Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
Google Cloud BigQuery
BigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises.
Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently.
Learn more
Modeller
Model building software for today's machine learning age incorporates credit risk modelling expertise spanning over thirty years. Modeller is a flexible, transparent, interactive, and feature-rich tool that helps organizations get more out of their analytical teams. It allows for a variety of techniques, rapid development of powerful models, full explanation, and advancement of less experienced members of the team.
You can choose from a variety of modeling techniques, including machine-learning, to achieve optimal predictive accuracy, especially when working with complex interrelationships and multicollinearity. At the touch of a button, you can create industry-standard binary and continuous target models. You can use decision tree modeling with CHAID trees and CART. You can choose from logistic regression, elastic network models, survival analysis (Cox PH), random forest, XGBoost and stochastic gradient descend.
SAS, SQL and PMML are all available export options for use in other scoring and decisioning programs.
Learn more
IBM SPSS Statistics
IBM® SPSS® Statistics software is used by a variety of customers to solve industry-specific business issues to drive quality decision-making.
The IBM® SPSS® software platform offers advanced statistical analysis, a vast library of machine learning algorithms, text analysis, open-source extensibility, integration with big data and seamless deployment into applications.
Its ease of use, flexibility and scalability make SPSS accessible to users of all skill levels. What’s more, it’s suitable for projects of all sizes and levels of complexity, and can help you find new opportunities, improve efficiency and minimize risk.
Learn more