Best Domino Enterprise MLOps Platform Alternatives in 2025

Find the top alternatives to Domino Enterprise MLOps Platform currently available. Compare ratings, reviews, pricing, and features of Domino Enterprise MLOps Platform alternatives in 2025. Slashdot lists the best Domino Enterprise MLOps Platform alternatives on the market that offer competing products that are similar to Domino Enterprise MLOps Platform. Sort through Domino Enterprise MLOps Platform alternatives below to make the best choice for your needs

  • 1
    Vertex AI Reviews
    See Software
    Learn More
    Compare Both
    Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
  • 2
    Qloo Reviews
    Top Pick
    See Software
    Learn More
    Compare Both
    Qloo, the "Cultural AI", is capable of decoding and forecasting consumer tastes around the world. Privacy-first API that predicts global consumer preferences, catalogs hundreds of million of cultural entities, and is privacy-first. Our API provides contextualized personalization and insight based on deep understanding of consumer behavior. We have access to more than 575,000,000 people, places, and things. Our technology allows you to see beyond trends and discover the connections that underlie people's tastes in their world. Our vast library includes entities such as brands, music, film and fashion. We also have information about notable people. Results are delivered in milliseconds. They can be weighted with factors like regionalization and real time popularity. Companies who want to use best-in-class data to enhance their customer experiences. Our flagship recommendation API provides results based on demographics and preferences, cultural entities, metadata, geolocational factors, and metadata.
  • 3
    Saturn Cloud Reviews
    Top Pick

    Saturn Cloud

    Saturn Cloud

    $0.005 per GB per hour
    103 Ratings
    Saturn Cloud is an AI/ML platform available on every cloud. Data teams and engineers can build, scale, and deploy their AI/ML applications with any stack.
  • 4
    Snowflake Reviews
    Snowflake offers a unified AI Data Cloud platform that transforms how businesses store, analyze, and leverage data by eliminating silos and simplifying architectures. It features interoperable storage that enables seamless access to diverse datasets at massive scale, along with an elastic compute engine that delivers leading performance for a wide range of workloads. Snowflake Cortex AI integrates secure access to cutting-edge large language models and AI services, empowering enterprises to accelerate AI-driven insights. The platform’s cloud services automate and streamline resource management, reducing complexity and cost. Snowflake also offers Snowgrid, which securely connects data and applications across multiple regions and cloud providers for a consistent experience. Their Horizon Catalog provides built-in governance to manage security, privacy, compliance, and access control. Snowflake Marketplace connects users to critical business data and apps to foster collaboration within the AI Data Cloud network. Serving over 11,000 customers worldwide, Snowflake supports industries from healthcare and finance to retail and telecom.
  • 5
    DataRobot Reviews
    AI Cloud represents an innovative strategy designed to meet the current demands, challenges, and potential of artificial intelligence. This comprehensive system acts as a single source of truth, expediting the process of bringing AI solutions into production for organizations of all sizes. Users benefit from a collaborative environment tailored for ongoing enhancements throughout the entire AI lifecycle. The AI Catalog simplifies the process of discovering, sharing, tagging, and reusing data, which accelerates deployment and fosters teamwork. This catalog ensures that users can easily access relevant data to resolve business issues while maintaining high standards of security, compliance, and consistency. If your database is subject to a network policy restricting access to specific IP addresses, please reach out to Support for assistance in obtaining a list of IPs that should be added to your network policy for whitelisting, ensuring that your operations run smoothly. Additionally, leveraging AI Cloud can significantly improve your organization’s ability to innovate and adapt in a rapidly evolving technological landscape.
  • 6
    Dataiku Reviews
    Dataiku serves as a sophisticated platform for data science and machine learning, aimed at facilitating teams in the construction, deployment, and management of AI and analytics projects on a large scale. It enables a diverse range of users, including data scientists and business analysts, to work together in developing data pipelines, crafting machine learning models, and preparing data through various visual and coding interfaces. Supporting the complete AI lifecycle, Dataiku provides essential tools for data preparation, model training, deployment, and ongoing monitoring of projects. Additionally, the platform incorporates integrations that enhance its capabilities, such as generative AI, thereby allowing organizations to innovate and implement AI solutions across various sectors. This adaptability positions Dataiku as a valuable asset for teams looking to harness the power of AI effectively.
  • 7
    Analance Reviews
    Analance is a comprehensive and scalable solution that integrates Data Science, Advanced Analytics, Business Intelligence, and Data Management into one seamless, self-service platform. Designed to empower users with essential analytical capabilities, it ensures that data insights are readily available to all, maintains consistent performance as user demands expand, and meets ongoing business goals within a singular framework. Analance is dedicated to transforming high-quality data into precise predictions, providing both seasoned data scientists and novice users with intuitive, point-and-click pre-built algorithms alongside a flexible environment for custom coding. By bridging the gap between advanced analytics and user accessibility, Analance facilitates informed decision-making across organizations. Company – Overview Ducen IT supports Business and IT professionals in Fortune 1000 companies by offering advanced analytics, business intelligence, and data management through its distinctive, all-encompassing data science platform known as Analance.
  • 8
    Google Cloud Datalab Reviews
    Cloud Datalab is a user-friendly interactive platform designed for data exploration, analysis, visualization, and machine learning. This robust tool, developed for the Google Cloud Platform, allows users to delve into, transform, and visualize data while building machine learning models efficiently. Operating on Compute Engine, it smoothly integrates with various cloud services, enabling you to concentrate on your data science projects without distractions. Built using Jupyter (previously known as IPython), Cloud Datalab benefits from a vibrant ecosystem of modules and a comprehensive knowledge base. It supports the analysis of data across BigQuery, AI Platform, Compute Engine, and Cloud Storage, utilizing Python, SQL, and JavaScript for BigQuery user-defined functions. Whether your datasets are in the megabytes or terabytes range, Cloud Datalab is equipped to handle your needs effectively. You can effortlessly query massive datasets in BigQuery, perform local analysis on sampled subsets of data, and conduct training jobs on extensive datasets within AI Platform without any interruptions. This versatility makes Cloud Datalab a valuable asset for data scientists aiming to streamline their workflows and enhance productivity.
  • 9
    RapidMiner Reviews
    RapidMiner is redefining enterprise AI so anyone can positively shape the future. RapidMiner empowers data-loving people from all levels to quickly create and implement AI solutions that drive immediate business impact. Our platform unites data prep, machine-learning, and model operations. This provides a user experience that is both rich in data science and simplified for all others. Customers are guaranteed success with our Center of Excellence methodology, RapidMiner Academy and no matter what level of experience or resources they have.
  • 10
    Darwin Reviews

    Darwin

    SparkCognition

    $4000
    Darwin is an automated machine-learning product that allows your data science and business analysis teams to quickly move from data to meaningful results. Darwin assists organizations in scaling the adoption of data science across their teams and the implementation machine learning applications across operations to become data-driven enterprises.
  • 11
    Anaconda Reviews
    Top Pick
    Empowering businesses to engage in genuine data science quickly and effectively through a comprehensive machine learning platform is crucial. By minimizing the time spent managing tools and infrastructure, organizations can concentrate on developing machine learning applications that drive growth. Anaconda Enterprise alleviates the challenges associated with ML operations, grants access to open-source innovations, and lays the groundwork for robust data science and machine learning operations without confining users to specific models, templates, or workflows. Software developers and data scientists can seamlessly collaborate within AE to create, test, debug, and deploy models using their chosen programming languages and tools. Additionally, AE facilitates access to both notebooks and integrated development environments (IDEs), enhancing collaborative efficiency. Users can also select from a variety of example projects or utilize preconfigured projects tailored to their needs. Furthermore, AE automatically containerizes projects, ensuring they can be effortlessly transitioned between various environments as required. This flexibility ultimately empowers teams to innovate and adapt to changing business demands more readily.
  • 12
    Comet Reviews

    Comet

    Comet

    $179 per user per month
    Manage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders.
  • 13
    Metacoder Reviews

    Metacoder

    Wazoo Mobile Technologies LLC

    $89 per user/month
    Metacoder makes data processing faster and more efficient. Metacoder provides data analysts with the flexibility and tools they need to make data analysis easier. Metacoder automates data preparation steps like cleaning, reducing the time it takes to inspect your data before you can get up and running. It is a good company when compared to other companies. Metacoder is cheaper than similar companies and our management is actively developing based upon our valued customers' feedback. Metacoder is primarily used to support predictive analytics professionals in their work. We offer interfaces for database integrations, data cleaning, preprocessing, modeling, and display/interpretation of results. We make it easy to manage the machine learning pipeline and help organizations share their work. Soon, we will offer code-free solutions for image, audio and video as well as biomedical data.
  • 14
    Neural Designer Reviews
    Neural Designer is a data-science and machine learning platform that allows you to build, train, deploy, and maintain neural network models. This tool was created to allow innovative companies and research centres to focus on their applications, not on programming algorithms or programming techniques. Neural Designer does not require you to code or create block diagrams. Instead, the interface guides users through a series of clearly defined steps. Machine Learning can be applied in different industries. These are some examples of machine learning solutions: - In engineering: Performance optimization, quality improvement and fault detection - In banking, insurance: churn prevention and customer targeting. - In healthcare: medical diagnosis, prognosis and activity recognition, microarray analysis and drug design. Neural Designer's strength is its ability to intuitively build predictive models and perform complex operations.
  • 15
    Gathr.ai Reviews
    Top Pick
    Gathr is a Data+AI fabric, helping enterprises rapidly deliver production-ready data and AI products. Data+AI fabric enables teams to effortlessly acquire, process, and harness data, leverage AI services to generate intelligence, and build consumer applications— all with unparalleled speed, scale, and confidence. Gathr’s self-service, AI-assisted, and collaborative approach enables data and AI leaders to achieve massive productivity gains by empowering their existing teams to deliver more valuable work in less time. With complete ownership and control over data and AI, flexibility and agility to experiment and innovate on an ongoing basis, and proven reliable performance at real-world scale, Gathr allows them to confidently accelerate POVs to production. Additionally, Gathr supports both cloud and air-gapped deployments, making it the ideal choice for diverse enterprise needs. Gathr, recognized by leading analysts like Gartner and Forrester, is a go-to-partner for Fortune 500 companies, such as United, Kroger, Philips, Truist, and many others.
  • 16
    TrueFoundry Reviews

    TrueFoundry

    TrueFoundry

    $5 per month
    TrueFoundry is a cloud-native platform-as-a-service for machine learning training and deployment built on Kubernetes, designed to empower machine learning teams to train and launch models with the efficiency and reliability typically associated with major tech companies, all while ensuring scalability to reduce costs and speed up production release. By abstracting the complexities of Kubernetes, it allows data scientists to work in a familiar environment without the overhead of managing infrastructure. Additionally, it facilitates the seamless deployment and fine-tuning of large language models, prioritizing security and cost-effectiveness throughout the process. TrueFoundry features an open-ended, API-driven architecture that integrates smoothly with internal systems, enables deployment on a company's existing infrastructure, and upholds stringent data privacy and DevSecOps standards, ensuring that teams can innovate without compromising on security. This comprehensive approach not only streamlines workflows but also fosters collaboration among teams, ultimately driving faster and more efficient model deployment.
  • 17
    Segmind Reviews
    Segmind simplifies access to extensive computing resources, making it ideal for executing demanding tasks like deep learning training and various intricate processing jobs. It offers environments that require no setup within minutes, allowing for easy collaboration among team members. Additionally, Segmind's MLOps platform supports comprehensive management of deep learning projects, featuring built-in data storage and tools for tracking experiments. Recognizing that machine learning engineers often lack expertise in cloud infrastructure, Segmind takes on the complexities of cloud management, enabling teams to concentrate on their strengths and enhance model development efficiency. As training machine learning and deep learning models can be time-consuming and costly, Segmind allows for effortless scaling of computational power while potentially cutting costs by up to 70% through managed spot instances. Furthermore, today's ML managers often struggle to maintain an overview of ongoing ML development activities and associated expenses, highlighting the need for robust management solutions in the field. By addressing these challenges, Segmind empowers teams to achieve their goals more effectively.
  • 18
    ClearML Reviews
    ClearML is an open-source MLOps platform that enables data scientists, ML engineers, and DevOps to easily create, orchestrate and automate ML processes at scale. Our frictionless and unified end-to-end MLOps Suite allows users and customers to concentrate on developing ML code and automating their workflows. ClearML is used to develop a highly reproducible process for end-to-end AI models lifecycles by more than 1,300 enterprises, from product feature discovery to model deployment and production monitoring. You can use all of our modules to create a complete ecosystem, or you can plug in your existing tools and start using them. ClearML is trusted worldwide by more than 150,000 Data Scientists, Data Engineers and ML Engineers at Fortune 500 companies, enterprises and innovative start-ups.
  • 19
    Oracle Data Science Reviews
    A data science platform designed to enhance productivity offers unmatched features that facilitate the development and assessment of superior machine learning (ML) models. By leveraging enterprise-trusted data swiftly, businesses can achieve greater flexibility and meet their data-driven goals through simpler deployment of ML models. Cloud-based solutions enable organizations to uncover valuable business insights efficiently. The journey of constructing a machine learning model is inherently iterative, and this ebook meticulously outlines the stages involved in its creation. Readers can engage with notebooks to either build or evaluate various machine learning algorithms. Experimenting with AutoML can yield impressive data science outcomes, allowing users to create high-quality models with greater speed and ease. Moreover, automated machine learning processes quickly analyze datasets, recommending the most effective data features and algorithms while also fine-tuning models and clarifying their results. This comprehensive approach ensures that businesses can harness the full potential of their data, driving innovation and informed decision-making.
  • 20
    H2O.ai Reviews
    H2O.ai stands at the forefront of open source AI and machine learning, dedicated to making artificial intelligence accessible to all. Our cutting-edge platforms, which are designed for enterprise readiness, support hundreds of thousands of data scientists across more than 20,000 organizations worldwide. By enabling companies in sectors such as finance, insurance, healthcare, telecommunications, retail, pharmaceuticals, and marketing, we are helping to foster a new wave of businesses that harness the power of AI to drive tangible value and innovation in today's marketplace. With our commitment to democratizing technology, we aim to transform how industries operate and thrive.
  • 21
    Zerve AI Reviews
    By combining the advantages of a notebook with the functionality of an IDE, experts are empowered to analyze data while simultaneously developing reliable code, all supported by a fully automated cloud infrastructure. Zerve revolutionizes the data science development environment, providing teams focused on data science and machine learning with a cohesive platform to explore, collaborate, construct, and deploy their AI projects like never before. This innovative tool ensures true language interoperability, allowing users to seamlessly integrate Python, R, SQL, or Markdown within the same workspace, facilitating the connection of various code blocks. Zerve eliminates the frustrations of lengthy code execution or cumbersome containers by enabling unlimited parallel processing throughout the entire development process. Furthermore, artifacts generated during analysis are automatically serialized, versioned, stored, and preserved, making it simple to modify any step in the data pipeline without the need to reprocess earlier stages. Users also benefit from precise control over computing resources and additional memory, which is essential for handling intricate data transformations. With Zerve, data science teams can enhance their workflow efficiency and streamline project management significantly.
  • 22
    Outerbounds Reviews
    Create and execute data-heavy projects using the user-friendly, open-source Metaflow framework. The Outerbounds platform offers a completely managed environment to run, scale, and deploy these projects with reliability. It serves as a comprehensive solution for all your machine learning and data science endeavors. You can securely access data from your current data warehouses and utilize a computing cluster that is tailored for both scalability and cost-effectiveness. With 24/7 managed orchestration, production workflows are streamlined and efficient. Results can be leveraged to enhance any application, empowering your data scientists while receiving approval from engineers. The Outerbounds Platform enables rapid development, large-scale experimentation, and confident production deployment, all while adhering to the policies set by your engineers and operating securely within your cloud account. Security is fundamentally integrated into our platform rather than being an afterthought. It meets your compliance needs through various layers of security measures, including centralized authentication, a strict permission framework, and clearly defined roles for task execution, ensuring that your data and processes remain safe. This cohesive structure allows teams to collaborate effectively while maintaining control over their data environment.
  • 23
    IBM Watson Studio Reviews
    Create, execute, and oversee AI models while enhancing decision-making at scale across any cloud infrastructure. IBM Watson Studio enables you to implement AI seamlessly anywhere as part of the IBM Cloud Pak® for Data, which is the comprehensive data and AI platform from IBM. Collaborate across teams, streamline the management of the AI lifecycle, and hasten the realization of value with a versatile multicloud framework. You can automate the AI lifecycles using ModelOps pipelines and expedite data science development through AutoAI. Whether preparing or constructing models, you have the option to do so visually or programmatically. Deploying and operating models is made simple with one-click integration. Additionally, promote responsible AI governance by ensuring your models are fair and explainable to strengthen business strategies. Leverage open-source frameworks such as PyTorch, TensorFlow, and scikit-learn to enhance your projects. Consolidate development tools, including leading IDEs, Jupyter notebooks, JupyterLab, and command-line interfaces, along with programming languages like Python, R, and Scala. Through the automation of AI lifecycle management, IBM Watson Studio empowers you to build and scale AI solutions with an emphasis on trust and transparency, ultimately leading to improved organizational performance and innovation.
  • 24
    Zepl Reviews
    Coordinate, explore, and oversee all projects within your data science team efficiently. With Zepl's advanced search functionality, you can easily find and repurpose both models and code. The enterprise collaboration platform provided by Zepl allows you to query data from various sources like Snowflake, Athena, or Redshift while developing your models using Python. Enhance your data interaction with pivoting and dynamic forms that feature visualization tools such as heatmaps, radar, and Sankey charts. Each time you execute your notebook, Zepl generates a new container, ensuring a consistent environment for your model runs. Collaborate with teammates in a shared workspace in real time, or leave feedback on notebooks for asynchronous communication. Utilize precise access controls to manage how your work is shared, granting others read, edit, and execute permissions to facilitate teamwork and distribution. All notebooks benefit from automatic saving and version control, allowing you to easily name, oversee, and revert to previous versions through a user-friendly interface, along with smooth exporting capabilities to Github. Additionally, the platform supports integration with external tools, further streamlining your workflow and enhancing productivity.
  • 25
    IBM Cloud Pak for Data Reviews
    The primary obstacle in expanding AI-driven decision-making lies in the underutilization of data. IBM Cloud Pak® for Data provides a cohesive platform that integrates a data fabric, enabling seamless connection and access to isolated data, whether it resides on-premises or in various cloud environments, without necessitating data relocation. It streamlines data accessibility by automatically identifying and organizing data to present actionable knowledge assets to users, while simultaneously implementing automated policy enforcement to ensure secure usage. To further enhance the speed of insights, this platform incorporates a modern cloud data warehouse that works in harmony with existing systems. It universally enforces data privacy and usage policies across all datasets, ensuring compliance is maintained. By leveraging a high-performance cloud data warehouse, organizations can obtain insights more rapidly. Additionally, the platform empowers data scientists, developers, and analysts with a comprehensive interface to construct, deploy, and manage reliable AI models across any cloud infrastructure. Moreover, enhance your analytics capabilities with Netezza, a robust data warehouse designed for high performance and efficiency. This comprehensive approach not only accelerates decision-making but also fosters innovation across various sectors.
  • 26
    Oracle Machine Learning Reviews
    Machine learning reveals concealed patterns and valuable insights within enterprise data, ultimately adding significant value to businesses. Oracle Machine Learning streamlines the process of creating and deploying machine learning models for data scientists by minimizing data movement, incorporating AutoML technology, and facilitating easier deployment. Productivity for data scientists and developers is enhanced while the learning curve is shortened through the use of user-friendly Apache Zeppelin notebook technology based on open source. These notebooks accommodate SQL, PL/SQL, Python, and markdown interpreters tailored for Oracle Autonomous Database, enabling users to utilize their preferred programming languages when building models. Additionally, a no-code interface that leverages AutoML on Autonomous Database enhances accessibility for both data scientists and non-expert users, allowing them to harness powerful in-database algorithms for tasks like classification and regression. Furthermore, data scientists benefit from seamless model deployment through the integrated Oracle Machine Learning AutoML User Interface, ensuring a smoother transition from model development to application. This comprehensive approach not only boosts efficiency but also democratizes machine learning capabilities across the organization.
  • 27
    Cloudera Data Science Workbench Reviews
    Enhance the transition of machine learning from theoretical research to practical application with a seamless experience tailored for your conventional platform. Cloudera Data Science Workbench (CDSW) offers a user-friendly environment for data scientists, allowing them to work with Python, R, and Scala right in their web browsers. Users can download and explore the newest libraries and frameworks within customizable project settings that mirror the functionality of their local machines. CDSW ensures robust connectivity not only to CDH and HDP but also to the essential systems that support your data science teams in their analytical endeavors. Furthermore, Cloudera Data Science Workbench empowers data scientists to oversee their analytics pipelines independently, featuring integrated scheduling, monitoring, and email notifications. This platform enables rapid development and prototyping of innovative machine learning initiatives while simplifying the deployment process into a production environment. By streamlining these workflows, teams can focus on delivering impactful results more efficiently.
  • 28
    Obviously AI Reviews

    Obviously AI

    Obviously AI

    $75 per month
    Experience the entire journey of developing machine learning algorithms and forecasting results with just a single click. Not every dataset is inherently suitable for machine learning; leverage the Data Dialog to effortlessly refine your data without the hassle of file manipulation. You can easily distribute your prediction reports among your team or make them publicly accessible, allowing anyone to engage with your model and generate predictions. Integrate dynamic ML predictions directly into your application through our user-friendly low-code API. Assess factors like willingness to pay, evaluate leads, and more, all in real-time. Obviously AI equips you with the latest groundbreaking algorithms while ensuring top-notch performance is maintained. You can now accurately forecast revenue, streamline supply chains, and tailor marketing efforts to individual needs. With just a CSV upload or a quick integration with your preferred data sources, you can select your prediction column from a convenient dropdown menu and watch as we automatically construct the AI for you. Additionally, enjoy beautifully crafted visualizations of predicted outcomes, identify key influencers, and explore "what-if" scenarios to better understand potential futures. This innovative approach transforms the way you interact with data and make predictions.
  • 29
    Vectice Reviews
    Empowering all AI and machine learning initiatives within enterprises to yield reliable and beneficial outcomes is crucial. Data scientists require a platform that guarantees reproducibility for their experiments, ensures discoverability of every asset, and streamlines the transfer of knowledge. Meanwhile, managers need a specialized data science solution to safeguard knowledge, automate reporting tasks, and simplify review processes. Vectice aims to transform the operational dynamics of data science teams and enhance their collaboration. The ultimate objective is to foster a consistent and advantageous impact of AI and ML across various organizations. Vectice is introducing the first automated knowledge solution that is not only cognizant of data science but also actionable and seamlessly integrates with the tools utilized by data scientists. The platform automatically captures all assets generated by AI and ML teams, including datasets, code, notebooks, models, and runs, while also creating comprehensive documentation that spans from business requirements to production deployments, ensuring that every aspect of the workflow is covered efficiently. This innovative approach allows organizations to maximize their data science potential and drive meaningful results.
  • 30
    Strong Analytics Reviews
    Our platforms offer a reliable basis for creating, developing, and implementing tailored machine learning and artificial intelligence solutions. You can create next-best-action applications that utilize reinforcement-learning algorithms to learn, adapt, and optimize over time. Additionally, we provide custom deep learning vision models that evolve continuously to address your specific challenges. Leverage cutting-edge forecasting techniques to anticipate future trends effectively. With cloud-based tools, you can facilitate more intelligent decision-making across your organization by monitoring and analyzing data seamlessly. Transitioning from experimental machine learning applications to stable, scalable platforms remains a significant hurdle for seasoned data science and engineering teams. Strong ML addresses this issue by providing a comprehensive set of tools designed to streamline the management, deployment, and monitoring of your machine learning applications, ultimately enhancing efficiency and performance. This ensures that your organization can stay ahead in the rapidly evolving landscape of technology and innovation.
  • 31
    DATAGYM Reviews

    DATAGYM

    eForce21

    $19.00/month/user
    DATAGYM empowers data scientists and machine learning professionals to annotate images at speeds that are ten times quicker than traditional methods. The use of AI-driven annotation tools minimizes the manual effort required, allowing for more time to refine machine learning models and enhancing the speed at which new products are launched. By streamlining data preparation, you can significantly boost the efficiency of your computer vision initiatives, reducing the time required by as much as half. This not only accelerates project timelines but also facilitates a more agile approach to innovation in the field.
  • 32
    Deepnote Reviews
    Deepnote is building the best data science notebook for teams. Connect your data, explore and analyze it within the notebook with real-time collaboration and versioning. Share links to your projects with other analysts and data scientists on your team, or present your polished, published notebooks to end users and stakeholders. All of this is done through a powerful, browser-based UI that runs in the cloud.
  • 33
    FICO Analytics Workbench Reviews
    Predictive modeling utilizing machine learning and explainable AI is revolutionized by FICO® Analytics Workbench™, a comprehensive collection of advanced analytic authoring tools that enables organizations to enhance their business decisions throughout the customer journey. This platform allows data scientists to develop exceptional decision-making abilities by leveraging an extensive variety of predictive modeling tools and algorithms, incorporating cutting-edge machine learning and explainable AI techniques. By merging the strengths of open-source data science with FICO's proprietary innovations, we provide unparalleled analytic capabilities to uncover, integrate, and implement predictive insights from data. Additionally, the Analytics Workbench is constructed on the robust FICO® Platform, facilitating the seamless deployment of new predictive models and strategies into operational environments, thereby driving efficiency and effectiveness in business processes. Ultimately, this empowers companies to make informed, data-driven decisions that can significantly impact their success.
  • 34
    Automaton AI Reviews
    Utilizing Automaton AI's ADVIT platform, you can effortlessly create, manage, and enhance high-quality training data alongside DNN models, all from a single interface. The system automatically optimizes data for each stage of the computer vision pipeline, allowing for a streamlined approach to data labeling processes and in-house data pipelines. You can efficiently handle both structured and unstructured datasets—be it video, images, or text—while employing automatic functions that prepare your data for every phase of the deep learning workflow. Once the data is accurately labeled and undergoes quality assurance, you can proceed with training your own model effectively. Deep neural network training requires careful hyperparameter tuning, including adjustments to batch size and learning rates, which are essential for maximizing model performance. Additionally, you can optimize and apply transfer learning to enhance the accuracy of your trained models. After the training phase, the model can be deployed into production seamlessly. ADVIT also supports model versioning, ensuring that model development and accuracy metrics are tracked in real-time. By leveraging a pre-trained DNN model for automatic labeling, you can further improve the overall accuracy of your models, paving the way for more robust applications in the future. This comprehensive approach to data and model management significantly enhances the efficiency of machine learning projects.
  • 35
    Amazon EC2 Trn2 Instances Reviews
    Amazon EC2 Trn2 instances, equipped with AWS Trainium2 chips, are specifically designed to deliver exceptional performance in the training of generative AI models, such as large language and diffusion models. Users can experience cost savings of up to 50% in training expenses compared to other Amazon EC2 instances. These Trn2 instances can accommodate as many as 16 Trainium2 accelerators, boasting an impressive compute power of up to 3 petaflops using FP16/BF16 and 512 GB of high-bandwidth memory. For enhanced data and model parallelism, they are built with NeuronLink, a high-speed, nonblocking interconnect, and offer a substantial network bandwidth of up to 1600 Gbps via the second-generation Elastic Fabric Adapter (EFAv2). Trn2 instances are part of EC2 UltraClusters, which allow for scaling up to 30,000 interconnected Trainium2 chips within a nonblocking petabit-scale network, achieving a remarkable 6 exaflops of compute capability. Additionally, the AWS Neuron SDK provides seamless integration with widely used machine learning frameworks, including PyTorch and TensorFlow, making these instances a powerful choice for developers and researchers alike. This combination of cutting-edge technology and cost efficiency positions Trn2 instances as a leading option in the realm of high-performance deep learning.
  • 36
    FARO Sphere XG Reviews
    FARO Sphere XG, a cloud-based digital platform for digital reality, provides users with a centralized collaborative experience across all of the company's 3D modeling and reality capture applications. Sphere XG, when paired with Stream, enables faster 3D data collection, processing, and project management anywhere in the world. Sphere XG is a systematized tool that allows users to organize 3D scans, 360-degree photos and 3D models. It also allows them to manage data from different teams around the globe. Sphere XG allows you to view and share 3D point clouds, 360-degree photo documentation, and floorplans all in one place. You can also track the progress of your project over time. Ideal for 4D progress management, where the ability of comparing elements over time is crucial, project managers and VDC manager can better democratize the data and eliminate the necessity to use two platforms.
  • 37
    RazorThink Reviews
    RZT aiOS provides all the benefits of a unified AI platform, and more. It's not just a platform, it's an Operating System that connects, manages, and unifies all your AI initiatives. AI developers can now do what used to take months in days thanks to aiOS process management which dramatically increases their productivity. This Operating System provides an intuitive environment for AI development. It allows you to visually build models, explore data and create processing pipelines. You can also run experiments and view analytics. It's easy to do all of this without any advanced software engineering skills.
  • 38
    AWS Neuron Reviews
    It enables efficient training on Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances powered by AWS Trainium. Additionally, for model deployment, it facilitates both high-performance and low-latency inference utilizing AWS Inferentia-based Amazon EC2 Inf1 instances along with AWS Inferentia2-based Amazon EC2 Inf2 instances. With the Neuron SDK, users can leverage widely-used frameworks like TensorFlow and PyTorch to effectively train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal alterations to their code and no reliance on vendor-specific tools. The integration of the AWS Neuron SDK with these frameworks allows for seamless continuation of existing workflows, requiring only minor code adjustments to get started. For those involved in distributed model training, the Neuron SDK also accommodates libraries such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP), enhancing its versatility and scalability for various ML tasks. By providing robust support for these frameworks and libraries, it significantly streamlines the process of developing and deploying advanced machine learning solutions.
  • 39
    DreamQuark Brain Reviews
    AI can sometimes be sluggish, perplexing, and expensive. Brain revolutionizes the way wealth managers access hyper-personalized insights, making it both straightforward and rapid. Enhance your client service and foster smarter growth with Brain’s capabilities. Transform your data into intuitive insights with just a few clicks to inform your next strategic move. With Brain’s transparent AI, advisors gain clarity on the rationale behind each suggestion. You can utilize Brain’s CX application or seamlessly integrate it with your existing CX platform and cloud service. Boost your revenue potential by identifying which clients are most receptive to cross-sell and upsell initiatives. Elevate your campaign effectiveness by pinpointing clients who are likely to express interest in specific products and understanding their motivations. Act swiftly to retain clients by recognizing those who may be at risk of leaving and uncovering the underlying reasons. Brain’s transparent AI not only delivers hyper-personalized insights but also ensures they are easy to understand, empowering advisors to take action confidently. By streamlining and automating insight generation and maintenance, Brain saves you both time and costs, allowing you to focus on what truly matters: your clients and their needs. With these advancements, you can create a more dynamic and responsive advisory service.
  • 40
    Intel Tiber AI Studio Reviews
    Intel® Tiber™ AI Studio serves as an all-encompassing machine learning operating system designed to streamline and unify the development of artificial intelligence. This robust platform accommodates a diverse array of AI workloads and features a hybrid multi-cloud infrastructure that enhances the speed of ML pipeline creation, model training, and deployment processes. By incorporating native Kubernetes orchestration and a meta-scheduler, Tiber™ AI Studio delivers unparalleled flexibility for managing both on-premises and cloud resources. Furthermore, its scalable MLOps framework empowers data scientists to seamlessly experiment, collaborate, and automate their machine learning workflows, all while promoting efficient and cost-effective resource utilization. This innovative approach not only boosts productivity but also fosters a collaborative environment for teams working on AI projects.
  • 41
    RunLve Reviews
    Runlve is at the forefront of the AI revolution. We provide data science, MLOps and data & models management to empower our community and customers with AI capabilities that will propel their projects forward.
  • 42
    Alteryx Reviews
    Embrace a groundbreaking age of analytics through the Alteryx AI Platform. Equip your organization with streamlined data preparation, analytics powered by artificial intelligence, and accessible machine learning, all while ensuring governance and security are built in. This marks the dawn of a new era for data-driven decision-making accessible to every user and team at all levels. Enhance your teams' capabilities with a straightforward, user-friendly interface that enables everyone to develop analytical solutions that boost productivity, efficiency, and profitability. Foster a robust analytics culture by utilizing a comprehensive cloud analytics platform that allows you to convert data into meaningful insights via self-service data preparation, machine learning, and AI-generated findings. Minimize risks and safeguard your data with cutting-edge security protocols and certifications. Additionally, seamlessly connect to your data and applications through open API standards, facilitating a more integrated and efficient analytical environment. By adopting these innovations, your organization can thrive in an increasingly data-centric world.
  • 43
    SAS Data Science Programming Reviews
    Develop, implement, and manage data-driven decision-making processes on a large scale in either real-time or batch modes. SAS Data Science Programming caters to data scientists who prefer a purely programmatic method, allowing them to utilize SAS's analytical tools throughout the entire analytics life cycle, which encompasses data preparation, exploration, and deployment. Uncover and visualize significant patterns within your datasets, enabling the creation and dissemination of interactive reports and dashboards. Additionally, leverage self-service analytics to swiftly evaluate likely outcomes, leading to more informed and data-centric decisions. Engage with your data and create or modify predictive analytical models using the SAS® Viya® platform. This collaborative environment empowers data scientists, statisticians, and analysts to work together, refining their models iteratively for various segments, ultimately supporting decision-making based on reliable insights. Tackle intricate analytical challenges through an all-encompassing visual interface that efficiently manages every aspect of the analytics life cycle, ensuring that users can navigate complexities with ease and precision. By embracing this approach, organizations can enhance their strategic decision-making capabilities significantly.
  • 44
    Key Ward Reviews

    Key Ward

    Key Ward

    €9,000 per year
    Effortlessly manage, process, and transform CAD, FE, CFD, and test data with ease. Establish automatic data pipelines for machine learning, reduced order modeling, and 3D deep learning applications. Eliminate the complexity of data science without the need for coding. Key Ward's platform stands out as the pioneering end-to-end no-code engineering solution, fundamentally changing the way engineers work with their data, whether it be experimental or CAx. By harnessing the power of engineering data intelligence, our software empowers engineers to seamlessly navigate their multi-source data, extracting immediate value through integrated advanced analytics tools while also allowing for the custom development of machine learning and deep learning models, all within a single platform with just a few clicks. Centralize, update, extract, sort, clean, and prepare your diverse data sources for thorough analysis, machine learning, or deep learning applications automatically. Additionally, leverage our sophisticated analytics tools on your experimental and simulation data to uncover correlations, discover dependencies, and reveal underlying patterns that can drive innovation in engineering processes. Ultimately, this approach streamlines workflows, enhancing productivity and enabling more informed decision-making in engineering endeavors.
  • 45
    Amazon EC2 Trn1 Instances Reviews
    The Trn1 instances of Amazon Elastic Compute Cloud (EC2), driven by AWS Trainium chips, are specifically designed to enhance the efficiency of deep learning training for generative AI models, such as large language models and latent diffusion models. These instances provide significant cost savings of up to 50% compared to other similar Amazon EC2 offerings. They are capable of facilitating the training of deep learning and generative AI models with over 100 billion parameters, applicable in various domains, including text summarization, code generation, question answering, image and video creation, recommendation systems, and fraud detection. Additionally, the AWS Neuron SDK supports developers in training their models on AWS Trainium and deploying them on the AWS Inferentia chips. With seamless integration into popular frameworks like PyTorch and TensorFlow, developers can leverage their current codebases and workflows for training on Trn1 instances, ensuring a smooth transition to optimized deep learning practices. Furthermore, this capability allows businesses to harness advanced AI technologies while maintaining cost-effectiveness and performance.