, software development, tool utilization, and understanding of long contexts, either matching or surpassing the capabilities of leading models in the field. Additionally, users can choose between two distinct variants of the model, each with a thinking budget of either 40K or 80K, and access the model's weights and deployment instructions on platforms like GitHub and Hugging Face. Such features make MiniMax‑M1 a versatile tool for developers and researchers alike.
  • 42
    DeepSeek R1 Reviews
    DeepSeek-R1 is a cutting-edge open-source reasoning model created by DeepSeek, aimed at competing with OpenAI's Model o1. It is readily available through web, app, and API interfaces, showcasing its proficiency in challenging tasks such as mathematics and coding, and achieving impressive results on assessments like the American Invitational Mathematics Examination (AIME) and MATH. Utilizing a mixture of experts (MoE) architecture, this model boasts a remarkable total of 671 billion parameters, with 37 billion parameters activated for each token, which allows for both efficient and precise reasoning abilities. As a part of DeepSeek's dedication to the progression of artificial general intelligence (AGI), the model underscores the importance of open-source innovation in this field. Furthermore, its advanced capabilities may significantly impact how we approach complex problem-solving in various domains.
  • 43
    Hermes 3 Reviews
    Push the limits of individual alignment, artificial consciousness, open-source software, and decentralization through experimentation that larger corporations and governments often shy away from. Hermes 3 features sophisticated long-term context retention, the ability to engage in multi-turn conversations, and intricate roleplaying and internal monologue capabilities, alongside improved functionality for agentic function-calling. The design of this model emphasizes precise adherence to system prompts and instruction sets in a flexible way. By fine-tuning Llama 3.1 across various scales, including 8B, 70B, and 405B, and utilizing a dataset largely composed of synthetically generated inputs, Hermes 3 showcases performance that rivals and even surpasses Llama 3.1, while also unlocking greater potential in reasoning and creative tasks. This series of instructive and tool-utilizing models exhibits exceptional reasoning and imaginative skills, paving the way for innovative applications. Ultimately, Hermes 3 represents a significant advancement in the landscape of AI development.
  • 44
    Open R1 Reviews
    Open R1 is a collaborative, open-source effort focused on mimicking the sophisticated AI functionalities of DeepSeek-R1 using clear and open methods. Users have the opportunity to explore the Open R1 AI model or engage in a free online chat with DeepSeek R1 via the Open R1 platform. This initiative presents a thorough execution of DeepSeek-R1's reasoning-optimized training framework, featuring resources for GRPO training, SFT fine-tuning, and the creation of synthetic data, all available under the MIT license. Although the original training dataset is still proprietary, Open R1 equips users with a complete suite of tools to create and enhance their own AI models, allowing for greater customization and experimentation in the field of artificial intelligence.
  • 45
    InstructGPT Reviews

    InstructGPT

    OpenAI

    $0.0200 per 1000 tokens
    InstructGPT is a publicly available framework that enables the training of language models capable of producing natural language instructions based on visual stimuli. By leveraging a generative pre-trained transformer (GPT) model alongside the advanced object detection capabilities of Mask R-CNN, it identifies objects within images and formulates coherent natural language descriptions. This framework is tailored for versatility across various sectors, including robotics, gaming, and education; for instance, it can guide robots in executing intricate tasks through spoken commands or support students by offering detailed narratives of events or procedures. Furthermore, InstructGPT's adaptability allows it to bridge the gap between visual understanding and linguistic expression, enhancing interaction in numerous applications.