Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
Fraud.net
Don't let fraud erode your bottom line, damage your reputation, or stall your growth. FraudNet's AI-driven platform empowers enterprises to stay ahead of threats, streamline compliance, and manage risk at scale—all in real-time. While fraudsters evolve tactics, our platform detects tomorrow's threats, delivering risk assessments through insights from billions of analyzed transactions.
Imagine transforming your fraud prevention with a single, robust platform: comprehensive screening for smoother onboarding and reduced risk exposure, continuous monitoring to proactively identify and block new threats, and precision fraud detection across channels and payment types with real-time, AI-powered risk scoring. Our proprietary machine learning models continuously learn and improve, identifying patterns invisible to traditional systems. Paired with our Data Hub of dozens of third-party data integrations, you'll gain unprecedented fraud and risk protection while slashing false positives and eliminating operational inefficiencies.
The impact is undeniable. Leading payment companies, financial institutions, innovative fintechs, and commerce brands trust our AI-powered solutions worldwide, and they're seeing dramatic results: 80% reduction in fraud losses and 97% fewer false positives. With our flexible no-code/low-code architecture, you can scale effortlessly as you grow.
Why settle for outdated fraud and risk management systems when you could be building resilience for future opportunities? See the Fraud.Net difference for yourself. Request your personalized demo today and discover how we can help you strengthen your business against threats while empowering growth.
Learn more
Qloo
Qloo, the "Cultural AI", is capable of decoding and forecasting consumer tastes around the world. Privacy-first API that predicts global consumer preferences, catalogs hundreds of million of cultural entities, and is privacy-first. Our API provides contextualized personalization and insight based on deep understanding of consumer behavior. We have access to more than 575,000,000 people, places, and things. Our technology allows you to see beyond trends and discover the connections that underlie people's tastes in their world. Our vast library includes entities such as brands, music, film and fashion. We also have information about notable people. Results are delivered in milliseconds. They can be weighted with factors like regionalization and real time popularity. Companies who want to use best-in-class data to enhance their customer experiences. Our flagship recommendation API provides results based on demographics and preferences, cultural entities, metadata, geolocational factors, and metadata.
Learn more
Neural Magic
GPUs excel at swiftly transferring data but suffer from limited locality of reference due to their relatively small caches, which makes them better suited for scenarios that involve heavy computation on small datasets rather than light computation on large ones. Consequently, the networks optimized for GPU architecture tend to run in layers sequentially to maximize the throughput of their computational pipelines (as illustrated in Figure 1 below). To accommodate larger models, given the GPUs' restricted memory capacity of only tens of gigabytes, multiple GPUs are often pooled together, leading to the distribution of models across these units and resulting in a convoluted software framework that must navigate the intricacies of communication and synchronization between different machines. In contrast, CPUs possess significantly larger and faster caches, along with access to extensive memory resources that can reach terabytes, allowing a typical CPU server to hold memory equivalent to that of dozens or even hundreds of GPUs. This makes CPUs particularly well-suited for a brain-like machine learning environment, where only specific portions of a vast network are activated as needed, offering a more flexible and efficient approach to processing. By leveraging the strengths of CPUs, machine learning systems can operate more smoothly, accommodating the demands of complex models while minimizing overhead.
Learn more