Best GLM-4.7-Flash Alternatives in 2026
Find the top alternatives to GLM-4.7-Flash currently available. Compare ratings, reviews, pricing, and features of GLM-4.7-Flash alternatives in 2026. Slashdot lists the best GLM-4.7-Flash alternatives on the market that offer competing products that are similar to GLM-4.7-Flash. Sort through GLM-4.7-Flash alternatives below to make the best choice for your needs
-
1
Kimi K2.5
Moonshot AI
FreeKimi K2.5 is a powerful multimodal AI model built to handle complex reasoning, coding, and visual understanding at scale. It supports both text and image or video inputs, enabling developers to build applications that go beyond traditional language-only models. As Kimi’s most advanced model to date, it delivers open-source state-of-the-art performance across agent tasks, software development, and general intelligence benchmarks. The model supports an ultra-long 256K context window, making it ideal for large codebases, long documents, and multi-turn conversations. Kimi K2.5 includes a long-thinking mode that excels at logical reasoning, mathematics, and structured problem solving. It integrates seamlessly with existing workflows through full compatibility with the OpenAI SDK and API format. Developers can use Kimi K2.5 for chat, tool calling, file-based Q&A, and multimodal analysis. Built-in support for streaming, partial mode, and web search expands its flexibility. With predictable pricing and enterprise-ready capabilities, Kimi K2.5 is designed for scalable AI development. -
2
Claude Haiku 4.5
Anthropic
$1 per million input tokensAnthropic has introduced Claude Haiku 4.5, its newest small language model aimed at achieving near-frontier capabilities at a significantly reduced cost. This model mirrors the coding and reasoning abilities of the company's mid-tier Sonnet 4, yet operates at approximately one-third of the expense while delivering over double the processing speed. According to benchmarks highlighted by Anthropic, Haiku 4.5 either matches or surpasses the performance of Sonnet 4 in critical areas such as code generation and intricate "computer use" workflows. The model is specifically optimized for scenarios requiring real-time, low-latency performance, making it ideal for applications like chat assistants, customer support, and pair-programming. Available through the Claude API under the designation “claude-haiku-4-5,” Haiku 4.5 is designed for large-scale implementations where cost-effectiveness, responsiveness, and advanced intelligence are essential. Now accessible on Claude Code and various applications, this model's efficiency allows users to achieve greater productivity within their usage confines while still enjoying top-tier performance. Moreover, its launch marks a significant step forward in providing businesses with affordable yet high-quality AI solutions. -
3
Grok Code Fast 1
xAI
$0.20 per million input tokensGrok Code Fast 1 introduces a new class of coding-focused AI models that prioritize responsiveness, affordability, and real-world usability. Tailored for agentic coding platforms, it eliminates the lag developers often experience with reasoning loops and tool calls, creating a smoother workflow in IDEs. Its architecture was trained on a carefully curated mix of programming content and fine-tuned on real pull requests to reflect authentic development practices. With proficiency across multiple languages, including Python, Rust, TypeScript, C++, Java, and Go, it adapts to full-stack development scenarios. Grok Code Fast 1 excels in speed, processing nearly 190 tokens per second while maintaining reliable performance across bug fixes, code reviews, and project generation. Pricing makes it widely accessible at $0.20 per million input tokens, $1.50 per million output tokens, and just $0.02 for cached inputs. Early testers, including GitHub Copilot and Cursor users, praise its responsiveness and quality. For developers seeking a reliable coding assistant that’s both fast and cost-effective, Grok Code Fast 1 is a daily driver built for practical software engineering needs. -
4
Gemini 3 Flash
Google
Gemini 3 Flash is a next-generation AI model created to deliver powerful intelligence without sacrificing speed. Built on the Gemini 3 foundation, it offers advanced reasoning and multimodal capabilities with significantly lower latency. The model adapts its thinking depth based on task complexity, optimizing both performance and efficiency. Gemini 3 Flash is engineered for agentic workflows, iterative development, and real-time applications. Developers benefit from faster inference and strong coding performance across benchmarks. Enterprises can deploy it at scale through Vertex AI and Gemini Enterprise. Consumers experience faster, smarter assistance across the Gemini app and Search. Gemini 3 Flash makes high-performance AI practical for everyday use. -
5
Seed2.0 Lite
ByteDance
Seed2.0 Lite belongs to the Seed2.0 lineup from ByteDance, which encompasses versatile multimodal AI agent models engineered to tackle intricate, real-world challenges while maintaining a harmonious balance between efficiency and performance. This model boasts superior multimodal comprehension and instruction-following skills compared to its predecessors in the Seed series, allowing it to effectively interpret and analyze text, visual components, and structured data for use in production environments. Positioned as a mid-sized option within the family, Lite is fine-tuned to provide high-quality results with quick responsiveness at a reduced cost and faster inference times than the Pro version, while also enhancing the capabilities of earlier models. Consequently, it is well-suited for applications that demand consistent reasoning, extended context comprehension, and the execution of multimodal tasks without necessitating the utmost raw performance levels. Moreover, this accessibility makes Seed2.0 Lite an attractive choice for developers seeking efficiency alongside capabilities in their AI solutions. -
6
GLM-4.7-FlashX
Z.ai
$0.07 per 1M tokensGLM-4.7 FlashX is an efficient and rapid iteration of the GLM-4.7 large language model developed by Z.ai, designed to effectively handle real-time AI applications in both English and Chinese while maintaining the essential features of the larger GLM-4.7 family in a more resource-efficient format. This model stands alongside its counterparts, GLM-4.7 and GLM-4.7 Flash, providing enhanced coding capabilities and superior language comprehension with quicker response times and reduced resource requirements, making it ideal for situations that demand swift inference without extensive infrastructure. As a member of the GLM-4.7 series, it benefits from the model’s inherent advantages in programming, multi-step reasoning, and strong conversational skills, and it also accommodates long contexts for intricate tasks, all while being lightweight enough for deployment in environments with limited computational resources. This combination of speed and efficiency allows developers to leverage its capabilities in a wide range of applications, ensuring optimal performance in diverse scenarios. -
7
MiMo-V2-Flash
Xiaomi Technology
FreeMiMo-V2-Flash is a large language model created by Xiaomi that utilizes a Mixture-of-Experts (MoE) framework, combining remarkable performance with efficient inference capabilities. With a total of 309 billion parameters, it activates just 15 billion parameters during each inference, allowing it to effectively balance reasoning quality and computational efficiency. This model is well-suited for handling lengthy contexts, making it ideal for tasks such as long-document comprehension, code generation, and multi-step workflows. Its hybrid attention mechanism integrates both sliding-window and global attention layers, which helps to minimize memory consumption while preserving the ability to understand long-range dependencies. Additionally, the Multi-Token Prediction (MTP) design enhances inference speed by enabling the simultaneous processing of batches of tokens. MiMo-V2-Flash boasts impressive generation rates of up to approximately 150 tokens per second and is specifically optimized for applications that demand continuous reasoning and multi-turn interactions. The innovative architecture of this model reflects a significant advancement in the field of language processing. -
8
Seed2.0 Mini
ByteDance
Seed2.0 Mini represents the most compact version of ByteDance's Seed2.0 line of versatile multimodal agent models, crafted for efficient high-throughput inference and dense deployment, while still embodying the essential strengths found in its larger counterparts regarding multimodal understanding and instruction adherence. This Mini variant, alongside Pro and Lite siblings, is particularly fine-tuned for handling high-concurrency and batch generation tasks, proving itself ideal for scenarios where the ability to process numerous requests simultaneously is as crucial as its overall capability. In line with other models in the Seed2.0 family, it showcases notable improvements in visual reasoning and motion perception, excels at extracting structured information from intricate inputs such as text and images, and effectively carries out multi-step instructions. However, in exchange for enhanced inference speed and cost efficiency, it sacrifices some degree of raw reasoning power and output quality, ensuring that it remains a practical option for various applications. As a result, Seed2.0 Mini strikes a balance between performance and efficiency, appealing to developers seeking to optimize their systems for scalable solutions. -
9
GLM-4.5
Z.ai
Z.ai has unveiled its latest flagship model, GLM-4.5, which boasts an impressive 355 billion total parameters (with 32 billion active) and is complemented by the GLM-4.5-Air variant, featuring 106 billion total parameters (12 billion active), designed to integrate sophisticated reasoning, coding, and agent-like functions into a single framework. This model can switch between a "thinking" mode for intricate, multi-step reasoning and tool usage and a "non-thinking" mode that facilitates rapid responses, accommodating a context length of up to 128K tokens and enabling native function invocation. Accessible through the Z.ai chat platform and API, and with open weights available on platforms like HuggingFace and ModelScope, GLM-4.5 is adept at processing a wide range of inputs for tasks such as general problem solving, common-sense reasoning, coding from the ground up or within existing frameworks, as well as managing comprehensive workflows like web browsing and slide generation. The architecture is underpinned by a Mixture-of-Experts design, featuring loss-free balance routing, grouped-query attention mechanisms, and an MTP layer that facilitates speculative decoding, ensuring it meets enterprise-level performance standards while remaining adaptable to various applications. As a result, GLM-4.5 sets a new benchmark for AI capabilities across numerous domains. -
10
Qwen3-Max
Alibaba
FreeQwen3-Max represents Alibaba's cutting-edge large language model, featuring a staggering trillion parameters aimed at enhancing capabilities in tasks that require agency, coding, reasoning, and managing lengthy contexts. This model is an evolution of the Qwen3 series, leveraging advancements in architecture, training methods, and inference techniques; it integrates both thinker and non-thinker modes, incorporates a unique “thinking budget” system, and allows for dynamic mode adjustments based on task complexity. Capable of handling exceptionally lengthy inputs, processing hundreds of thousands of tokens, it also supports tool invocation and demonstrates impressive results across various benchmarks, including coding, multi-step reasoning, and agent evaluations like Tau2-Bench. While the initial version prioritizes instruction adherence in a non-thinking mode, Alibaba is set to introduce reasoning functionalities that will facilitate autonomous agent operations in the future. In addition to its existing multilingual capabilities and extensive training on trillions of tokens, Qwen3-Max is accessible through API interfaces that align seamlessly with OpenAI-style functionalities, ensuring broad usability across applications. This comprehensive framework positions Qwen3-Max as a formidable player in the realm of advanced artificial intelligence language models. -
11
DeepSeek-V3.2
DeepSeek
FreeDeepSeek-V3.2 is a highly optimized large language model engineered to balance top-tier reasoning performance with significant computational efficiency. It builds on DeepSeek's innovations by introducing DeepSeek Sparse Attention (DSA), a custom attention algorithm that reduces complexity and excels in long-context environments. The model is trained using a sophisticated reinforcement learning approach that scales post-training compute, enabling it to perform on par with GPT-5 and match the reasoning skill of Gemini-3.0-Pro. Its Speciale variant overachieves in demanding reasoning benchmarks and does not include tool-calling capabilities, making it ideal for deep problem-solving tasks. DeepSeek-V3.2 is also trained using an agentic synthesis pipeline that creates high-quality, multi-step interactive data to improve decision-making, compliance, and tool-integration skills. It introduces a new chat template design featuring explicit thinking sections, improved tool-calling syntax, and a dedicated developer role used strictly for search-agent workflows. Users can encode messages using provided Python utilities that convert OpenAI-style chat messages into the expected DeepSeek format. Fully open-source under the MIT license, DeepSeek-V3.2 is a flexible, cutting-edge model for researchers, developers, and enterprise AI teams. -
12
GPT-5.2 Thinking
OpenAI
The GPT-5.2 Thinking variant represents the pinnacle of capability within OpenAI's GPT-5.2 model series, designed specifically for in-depth reasoning and the execution of intricate tasks across various professional domains and extended contexts. Enhancements made to the core GPT-5.2 architecture focus on improving grounding, stability, and reasoning quality, allowing this version to dedicate additional computational resources and analytical effort to produce responses that are not only accurate but also well-structured and contextually enriched, especially in the face of complex workflows and multi-step analyses. Excelling in areas that demand continuous logical consistency, GPT-5.2 Thinking is particularly adept at detailed research synthesis, advanced coding and debugging, complex data interpretation, strategic planning, and high-level technical writing, showcasing a significant advantage over its simpler counterparts in assessments that evaluate professional expertise and deep understanding. This advanced model is an essential tool for professionals seeking to tackle sophisticated challenges with precision and expertise. -
13
Seed1.8
ByteDance
Seed1.8 is the newest AI model from ByteDance, crafted to connect comprehension with practical execution by integrating multimodal perception, agent-like task management, and extensive reasoning abilities into a cohesive foundation model that surpasses mere language generation capabilities. This model accommodates various input types, including text, images, and video, while efficiently managing extremely large context windows that can process hundreds of thousands of tokens simultaneously. Furthermore, Seed1.8 is specifically optimized to navigate intricate workflows in real-world settings, tackling tasks like information retrieval, code generation, GUI interactions, and complex decision-making with precision and reliability. By consolidating skills such as search functionality, code comprehension, visual context analysis, and independent reasoning, Seed1.8 empowers developers and AI systems to create interactive agents and pioneering workflows that are capable of synthesizing information, comprehensively following instructions, and executing tasks related to automation effectively. As a result, this model significantly enhances the potential for innovation in various applications across multiple industries. -
14
Kimi K2
Moonshot AI
FreeKimi K2 represents a cutting-edge series of open-source large language models utilizing a mixture-of-experts (MoE) architecture, with a staggering 1 trillion parameters in total and 32 billion activated parameters tailored for optimized task execution. Utilizing the Muon optimizer, it has been trained on a substantial dataset of over 15.5 trillion tokens, with its performance enhanced by MuonClip’s attention-logit clamping mechanism, resulting in remarkable capabilities in areas such as advanced knowledge comprehension, logical reasoning, mathematics, programming, and various agentic operations. Moonshot AI offers two distinct versions: Kimi-K2-Base, designed for research-level fine-tuning, and Kimi-K2-Instruct, which is pre-trained for immediate applications in chat and tool interactions, facilitating both customized development and seamless integration of agentic features. Comparative benchmarks indicate that Kimi K2 surpasses other leading open-source models and competes effectively with top proprietary systems, particularly excelling in coding and intricate task analysis. Furthermore, it boasts a generous context length of 128 K tokens, compatibility with tool-calling APIs, and support for industry-standard inference engines, making it a versatile option for various applications. The innovative design and features of Kimi K2 position it as a significant advancement in the field of artificial intelligence language processing. -
15
Qwen3-Max-Thinking
Alibaba
Qwen3-Max-Thinking represents Alibaba's newest flagship model in the realm of large language models, extending the capabilities of the Qwen3-Max series while emphasizing enhanced reasoning and analytical performance. This model builds on one of the most substantial parameter sets within the Qwen ecosystem and integrates sophisticated reinforcement learning alongside adaptive tool functionalities, allowing it to utilize search, memory, and code interpretation dynamically during the inference process, thus effectively tackling complex multi-stage challenges with improved precision and contextual understanding compared to traditional generative models. It features an innovative Thinking Mode that provides a clear, step-by-step display of its reasoning processes prior to producing final results, which enhances both transparency and the traceability of its logical conclusions. Furthermore, Qwen3-Max-Thinking can be adjusted with customizable "thinking budgets," allowing users to find an optimal balance between the quality of performance and the associated computational costs, making it an efficient tool for various applications. The incorporation of these features marks a significant advancement in the way language models can assist in complex reasoning tasks. -
16
DeepSeek-V3.2-Speciale
DeepSeek
FreeDeepSeek-V3.2-Speciale is the most advanced reasoning-focused version of the DeepSeek-V3.2 family, designed to excel in mathematical, algorithmic, and logic-intensive tasks. It incorporates DeepSeek Sparse Attention (DSA), an efficient attention mechanism tailored for very long contexts, enabling scalable reasoning with minimal compute costs. The model undergoes a robust reinforcement learning pipeline that scales post-training compute to frontier levels, enabling performance that exceeds GPT-5 on internal evaluations. Its achievements include gold-medal-level solutions in IMO 2025, IOI 2025, ICPC World Finals, and CMO 2025, with final submissions publicly released for verification. Unlike the standard V3.2 model, the Speciale variant removes tool-calling capabilities to maximize focused reasoning output without external interactions. DeepSeek-V3.2-Speciale uses a revised chat template with explicit thinking blocks and system-level reasoning formatting. The repository includes encoding tools showing how to convert OpenAI-style chat messages into DeepSeek’s specialized input format. With its MIT license and 685B-parameter architecture, DeepSeek-V3.2-Speciale offers cutting-edge performance for academic research, competitive programming, and enterprise-level reasoning applications. -
17
Step 3.5 Flash
StepFun
FreeStep 3.5 Flash is a cutting-edge open-source foundational language model designed for advanced reasoning and agent-like capabilities, optimized for efficiency; it utilizes a sparse Mixture of Experts (MoE) architecture that activates only approximately 11 billion of its nearly 196 billion parameters per token, ensuring high-density intelligence and quick responsiveness. The model features a 3-way Multi-Token Prediction (MTP-3) mechanism that allows it to generate hundreds of tokens per second, facilitating complex multi-step reasoning and task execution while efficiently managing long contexts through a hybrid sliding window attention method that minimizes computational demands across extensive datasets or codebases. Its performance on reasoning, coding, and agentic tasks is formidable, often matching or surpassing that of much larger proprietary models, and it incorporates a scalable reinforcement learning system that enables continuous self-enhancement. Moreover, this innovative approach positions Step 3.5 Flash as a significant player in the field of AI language models, showcasing its potential to revolutionize various applications. -
18
GPT-5.2 Pro
OpenAI
The Pro version of OpenAI’s latest GPT-5.2 model family, known as GPT-5.2 Pro, stands out as the most advanced offering, designed to provide exceptional reasoning capabilities, tackle intricate tasks, and achieve heightened accuracy suitable for high-level knowledge work, innovative problem-solving, and enterprise applications. Building upon the enhancements of the standard GPT-5.2, it features improved general intelligence, enhanced understanding of longer contexts, more reliable factual grounding, and refined tool usage, leveraging greater computational power and deeper processing to deliver thoughtful, dependable, and contextually rich responses tailored for users with complex, multi-step needs. GPT-5.2 Pro excels in managing demanding workflows, including sophisticated coding and debugging, comprehensive data analysis, synthesis of research, thorough document interpretation, and intricate project planning, all while ensuring greater accuracy and reduced error rates compared to its less robust counterparts. This makes it an invaluable tool for professionals seeking to optimize their productivity and tackle substantial challenges with confidence. -
19
Kimi K2 Thinking
Moonshot AI
FreeKimi K2 Thinking is a sophisticated open-source reasoning model created by Moonshot AI, specifically tailored for intricate, multi-step workflows where it effectively combines chain-of-thought reasoning with tool utilization across numerous sequential tasks. Employing a cutting-edge mixture-of-experts architecture, the model encompasses a staggering total of 1 trillion parameters, although only around 32 billion parameters are utilized during each inference, which enhances efficiency while retaining significant capability. It boasts a context window that can accommodate up to 256,000 tokens, allowing it to process exceptionally long inputs and reasoning sequences without sacrificing coherence. Additionally, it features native INT4 quantization, which significantly cuts down inference latency and memory consumption without compromising performance. Designed with agentic workflows in mind, Kimi K2 Thinking is capable of autonomously invoking external tools, orchestrating sequential logic steps—often involving around 200-300 tool calls in a single chain—and ensuring consistent reasoning throughout the process. Its robust architecture makes it an ideal solution for complex reasoning tasks that require both depth and efficiency. -
20
Seed2.0 Pro
ByteDance
Seed2.0 Pro is a high-performance general-purpose AI model engineered for demanding enterprise and research environments. Built to manage long-chain reasoning and complex multi-step instructions, it ensures consistent and stable outputs across extended workflows. As the flagship model in the Seed 2.0 series, it introduces substantial enhancements in multimodal intelligence, combining language, vision, motion, and contextual understanding. The system achieves top-tier benchmark results in mathematics, coding, STEM reasoning, and multimodal evaluations, positioning it among leading industry models. Its advanced visual reasoning capabilities enable it to interpret images, reconstruct structured layouts, and generate fully functional interactive web interfaces from visual inputs. Beyond creative tasks, Seed2.0 Pro supports technical operations such as CAD design automation, scientific research problem-solving, and detailed data analysis. The model is optimized for real-world deployment, balancing inference depth with operational reliability. It performs strongly in long-context scenarios, maintaining coherence across extended documents and conversations. Additionally, its robust instruction-following capabilities allow it to execute highly specific professional commands with precision. Overall, Seed2.0 Pro combines research-level intelligence with production-grade performance for complex, high-value tasks. -
21
Ministral 3B
Mistral AI
FreeMistral AI has launched two cutting-edge models designed for on-device computing and edge applications, referred to as "les Ministraux": Ministral 3B and Ministral 8B. These innovative models redefine the standards of knowledge, commonsense reasoning, function-calling, and efficiency within the sub-10B category. They are versatile enough to be utilized or customized for a wide range of applications, including managing complex workflows and developing specialized task-focused workers. Capable of handling up to 128k context length (with the current version supporting 32k on vLLM), Ministral 8B also incorporates a unique interleaved sliding-window attention mechanism to enhance both speed and memory efficiency during inference. Designed for low-latency and compute-efficient solutions, these models excel in scenarios such as offline translation, smart assistants that don't rely on internet connectivity, local data analysis, and autonomous robotics. Moreover, when paired with larger language models like Mistral Large, les Ministraux can effectively function as streamlined intermediaries, facilitating function-calling within intricate multi-step workflows, thereby expanding their applicability across various domains. This combination not only enhances performance but also broadens the scope of what can be achieved with AI in edge computing. -
22
DeepSeek-V4
DeepSeek
FreeDeepSeek-V4 is an advanced open large language model engineered for high-efficiency reasoning, sophisticated problem solving, and powerful agent-based execution. At its core is DeepSeek Sparse Attention (DSA), a specialized long-context attention mechanism that minimizes computational costs without sacrificing accuracy or depth. The model leverages a scalable reinforcement learning framework to refine reasoning quality and align outputs with real-world task demands. A dedicated agent task synthesis pipeline generates structured reasoning traces and tool-use demonstrations, strengthening post-training performance. DeepSeek-V4 features an updated chat architecture with improved tool-calling logic designed for multi-step workflows. The introduction of an optional developer role enhances orchestration in agent-driven environments. Its architecture supports extended context handling for research-intensive and enterprise applications. Optimized for both experimentation and deployment, the model balances efficiency with frontier-level capability. DeepSeek-V4 stands out as a competitive open alternative for advanced AI reasoning and autonomous task execution. -
23
Mistral Large 2
Mistral AI
FreeMistral AI has introduced the Mistral Large 2, a sophisticated AI model crafted to excel in various domains such as code generation, multilingual understanding, and intricate reasoning tasks. With an impressive 128k context window, this model accommodates a wide array of languages, including English, French, Spanish, and Arabic, while also supporting an extensive list of over 80 programming languages. Designed for high-throughput single-node inference, Mistral Large 2 is perfectly suited for applications requiring large context handling. Its superior performance on benchmarks like MMLU, coupled with improved capabilities in code generation and reasoning, guarantees both accuracy and efficiency in results. Additionally, the model features enhanced function calling and retrieval mechanisms, which are particularly beneficial for complex business applications. This makes Mistral Large 2 not only versatile but also a powerful tool for developers and businesses looking to leverage advanced AI capabilities. -
24
GPT-5.1 Thinking
OpenAI
GPT-5.1 Thinking represents an evolved reasoning model within the GPT-5.1 lineup, engineered to optimize "thinking time" allocation according to the complexity of prompts, allowing for quicker responses to straightforward inquiries while dedicating more resources to tackle challenging issues. In comparison to its earlier version, it demonstrates approximately double the speed on simpler tasks and takes twice as long for more complex ones. The model emphasizes clarity in its responses, minimizing the use of jargon and undefined terminology, which enhances the accessibility and comprehensibility of intricate analytical tasks. It adeptly modifies its reasoning depth, ensuring a more effective equilibrium between rapidity and thoroughness, especially when addressing technical subjects or multi-step inquiries. By fusing substantial reasoning power with enhanced clarity, GPT-5.1 Thinking emerges as an invaluable asset for handling complicated assignments, including in-depth analysis, programming, research, or technical discussions, while simultaneously decreasing unnecessary delays for routine requests. This improved efficiency not only benefits users seeking quick answers but also supports those engaged in more demanding cognitive tasks. -
25
Ministral 8B
Mistral AI
FreeMistral AI has unveiled two cutting-edge models specifically designed for on-device computing and edge use cases, collectively referred to as "les Ministraux": Ministral 3B and Ministral 8B. These innovative models stand out due to their capabilities in knowledge retention, commonsense reasoning, function-calling, and overall efficiency, all while remaining within the sub-10B parameter range. They boast support for a context length of up to 128k, making them suitable for a diverse range of applications such as on-device translation, offline smart assistants, local analytics, and autonomous robotics. Notably, Ministral 8B incorporates an interleaved sliding-window attention mechanism, which enhances both the speed and memory efficiency of inference processes. Both models are adept at serving as intermediaries in complex multi-step workflows, skillfully managing functions like input parsing, task routing, and API interactions based on user intent, all while minimizing latency and operational costs. Benchmark results reveal that les Ministraux consistently exceed the performance of similar models across a variety of tasks, solidifying their position in the market. As of October 16, 2024, these models are now available for developers and businesses, with Ministral 8B being offered at a competitive rate of $0.1 for every million tokens utilized. This pricing structure enhances accessibility for users looking to integrate advanced AI capabilities into their solutions. -
26
Claude Sonnet 4.5
Anthropic
Claude Sonnet 4.5 represents Anthropic's latest advancement in AI, crafted to thrive in extended coding environments, complex workflows, and heavy computational tasks while prioritizing safety and alignment. It sets new benchmarks with its top-tier performance on the SWE-bench Verified benchmark for software engineering and excels in the OSWorld benchmark for computer usage, demonstrating an impressive capacity to maintain concentration for over 30 hours on intricate, multi-step assignments. Enhancements in tool management, memory capabilities, and context interpretation empower the model to engage in more advanced reasoning, leading to a better grasp of various fields, including finance, law, and STEM, as well as a deeper understanding of coding intricacies. The system incorporates features for context editing and memory management, facilitating prolonged dialogues or multi-agent collaborations, while it also permits code execution and the generation of files within Claude applications. Deployed at AI Safety Level 3 (ASL-3), Sonnet 4.5 is equipped with classifiers that guard against inputs or outputs related to hazardous domains and includes defenses against prompt injection, ensuring a more secure interaction. This model signifies a significant leap forward in the intelligent automation of complex tasks, aiming to reshape how users engage with AI technologies. -
27
Amazon Nova Premier
Amazon
Amazon Nova Premier is a cutting-edge model released as part of the Amazon Bedrock family, designed for tackling sophisticated tasks with unmatched efficiency. With the ability to process text, images, and video, it is ideal for complex workflows that require deep contextual understanding and multi-step execution. This model boasts a significant advantage with its one-million token context, making it suitable for analyzing massive documents or expansive code bases. Moreover, Nova Premier's distillation feature allows the creation of more efficient models, such as Nova Pro and Nova Micro, that deliver high accuracy with reduced latency and operational costs. Its advanced capabilities have already proven effective in various scenarios, such as investment research, where it can coordinate multiple agents to gather and synthesize relevant financial data. This process not only saves time but also enhances the overall efficiency of the AI models used. -
28
Grok 4.1 Thinking is the reasoning-enabled version of Grok designed to handle complex, high-stakes prompts with deliberate analysis. Unlike fast-response models, it visibly works through problems using structured reasoning before producing an answer. This approach improves accuracy, reduces misinterpretation, and strengthens logical consistency across longer conversations. Grok 4.1 Thinking leads public benchmarks in general capability and human preference testing. It delivers advanced performance in emotional intelligence by understanding context, tone, and interpersonal nuance. The model is especially effective for tasks that require judgment, explanation, or synthesis of multiple ideas. Its reasoning depth makes it well-suited for analytical writing, strategy discussions, and technical problem-solving. Grok 4.1 Thinking also demonstrates strong creative reasoning without sacrificing coherence. The model maintains alignment and reliability even in ambiguous scenarios. Overall, it sets a new standard for transparent and thoughtful AI reasoning.
-
29
MiniMax-M2.1
MiniMax
FreeMiniMax-M2.1 is a state-of-the-art open-source AI model built specifically for agent-based development and real-world automation. It focuses on delivering strong performance in coding, tool calling, and long-term task execution. Unlike closed models, MiniMax-M2.1 is fully transparent and can be deployed locally or integrated through APIs. The model excels in multilingual software engineering tasks and complex workflow automation. It demonstrates strong generalization across different agent frameworks and development environments. MiniMax-M2.1 supports advanced use cases such as autonomous coding, application building, and office task automation. Benchmarks show significant improvements over previous MiniMax versions. The model balances high reasoning ability with stability and control. Developers can fine-tune or extend it for specialized agent workflows. MiniMax-M2.1 empowers teams to build reliable AI agents without vendor lock-in. -
30
MiniMax M2
MiniMax
$0.30 per million input tokensMiniMax M2 is an open-source foundational model tailored for agent-driven applications and coding tasks, achieving an innovative equilibrium of efficiency, velocity, and affordability. It shines in comprehensive development environments, adeptly managing programming tasks, invoking tools, and executing intricate, multi-step processes, complete with features like Python integration, while offering impressive inference speeds of approximately 100 tokens per second and competitive API pricing at around 8% of similar proprietary models. The model includes a "Lightning Mode" designed for rapid, streamlined agent operations, alongside a "Pro Mode" aimed at thorough full-stack development, report creation, and the orchestration of web-based tools; its weights are entirely open source, allowing for local deployment via vLLM or SGLang. MiniMax M2 stands out as a model ready for production use, empowering agents to autonomously perform tasks such as data analysis, software development, tool orchestration, and implementing large-scale, multi-step logic across real organizational contexts. With its advanced capabilities, this model is poised to revolutionize the way developers approach complex programming challenges. -
31
Grok 4.20
xAI
Grok 4.20 is a next-generation AI model created by xAI to advance the boundaries of machine reasoning and language comprehension. Powered by the Colossus supercomputer, it delivers high-performance processing for complex workloads. The model supports multimodal inputs, enabling it to analyze and respond to both text and images. Future updates are expected to expand these capabilities to include video understanding. Grok 4.20 demonstrates exceptional accuracy in scientific analysis, technical problem-solving, and nuanced language tasks. Its advanced architecture allows for deeper contextual reasoning and more refined response generation. Improved moderation systems help ensure responsible, balanced, and trustworthy outputs. This version significantly improves consistency and interpretability over prior iterations. Grok 4.20 positions itself among the most capable AI models available today. It is designed to think, reason, and communicate more naturally. -
32
GPT-5.1 Pro
OpenAI
1 RatingGPT-5.1 Pro is a premium, research-focused model tier built for users who need the strongest reasoning performance ChatGPT offers. It excels in technical domains such as advanced mathematics, scientific analysis, engineering, complex coding, and financial modeling. The model is engineered to deliver more coherent long-form reasoning, better chain-of-thought structure, and stronger factual grounding than general-purpose versions. With expanded context capacity, GPT-5.1 Pro handles large documents, multi-file analysis, and intricate workflows with ease. It also produces clearer explanations with reduced jargon, making complex insights more accessible without losing technical depth. Designed for demanding professional environments, Pro adheres to strict accuracy expectations while minimizing hallucinations in critical tasks. It is restricted to ChatGPT Pro and Business plans, ensuring dedicated access with no usage caps beyond standard abuse guardrails. Compared to other tiers, GPT-5.1 Pro is purpose-built for users who rely on ChatGPT as a high-precision analytical engine. -
33
Amazon Nova 2 Pro
Amazon
1 RatingNova 2 Pro represents the pinnacle of Amazon’s Nova family, offering unmatched reasoning depth for enterprises that depend on advanced AI to solve demanding operational challenges. It supports multimodal inputs including video, audio, and long-form text, allowing it to synthesize diverse information sources and deliver expert-grade insights. Its performance leadership spans complex instruction following, high-stakes decision tasks, agentic workflows, and software engineering use cases. Benchmark testing shows Nova 2 Pro outperforms or matches the latest Claude, GPT, and Gemini models across numerous intelligence and reasoning categories. Equipped with built-in web search and executable code capability, it produces grounded, verifiable responses ideal for enterprise reliability. Organizations also use Nova 2 Pro as a foundation for training smaller, faster models through distillation, making it adaptable for custom deployments. Its multimodal strengths support use cases like video comprehension, multi-document Q&A, and sophisticated data interpretation. Nova 2 Pro ultimately empowers teams to operate with higher accuracy, faster iteration cycles, and safer automation across critical workflows. -
34
GPT-5.2
OpenAI
GPT-5.2 marks a new milestone in the evolution of the GPT-5 series, bringing heightened intelligence, richer context understanding, and smoother conversational behavior. The updated architecture introduces multiple enhanced variants that work together to produce clearer reasoning and more accurate interpretations of user needs. GPT-5.2 Instant remains the main model for everyday interactions, now upgraded with faster response times, stronger instruction adherence, and more reliable contextual continuity. For users tackling complex or layered tasks, GPT-5.2 Thinking provides deeper cognitive structure, offering step-by-step explanations, stronger logical flow, and improved endurance across long-form reasoning challenges. The platform automatically determines which model variant is optimal for any query, ensuring users always benefit from the most appropriate capabilities. These advancements reduce friction, simplify workflows, and produce answers that feel more grounded and intention-aware. In addition to intelligence upgrades, GPT-5.2 emphasizes conversational naturalness, making exchanges feel more intuitive and humanlike. Overall, this release delivers a more capable, responsive, and adaptive AI experience across all forms of interaction. -
35
Qwen3.5
Alibaba
FreeQwen3.5 represents a major advancement in open-weight multimodal AI models, engineered to function as a native vision-language agent system. Its flagship model, Qwen3.5-397B-A17B, leverages a hybrid architecture that fuses Gated DeltaNet linear attention with a high-sparsity mixture-of-experts framework, allowing only 17 billion parameters to activate during inference for improved speed and cost efficiency. Despite its sparse activation, the full 397-billion-parameter model achieves competitive performance across reasoning, coding, multilingual benchmarks, and complex agent evaluations. The hosted Qwen3.5-Plus version supports a one-million-token context window and includes built-in tool use for search, code interpretation, and adaptive reasoning. The model significantly expands multilingual coverage to 201 languages and dialects while improving encoding efficiency with a larger vocabulary. Native multimodal training enables strong performance in image understanding, video processing, document analysis, and spatial reasoning tasks. Its infrastructure includes FP8 precision pipelines and heterogeneous parallelism to boost throughput and reduce memory consumption. Reinforcement learning at scale enhances multi-step planning and general agent behavior across text and multimodal environments. Overall, Qwen3.5 positions itself as a high-efficiency foundation for autonomous digital agents capable of reasoning, searching, coding, and interacting with complex environments. -
36
Olmo 3
Ai2
FreeOlmo 3 represents a comprehensive family of open models featuring variations with 7 billion and 32 billion parameters, offering exceptional capabilities in base performance, reasoning, instruction, and reinforcement learning, while also providing transparency throughout the model development process, which includes access to raw training datasets, intermediate checkpoints, training scripts, extended context support (with a window of 65,536 tokens), and provenance tools. The foundation of these models is built upon the Dolma 3 dataset, which comprises approximately 9 trillion tokens and utilizes a careful blend of web content, scientific papers, programming code, and lengthy documents; this thorough pre-training, mid-training, and long-context approach culminates in base models that undergo post-training enhancements through supervised fine-tuning, preference optimization, and reinforcement learning with accountable rewards, resulting in the creation of the Think and Instruct variants. Notably, the 32 billion Think model has been recognized as the most powerful fully open reasoning model to date, demonstrating performance that closely rivals that of proprietary counterparts in areas such as mathematics, programming, and intricate reasoning tasks, thereby marking a significant advancement in open model development. This innovation underscores the potential for open-source models to compete with traditional, closed systems in various complex applications. -
37
Grok 4.1 Fast represents xAI’s leap forward in building highly capable agents that rely heavily on tool calling, long-context reasoning, and real-time information retrieval. It supports a robust 2-million-token window, enabling long-form planning, deep research, and multi-step workflows without degradation. Through extensive RL training and exposure to diverse tool ecosystems, the model performs exceptionally well on demanding benchmarks like τ²-bench Telecom. When paired with the Agent Tools API, it can autonomously browse the web, search X posts, execute Python code, and retrieve documents, eliminating the need for developers to manage external infrastructure. It is engineered to maintain intelligence across multi-turn conversations, making it ideal for enterprise tasks that require continuous context. Its benchmark accuracy on tool-calling and function-calling tasks clearly surpasses competing models in speed, cost, and reliability. Developers can leverage these strengths to build agents that automate customer support, perform real-time analysis, and execute complex domain-specific tasks. With its performance, low pricing, and availability on platforms like OpenRouter, Grok 4.1 Fast stands out as a production-ready solution for next-generation AI systems.
-
38
GLM-4.6V
Zhipu AI
FreeThe GLM-4.6V is an advanced, open-source multimodal vision-language model that belongs to the Z.ai (GLM-V) family, specifically engineered for tasks involving reasoning, perception, and action. It is available in two configurations: a comprehensive version with 106 billion parameters suitable for cloud environments or high-performance computing clusters, and a streamlined “Flash” variant featuring 9 billion parameters, which is tailored for local implementation or scenarios requiring low latency. With a remarkable native context window that accommodates up to 128,000 tokens during its training phase, GLM-4.6V can effectively manage extensive documents or multimodal data inputs. One of its standout features is the built-in Function Calling capability, allowing the model to accept various forms of visual media — such as images, screenshots, and documents — as inputs directly, eliminating the need for manual text conversion. This functionality not only facilitates reasoning about the visual content but also enables the model to initiate tool calls, effectively merging visual perception with actionable results. The versatility of GLM-4.6V opens the door to a wide array of applications, including the generation of interleaved image-and-text content, which can seamlessly integrate document comprehension with text summarization or the creation of responses that include image annotations, thereby greatly enhancing user interaction and output quality. -
39
Mathstral
Mistral AI
FreeIn honor of Archimedes, whose 2311th anniversary we celebrate this year, we are excited to introduce our inaugural Mathstral model, a specialized 7B architecture tailored for mathematical reasoning and scientific exploration. This model features a 32k context window and is released under the Apache 2.0 license. Our intention behind contributing Mathstral to the scientific community is to enhance the pursuit of solving advanced mathematical challenges that necessitate intricate, multi-step logical reasoning. The launch of Mathstral is part of our wider initiative to support academic endeavors, developed in conjunction with Project Numina. Much like Isaac Newton during his era, Mathstral builds upon the foundation laid by Mistral 7B, focusing on STEM disciplines. It demonstrates top-tier reasoning capabilities within its category, achieving remarkable results on various industry-standard benchmarks. Notably, it scores 56.6% on the MATH benchmark and 63.47% on the MMLU benchmark, showcasing the performance differences by subject between Mathstral 7B and its predecessor, Mistral 7B, further emphasizing the advancements made in mathematical modeling. This initiative aims to foster innovation and collaboration within the mathematical community. -
40
ERNIE X1 Turbo
Baidu
$0.14 per 1M tokensBaidu’s ERNIE X1 Turbo is designed for industries that require advanced cognitive and creative AI abilities. Its multimodal processing capabilities allow it to understand and generate responses based on a range of data inputs, including text, images, and potentially audio. This AI model’s advanced reasoning mechanisms and competitive performance make it a strong alternative to high-cost models like DeepSeek R1. Additionally, ERNIE X1 Turbo integrates seamlessly into various applications, empowering developers and businesses to use AI more effectively while lowering the costs typically associated with these technologies. -
41
Amazon Nova Pro
Amazon
Amazon Nova Pro is a high-performance multimodal AI model that combines top-tier accuracy with fast processing and cost efficiency. It is perfect for use cases like video summarization, complex Q&A, code development, and executing multi-step AI workflows. Nova Pro supports text, image, and video inputs, allowing businesses to enhance customer interactions, content creation, and data analysis with AI. Its ability to perform well on industry benchmarks makes it suitable for enterprises aiming to streamline operations and drive automation. -
42
MiniMax M1
MiniMax
The MiniMax‑M1 model, introduced by MiniMax AI and licensed under Apache 2.0, represents a significant advancement in hybrid-attention reasoning architecture. With an extraordinary capacity for handling a 1 million-token context window and generating outputs of up to 80,000 tokens, it facilitates in-depth analysis of lengthy texts. Utilizing a cutting-edge CISPO algorithm, MiniMax‑M1 was trained through extensive reinforcement learning, achieving completion on 512 H800 GPUs in approximately three weeks. This model sets a new benchmark in performance across various domains, including mathematics, programming, software development, tool utilization, and understanding of long contexts, either matching or surpassing the capabilities of leading models in the field. Additionally, users can choose between two distinct variants of the model, each with a thinking budget of either 40K or 80K, and access the model's weights and deployment instructions on platforms like GitHub and Hugging Face. Such features make MiniMax‑M1 a versatile tool for developers and researchers alike. -
43
Command R+
Cohere AI
FreeCohere has introduced Command R+, its latest large language model designed to excel in conversational interactions and manage long-context tasks with remarkable efficiency. This model is tailored for organizations looking to transition from experimental phases to full-scale production. We suggest utilizing Command R+ for workflows that require advanced retrieval-augmented generation capabilities and the use of multiple tools in a sequence. Conversely, Command R is well-suited for less complicated retrieval-augmented generation tasks and scenarios involving single-step tool usage, particularly when cost-effectiveness is a key factor in decision-making. -
44
Command A Reasoning
Cohere AI
Cohere’s Command A Reasoning stands as the company’s most sophisticated language model, specifically designed for complex reasoning tasks and effortless incorporation into AI agent workflows. This model exhibits outstanding reasoning capabilities while ensuring efficiency and controllability, enabling it to scale effectively across multiple GPU configurations and accommodating context windows of up to 256,000 tokens, which is particularly advantageous for managing extensive documents and intricate agentic tasks. Businesses can adjust the precision and speed of outputs by utilizing a token budget, which empowers a single model to adeptly address both precise and high-volume application needs. It serves as the backbone for Cohere’s North platform, achieving top-tier benchmark performance and showcasing its strengths in multilingual applications across 23 distinct languages. With an emphasis on safety in enterprise settings, the model strikes a balance between utility and strong protections against harmful outputs. Additionally, a streamlined deployment option allows the model to operate securely on a single H100 or A100 GPU, making private and scalable implementations more accessible. Ultimately, this combination of features positions Command A Reasoning as a powerful solution for organizations aiming to enhance their AI-driven capabilities. -
45
Reka Flash 3
Reka
Reka Flash 3 is a cutting-edge multimodal AI model with 21 billion parameters, crafted by Reka AI to perform exceptionally well in tasks such as general conversation, coding, following instructions, and executing functions. This model adeptly handles and analyzes a myriad of inputs, including text, images, video, and audio, providing a versatile and compact solution for a wide range of applications. Built from the ground up, Reka Flash 3 was trained on a rich array of datasets, encompassing both publicly available and synthetic information, and it underwent a meticulous instruction tuning process with high-quality selected data to fine-tune its capabilities. The final phase of its training involved employing reinforcement learning techniques, specifically using the REINFORCE Leave One-Out (RLOO) method, which combined both model-based and rule-based rewards to significantly improve its reasoning skills. With an impressive context length of 32,000 tokens, Reka Flash 3 competes effectively with proprietary models like OpenAI's o1-mini, making it an excellent choice for applications requiring low latency or on-device processing. The model operates at full precision with a memory requirement of 39GB (fp16), although it can be efficiently reduced to just 11GB through the use of 4-bit quantization, demonstrating its adaptability for various deployment scenarios. Overall, Reka Flash 3 represents a significant advancement in multimodal AI technology, capable of meeting diverse user needs across multiple platforms.