Best Digimat Alternatives in 2026

Find the top alternatives to Digimat currently available. Compare ratings, reviews, pricing, and features of Digimat alternatives in 2026. Slashdot lists the best Digimat alternatives on the market that offer competing products that are similar to Digimat. Sort through Digimat alternatives below to make the best choice for your needs

  • 1
    SwiftComp Reviews
    SwiftComp is an innovative composite simulation software that combines multiscale and multiphysics capabilities to provide the precision of 3D finite element analysis (FEA) with the simplicity of basic engineering models. This groundbreaking tool simplifies the modeling process for engineers, allowing them to treat composites with the same ease as metals while maintaining accuracy and capturing intricate microstructural details. It offers cohesive modeling for structures that are one-dimensional (like beams), two-dimensional (such as plates or shells), and three-dimensional, effectively calculating the material properties required. Users can utilize SwiftComp independently for virtual composite testing or as an enhancement to existing structural analysis tools, thereby integrating high-fidelity composite modeling into their workflows. Additionally, SwiftComp excels in determining the optimal structural model for macroscopic analysis and includes capabilities for dehomogenization, which enables the calculation of pointwise stresses within the microstructure. It seamlessly connects with established software such as ABAQUS and ANSYS, further broadening its applicability in engineering projects. As a result, SwiftComp significantly enhances the efficiency and effectiveness of composite material modeling in various engineering applications.
  • 2
    Altair SimSolid Reviews
    SimSolid is the revolutionary simulation technology for engineers, designers, and analysts. It performs structural analyses on fully-featured CAD assemblies in minutes. SimSolid eliminates geometry preparation, meshing, and other errors that are time-consuming and difficult to perform in conventional structural simulations. Multiple design scenarios can be simulated quickly under real-life conditions. You can use any CAD model, even an early one. SimSolid tolerance for imprecise geometry means SimSolid simulation tools don't need to be simplified before analyzing designs. SimSolid supports all types of connections (bolt/nuts, bonded, rivets and sliding) and analysis for linear static, modal, and thermal properties. It also supports complex coupled, nonlinear, dynamic effects.
  • 3
    Simcenter Femap Reviews

    Simcenter Femap

    Siemens Digital Industries

    Simcenter Femap is a sophisticated simulation tool designed for the creation, modification, and analysis of finite element models pertaining to intricate products or systems. This software allows users to implement advanced workflows for modeling individual components, assemblies, or entire systems, enabling them to assess how these models react under realistic conditions. Moreover, Simcenter Femap offers robust data-driven capabilities and graphical visualizations for results interpretation, which, when paired with the top-tier Simcenter Nastran, provides a holistic CAE solution aimed at enhancing product performance. As manufacturers strive to develop lighter yet more robust products, there is a growing emphasis on the utilization of composite materials. Simcenter stands at the forefront of composite analysis, continually advancing its material models and element types to meet industry demands. Furthermore, Simcenter accelerates the simulation process for laminate composite materials by providing an integrated connection to composite design, streamlining workflows for engineers in the field. This integration ultimately fosters innovation and efficiency in product development, paving the way for more sustainable manufacturing practices.
  • 4
    GENOA 3DP Reviews
    GENOA 3DP is a comprehensive software suite and design tool tailored for additive manufacturing across polymers, metals, and ceramics. Its simulate-to-print capabilities highlight strong performance and user-friendly interaction, making it an effective choice for diverse applications. With the ability to deliver precision at the micro-scale and significantly minimize material waste and engineering time, GENOA 3DP can be swiftly incorporated into any manufacturing process to ensure optimal additive manufacturing outcomes. Rooted in advanced failure analysis techniques and enhanced by multi-scale material modeling, this tool empowers engineers to reliably forecast issues like voids, net shapes, residual stress, and crack propagation in as-built additive manufacturing components. By offering a consistent approach to enhance part quality, decrease scrap rates, and adhere to specifications, GENOA 3DP effectively connects the fields of material science and finite element analysis, ultimately driving innovation in the manufacturing sector. This integration fosters a deeper understanding of material behaviors, paving the way for more efficient production methodologies.
  • 5
    Ansys LS-DYNA Reviews
    Ansys LS-DYNA stands out as the leading explicit simulation software widely utilized for various applications, including drop testing, impact analysis, penetration scenarios, collisions, and ensuring occupant safety. Renowned as the most extensively used explicit simulation tool globally, Ansys LS-DYNA excels in modeling the behavior of materials subjected to brief yet intense loading conditions. Its comprehensive suite of elements, contact formulations, and material models enables the simulation of intricate models while allowing precise control over every aspect of the issue at hand. The software offers a broad range of analyses, boasting rapid and effective parallel processing capabilities. Engineers can investigate simulations that involve material failure, examining how such failures evolve through components or entire systems. Additionally, LS-DYNA adeptly manages models with numerous interacting parts or surfaces, ensuring that the interactions and load transfers between complex behaviors are accurately represented. This capability makes LS-DYNA an invaluable tool for engineers facing multifaceted simulation challenges.
  • 6
    DIGIMU Reviews
    DIGIMU® creates digital polycrystalline microstructures that accurately reflect the material's heterogeneities, ensuring compliance with the intricate topological features of the microstructure. The boundary conditions applied to the Representative Elementary Volume (REV) mimic the experiences of a material point at the macroscopic level, particularly during the thermomechanical cycles relevant to that specific point. Utilizing a Finite Element formulation, the software simulates the various physical phenomena occurring in metal forming processes, such as recrystallization, grain growth, and Zener pinning caused by second phase particles. To enhance digital accuracy and minimize computation times, DIGIMU® employs advanced automated anisotropic meshing and remeshing adaptation technology, which allows for a detailed representation of grain boundaries while optimizing the number of elements used. This innovative approach not only streamlines the computational process but also improves the reliability of the simulations, making it a powerful tool for material scientists.
  • 7
    ProSteel Reviews

    ProSteel

    Bentley

    $4,193 per year
    ProSteel software enables the efficient creation of precise 3D models for structural steel, metal projects, and steel assemblies. It allows users to swiftly generate design drawings, fabrication details, and schedules that automatically update in response to any modifications made to the 3D model. Furthermore, the software provides detailed outputs for CNC machines, streamlining the steel fabrication process. ProSteel is designed to support your construction and planning efforts for structural steel and metal work within a 3D modeling environment. When used alongside AutoCAD or MicroStation, it offers an intuitive and integrated multi-material modeler that is ideal for designing complex structures, producing shop drawings, assembling connections, and managing bills of materials. You can quickly extract 2D drawings that will adjust automatically when the 3D model is altered. Additionally, ProSteel's interoperability with other Bentley and third-party applications facilitates seamless information exchange across different disciplines, improving collaboration and efficiency throughout the project lifecycle. This capability enhances the overall workflow, making it easier to coordinate tasks among various teams involved in the construction process.
  • 8
    SOLIDWORKS Simulation Reviews
    Subjecting your designs to real-world scenarios can significantly enhance product quality while simultaneously minimizing the costs associated with prototyping and physical testing. The SOLIDWORKS® Simulation suite offers a user-friendly collection of structural analysis tools that employ Finite Element Analysis (FEA) to forecast how a product will behave in actual physical conditions by virtually evaluating CAD models. This comprehensive portfolio is equipped with capabilities for both linear and non-linear static and dynamic analyses. With SOLIDWORKS Simulation Professional, you can refine your designs by assessing mechanical resistance, durability, topology, natural frequencies, as well as examining heat transfer and potential buckling issues. Additionally, it facilitates sequential multi-physics simulations to enhance design accuracy. On the other hand, SOLIDWORKS Simulation Premium allows for an in-depth assessment of designs concerning nonlinear and dynamic responses, dynamic loading conditions, and composite materials. This advanced tier also features three specialized studies: Non-Linear Static, Non-Linear Dynamic, and Linear Dynamics, ensuring a thorough evaluation of your engineering projects. By leveraging these powerful tools, engineers can achieve greater design confidence and innovation.
  • 9
    BIOVIA Materials Studio Reviews
    BIOVIA Materials Studio serves as an all-encompassing platform for modeling and simulation, specifically tailored to assist researchers in the fields of materials science and chemistry in forecasting and comprehending how a material's atomic and molecular configurations correlate with its characteristics and functionalities. By adopting an "in silico first" strategy, researchers can enhance material performance in a budget-friendly virtual environment before moving to physical experimentation. This versatile software accommodates a diverse array of materials, such as catalysts, polymers, composites, metals, alloys, pharmaceuticals, and batteries. With capabilities that span quantum, atomistic, mesoscale, statistical, analytical, and crystallization simulations, it streamlines the development of innovative materials across multiple sectors. Additionally, its features promote rapid innovation, decrease research and development expenditures through virtual screening, and boost productivity by automating established practices within Pipeline Pilot, making it an indispensable tool for modern material research and development. This comprehensive functionality not only enhances research efficiency but also positions users at the forefront of material advancements.
  • 10
    RFEM Reviews

    RFEM

    Dlubal Software

    €697.50 rent 1 month
    The FEA program RFEM enables quick and easy modeling, structural, and dynamic calculation as well as the design and construction of models with member and plate, wall, folded plates, shell, shell, and other solid elements. Modular software allows you to connect the main program RFEM to the appropriate add-ons to meet your specific requirements. Structural analysis program RFEM offers structural engineers a 3D FEA tool that meets all modern civil engineering requirements. Simple and complex structures can be modelled with ease thanks to efficient data input and intuitive handling. The basis of a modular software program is the structural analysis program RFEM. The RFEM basic program is used to create structures, materials, loads, and plans for spatial and planar structural systems that include plates, walls, shells and members. You can also create mixed structures and model contact elements.
  • 11
    COMSOL Multiphysics Reviews
    Utilize COMSOL's multiphysics software to replicate real-world designs, devices, and processes effectively. This versatile simulation tool is grounded in sophisticated numerical techniques. It boasts comprehensive capabilities for both fully coupled multiphysics and single-physics modeling. Users can navigate a complete modeling workflow, starting from geometry creation all the way to postprocessing. The software provides intuitive tools for the development and deployment of simulation applications. COMSOL Multiphysics® ensures a consistent user interface and experience across various engineering applications and physical phenomena. Additionally, specialized functionality is available through add-on modules that cater to fields such as electromagnetics, structural mechanics, acoustics, fluid dynamics, thermal transfer, and chemical engineering. Users can select from a range of LiveLink™ products to seamlessly connect with CAD systems and other third-party software. Furthermore, applications can be deployed using COMSOL Compiler™ and COMSOL Server™, enabling the creation of physics-driven models and simulation applications within this robust software ecosystem. With such extensive capabilities, it empowers engineers to innovate and enhance their projects effectively.
  • 12
    AxisVM Reviews

    AxisVM

    InterCAD

    $500 one-time payment
    AxisVM is primarily utilized for designing buildings, along with industrial and geotechnical structures. Its robust finite element solver combined with practical modeling tools makes it suitable for bridge design, as well as for developing composite structures, machines, and vehicles. In addition to standard configurations, users have access to optional design modules tailored for structures constructed from reinforced concrete, steel, timber, and masonry members and connections. Furthermore, the software's unique elements and advanced analysis capabilities enable the successful design of innovative and custom structures. Additionally, users can generate comprehensive reports that include tables, drawings, and detailed design calculations, complete with tailored headings and text. These reports are dynamically updated, automatically reflecting the latest model data and results, ensuring accuracy and relevance in documentation. This feature enhances user efficiency by simplifying the reporting process.
  • 13
    Thermo-Calc Reviews
    Thermo-Calc is an advanced thermodynamic modeling tool utilized by materials scientists and engineers to derive data on material properties, deepen their understanding of materials, clarify specific phenomena, and address targeted inquiries regarding certain materials and their processing techniques. This software comes equipped with a variety of standard calculators included in all licenses, such as the Equilibrium Calculator, Scheil Solidification Simulations, Property Model Calculator, General Model Library, Material to Material Calculator, Pourbaix Diagram Module, and the Data Optimization Module (PARROT). Additionally, users can enhance Thermo-Calc's capabilities with multiple Add-on Modules and access over 40 databases, all seamlessly integrated into a single platform, creating a cohesive working environment. The software allows for the calculation of the state of a specified thermodynamic system, yielding valuable insights into phase quantities and compositions, transformation temperatures, solubility thresholds, and the driving forces behind phase formation, among other important metrics. Furthermore, this powerful modeling tool facilitates innovative research and development in materials science by enabling users to simulate various scenarios and predict outcomes effectively.
  • 14
    Altair S-FRAME Reviews
    S-FRAME empowers users to model, analyze, and design any type of structure, accommodating a wide range of geometric complexities, material specifications, loading scenarios, nonlinear behaviors, and design code stipulations. The platform features automated framework generators that facilitate rapid model creation and offers seamless integration with BIM and DXF formats, allowing users to enhance their efficiency with built-in design tools for concrete and steel, which support design, optimization, code adherence, and report generation. Through S-FRAME, users can swiftly define structures with advanced modeling automation, enabling the generation of regular framework structures and both standard and custom trusses, while clone tools allow for the easy replication of entire models or specific sections. Moreover, the ability to import existing BIM and DXF models significantly reduces modeling time, further improving productivity. The sophisticated meshing capabilities of S-FRAME create a detailed finite element mesh, equipping users to derive comprehensive analysis results tailored to their areas of interest. Lastly, users have the flexibility to delve deeper into their analysis by converting members into multi-shell models, enhancing their understanding and evaluation of structural performance.
  • 15
    QSimulate Reviews
    QSimulate presents an array of quantum simulation platforms that harness the principles of quantum mechanics to address intricate, large-scale challenges in life sciences and materials science. The QSP Life platform introduces innovative quantum-enhanced techniques for drug discovery and optimization, facilitating pioneering quantum simulations of ligand-protein interactions that are relevant throughout the entire computational drug discovery journey. Meanwhile, the QUELO platform enables hybrid quantum/classical free energy calculations, empowering users to conduct relative free energy assessments via the free energy perturbation (FEP) method. Furthermore, QSimulate's advancements enable significant progress in quantum mechanics/molecular mechanics (QM/MM) simulations tailored for extensive protein modeling. In the realm of materials science, the QSP Materials platform opens up quantum mechanical simulations to a broader audience, allowing experimentalists to streamline complex workflows without requiring specialized expertise, ultimately fostering greater innovation in the field. This democratization of technology marks a pivotal shift in how researchers can approach and solve scientific problems.
  • 16
    Citrine Reviews
    The Citrine Platform integrates state-of-the-art AI technologies with advanced data management systems, offering user-friendly interfaces and robust security measures that comply with industry standards, all while being securely hosted in the cloud. It effectively captures, organizes, and retains comprehensive information regarding the development of materials and chemicals, spanning from procurement to processing and characterization. By minimizing unnecessary experiments, users can swiftly access pertinent data sets. With its powerful AI features, the Citrine Platform accelerates the identification of high-performing materials. Its predictive models analyze materials' performance based on processing, composition, and synthesis details, guiding users on the next experiments to undertake in order to meet their objectives. Furthermore, the Citrine Platform ensures the integrity and confidentiality of your data, domain expertise, and models through stringent protective measures. The platform is backed by ISO27001 certification and comprehensive documentation, providing additional assurance of its commitment to security and best practices. This attention to detail and dedication to user needs makes the Citrine Platform a valuable tool for the materials science community.
  • 17
    FloCAD Reviews
    FloCAD® serves as an add-on module for Thermal Desktop®, creating a comprehensive software solution for thermohydraulic analysis that encompasses fluid flow and heat transfer. The process of constructing fluid flow models in FloCAD closely resembles that of thermal models, allowing for the use of numerous shared commands across both model types. Users can create FloCAD models using a free-form approach, which allows for the simplification and abstraction of flow networks, or they can opt for geometry-based modeling that incorporates elements like pipe centerlines, cross-sections, and intricate vessels, as well as convection calculations linked to finite difference or finite element thermal structures. As an advanced tool for pipe flow analysis, FloCAD effectively accounts for pressure losses within piping networks arising from bends, valves, tees, and variations in flow area, among other factors. This versatility makes FloCAD a valuable asset for engineers looking to optimize system designs.
  • 18
    STAAD Reviews

    STAAD

    Bentley

    $3,000 per year
    With STAAD, you are empowered to design, assess, and document structural projects globally, utilizing any material you choose. This software provides a versatile solution tailored to meet all your structural engineering requirements from the ground up. STAAD serves as an all-encompassing application for structural finite element analysis and design, enabling users to conduct evaluations on any structure subjected to various loads including static, dynamic, wind, seismic, thermal, and moving forces. Available in multiple variations, STAAD allows you to select the version that best suits your specific needs. Renowned for its analytical capabilities, extensive applications, interoperability, and efficiency, STAAD is a favored choice among structural engineers. It facilitates 3D structural analysis and design for both steel and concrete frameworks. Furthermore, a physical model created within the software can easily be converted into an analytical model for in-depth structural analysis. STAAD incorporates numerous design code standards, ensuring compliance and accuracy in engineering practices. In addition, its user-friendly interface enhances productivity, making complex design processes simpler and more efficient.
  • 19
    Ansys Autodyn Reviews
    Ansys Autodyn enables the simulation of material responses to various events, including short-duration severe mechanical loadings, high pressures, and explosions. This software combines advanced solution techniques with user-friendly features, making it accessible for quick comprehension and simulation of significant material deformation or failure. It offers a diverse range of models to accurately capture complex physical phenomena, such as the interactions between liquids, solids, and gases, as well as phase transitions in materials and shock wave propagation. With seamless integration into Ansys Workbench and its intuitive user interface, Ansys Autodyn stands out in the industry by facilitating the generation of precise results efficiently. The inclusion of the smooth particle hydrodynamics (SPH) solver enhances its capabilities for explicit analysis, ensuring comprehensive support for various simulation needs. Furthermore, Ansys Autodyn allows users to choose from multiple solver technologies, ensuring that the most suitable solver is applied for different components of the model, thus optimizing performance and accuracy.
  • 20
    Scia Engineer Reviews
    SCIA Engineer is a multi-material, integrated structural analysis software and design tool that can be used to design all types of structures. It is a versatile tool that can be used to design office buildings, industrial plants and bridges, as well as other projects, in a single, easy-to-use environment. It offers powerful CAD-like modeling, advanced calculations, code-compliant multimaterial design, and customizable reports. You can automate common situations with built-in or custom-made parametric templates for different geometries, and powerful load generation software. SCIA Engineer offers the most complete implementation of Eurocodes, including U.S. codes, and other international standards. Through powerful bi-directional links to Allplan, Revit, Tekla Structures, Open BIM’s IFC and third-party plugs-ins, seamless exchange of models with other stakeholders.
  • 21
    Materials Zone Reviews
    Transforming materials data into superior products at an accelerated pace enhances research and development, streamlines scaling processes, and optimizes quality control and supply chain decisions. This approach enables the discovery of innovative materials while utilizing machine learning guidance to predict outcomes, leading to swifter and more effective results. As you progress towards production, you can construct a model that tests the boundaries of your products, facilitating the design of cost-effective and resilient production lines. Furthermore, these models can forecast potential failures by analyzing the supplied materials informatics alongside production line parameters. The Materials Zone platform compiles data from various independent sources, including materials suppliers and manufacturing facilities, ensuring secure communication between them. By leveraging machine learning algorithms on your experimental data, you can identify new materials with tailored properties, create ‘recipes’ for their synthesis, develop tools for automatic analysis of unique measurements, and gain valuable insights. This holistic approach not only enhances the efficiency of R&D but also fosters collaboration across the materials ecosystem, ultimately driving innovation forward.
  • 22
    AQChemSim Reviews
    AQChemSim is an innovative cloud-based platform created by SandboxAQ that utilizes Large Quantitative Models (LQMs) based on principles of physics and chemistry to transform the landscape of materials discovery and enhancement. By incorporating techniques such as Density Functional Theory (DFT), Iterative Full Configuration Interaction (iFCI), Generative AI, Bayesian Optimization, and Chemical Foundation Models, AQChemSim facilitates precise simulations of molecular and material dynamics in real-world scenarios. The platform's features allow it to forecast performance under diverse stress conditions, expedite formulation via in silico testing, and investigate eco-friendly chemical processes. Remarkably, AQChemSim has achieved notable progress in battery technology, cutting the prediction time for lithium-ion battery end-of-life by 95%, while also attaining 35 times greater accuracy with a mere fraction of the data previously required. This advancement not only streamlines research but also paves the way for more efficient and sustainable energy solutions in the future.
  • 23
    Inventor Nastran Reviews
    Inventor® Nastran® is a finite element analysis (FEA) tool integrated within CAD software, enabling engineers and analysts to perform a diverse range of studies using various materials. This software provides comprehensive simulation capabilities that encompass both linear and nonlinear stress analysis, dynamic simulations, and heat transfer assessments. It is exclusively accessible through the Product Design & Manufacturing Collection, which includes a suite of powerful tools designed to enhance workflows within Inventor. In addition to advanced simulation features, this collection also offers 5-axis CAM, nesting tools, and access to software like AutoCAD and Fusion 360, ensuring a holistic approach to product design and manufacturing processes. By utilizing Inventor Nastran, professionals can streamline their analysis and improve their design outcomes significantly.
  • 24
    Fatigue Essentials Reviews

    Fatigue Essentials

    AppliedCAx

    $695 one-time payment
    Fatigue Essentials is a desktop software designed to streamline the process of structural fatigue analysis. This application offers an intuitive interface for performing stress-life evaluations, utilizing either traditional stress calculations or integrating with FEMAP™ to leverage finite element analysis results. The program is designed with a user-friendly tree structure that guides users through various stages of analysis, starting with selections related to loads, materials, and spectrum branches. Each section allows for different variations of analysis or methods of input. Users can view analysis results directly on the screen, which can be easily copied into reports or visualized as damage contour plots in FEMAP. It encompasses a wide range of engineering needs, featuring a classic mode that allows for manual input of stresses and a professional mode linked with FEMAP, which can read nodal stresses and generate damage contour visualizations. Additionally, users have the flexibility to choose between interactive input or file uploads for entering stresses and cycles, enhancing the application's versatility. Ultimately, Fatigue Essentials stands out as an essential tool for engineers engaged in fatigue analysis.
  • 25
    Ansys Granta Reviews
    Ansys Granta products, cultivated over a quarter-century, empower organizations to harness, protect, and leverage their Material Intelligence effectively. By facilitating the digitalization of materials knowledge, Ansys assists businesses in selecting appropriate materials for their products and provides educational resources related to materials. The suite of materials information management software offered by Ansys Granta enables companies to fully utilize their internal Material Intelligence. Ansys Granta MI™ serves as a flexible solution, allowing for the creation, management, and storage of crucial material data, while ensuring smooth integration with top CAD, CAE, and PLM systems to maintain consistency across the enterprise. With Ansys Granta Selector, users can make informed material selections by evaluating various properties from an extensive database, ensuring optimal material choices for their specific applications. Additionally, access to an unparalleled materials data library significantly enhances the accuracy of simulations conducted by engineers.
  • 26
    PROFIS Engineering Suite Reviews
    The Hilti PROFIS Engineering Suite is an intuitive, cloud-based software solution that streamlines the design of structural connections in construction projects, enhancing productivity with its time-saving features. Users can design connections for various base materials and applications, including anchors in concrete, masonry, and concrete over metal, while also developing post-installed rebar, base plates, and diaphragm shear fasteners for metal deck attachments. This software not only simplifies the design process but also includes productivity-enhancing features like Smart Design anchor layout, load importation, the ability to run multiple load combinations, and the creation of design templates. For those who are new to PROFIS Engineering, there is an opportunity to register for a complimentary 30-day trial of the premium version or opt for the no-cost standard version. Additionally, this software is designed to cater to the needs of both novice and experienced professionals alike, making it a versatile tool in the construction industry.
  • 27
    MIDAS FEA NX Reviews
    MIDAS FEA NX is an advanced finite element analysis (FEA) software designed specifically for intricate structural and civil engineering simulations, featuring an intuitive, CAD-like interface that enhances user experience alongside powerful analytical functions. The software enables engineers to easily import a variety of 3D CAD files and generate high-quality finite element meshes using both automatic and hybrid mesh techniques, thereby minimizing the time spent on manual preparation and enhancing the precision of models. With support for both linear and nonlinear analyses, it can conduct complex simulations utilizing high-performance solvers and parallel computing, making it adept at managing extensive, real-world projects with ease. MIDAS FEA NX is particularly proficient at executing refined method analyses that meet the stringent requirements of design codes for structures characterized by intricate geometries, allowing for comprehensive assessments of stress, deformation, and performance across a range of loading scenarios. Additionally, it offers seamless integration with other tools in the MIDAS COLLECTION and various structural analysis applications, ensuring a cohesive workflow for engineers. Ultimately, the robust feature set of MIDAS FEA NX positions it as a critical resource in the toolkit of any structural engineer.
  • 28
    DesignCalcs Reviews
    DesignCalc software offers users a comprehensive set of features, complemented by an integrated library of industry standards and effective practices that simplify compliance with ASME BPVC Section VIII for pressure vessel design like never before. It includes Finite Element Analysis (FEA) tools that facilitate rapid and straightforward assessments. NozzlePRO serves as a robust and efficient 3-D FEA application, adept at modeling nozzles, saddles, pipe shoes, and clips. Users can enhance their designs by performing calculations that determine either pressure or thickness. This allows for the use of the slimmest materials available while still adhering to necessary codes. Additionally, the software can produce industry-standard report formats that encompass the actual calculations utilized, making them ready for thorough review by inspectors. This ensures that all aspects of pressure vessel design are not only efficient but also compliant with industry regulations.
  • 29
    Osium AI Reviews
    Osium AI is an advanced software platform that harnesses artificial intelligence to assist industry leaders in speeding up the creation of sustainable, high-performance materials and chemicals. Utilizing an innovative technology founded on over ten years of expertise and numerous AI patents, Osium AI provides a comprehensive solution that addresses all phases of the materials and chemicals development process, including formulation, characterization, scale-up, and manufacturing. This platform empowers users to swiftly predict any material or chemical property within seconds, create optimal research and development experiment plans, and quickly analyze material characteristics and flaws. Additionally, it allows for the optimization of current processes, leading to reduced costs, improved material properties, and lower CO₂ emissions. With its adaptable software, Osium AI is equipped to support a wide range of R&D projects while accommodating the ever-changing demands of the industry. Overall, the platform stands out as a crucial tool for enhancing innovation in materials science.
  • 30
    Simufact Welding Reviews
    Simufact Welding is a versatile product line that delivers extensive capabilities for simulating the elastic-plastic behavior of materials alongside structural welding processes. This software encompasses a variety of welding techniques, enabling users to model and simulate numerous thermal joining methods, including conventional arc and beam welding as well as brazing. Furthermore, it allows for the modeling of heat treatment processes, variations in cooling and unclamping setups, and the mechanical loading of welded structures. It is essential to identify critical distortions related to assembly, bulging, imbalances, and clearances during the simulation process. Users can also explore and enhance clamping tools before making any financial commitments to tool investments. This software aids in determining the most effective welding directions and sequences, ultimately leading to improved welding outcomes and more efficient production processes. Additionally, it supports engineers in refining their designs for optimal performance and reliability.
  • 31
    ExoMatter Reviews
    ExoMatter is revolutionizing the traditionally tedious and expensive process of materials research and development by harnessing advanced AI technologies and data-mining capabilities. The platform offers a tailored selection of the most appropriate materials for your specific needs. By integrating data from various scientific repositories and your own datasets, ExoMatter enhances this information through AI, enabling you to evaluate a diverse array of multidimensional physical, chemical, and engineering factors, alongside sustainability concerns and projected costs. Our commitment to using scientific materials data aims to identify superior and more eco-friendly materials. With our innovative materials research platform, you can swiftly navigate through millions of materials, using AI-driven tools that not only enrich the data but also provide you with comprehensive control over your selection criteria. Leverage ExoMatter’s unique scoring and ranking system to compile a refined list of materials that best suit your application, ensuring that you make informed and efficient choices in your materials selection process. This approach not only streamlines your research efforts but also significantly enhances the overall quality and sustainability of your material choices.
  • 32
    InQuanto Reviews
    Quantum computing paves the way for the swift and cost-efficient creation of novel molecules and materials. InQuanto, an advanced platform for quantum computational chemistry, marks a significant advancement towards achieving this objective. The field of quantum chemistry seeks to precisely characterize and forecast the essential properties of matter, making it an invaluable asset for the innovation and formulation of new substances. Nonetheless, the intricacies of industrially relevant molecules and materials present challenges for accurate simulation. Current technologies necessitate a compromise, forcing users to choose between utilizing highly precise methods on minimal systems or resorting to approximations. InQuanto's adaptable workflow allows both computational chemists and quantum algorithm engineers to seamlessly integrate cutting-edge quantum algorithms with sophisticated subroutines and error mitigation techniques, optimizing performance on existing quantum platforms. This flexibility not only enhances research outcomes but also fosters collaboration among experts in the field, driving further innovation.
  • 33
    Ansys Mechanical Reviews
    Ansys Mechanical stands out as an exceptional finite element solver, featuring capabilities in structural, thermal, acoustics, transient, and nonlinear analyses to enhance your modeling processes. This powerful tool allows you to tackle intricate structural engineering challenges, facilitating quicker and more informed design choices. The suite's finite element analysis (FEA) solvers permit the customization and automation of solutions for structural mechanics issues, enabling the examination of various design scenarios through parameterization. With its extensive array of analysis tools, Ansys Mechanical provides a versatile environment, guiding users from geometry preparation to integrating additional physics for enhanced accuracy. Its user-friendly and adaptable interface ensures that engineers at any experience level can swiftly obtain reliable results. Overall, Ansys Mechanical fosters an integrated platform that leverages finite element analysis (FEA) for comprehensive structural evaluations, proving invaluable for modern engineering projects.
  • 34
    SPACE GASS Reviews

    SPACE GASS

    SPACE GASS

    $600 per month
    SPACE GASS is a versatile 3D analysis and design software tailored for structural engineers. Its broad array of features accommodates everything from beams and trusses to complex structures like buildings, towers, tanks, cable systems, and bridges. Users can benefit from a powerful 64-bit multi-core solver, impressive 3D visualizations, and specialized elements including plate, frame, cable, and tension/compression-only types, as well as tools for moving loads and integrations with various CAD and building management systems. Choosing SPACE GASS means optimizing your resources with cost-effective, safe, and efficient designs. The user-friendly graphical interface allows for immediate visual feedback on changes, enhancing the design process. Additionally, a rapid sparse matrix solver takes full advantage of multi-core processing capabilities for increased efficiency. The software features a diverse suite of structural modeling tools, analysis methodologies, and design modules to meet various engineering needs. Moreover, an array of comprehensive video tutorials is available to guide users through complex tasks effectively. Finally, the software can be configured for either stand-alone use or floating network systems, adding flexibility for different working environments.
  • 35
    SIMULIA Reviews
    Utilizing the 3DEXPERIENCE® platform, SIMULIA provides advanced simulation tools that help users better understand and analyze our environment. The applications offered by SIMULIA streamline the assessment of material and product performance, reliability, and safety prior to the development of physical prototypes. These tools deliver robust simulations for various scenarios such as structures, fluids, multibody interactions, and electromagnetics, all while being seamlessly integrated with product data, even for complex assemblies. The comprehensive technology for modeling, simulation, and visualization is fully embedded within the 3DEXPERIENCE platform, which includes capabilities for process capture, publication, and reuse. By allowing simulation data, outcomes, and intellectual property to be linked to the platform, customers can maximize their current investment in simulation capabilities, transforming these assets into valuable resources that foster innovation for all users involved. This integration not only enhances workflow efficiency but also encourages collaborative advancements across different teams and projects.
  • 36
    Kebotix Reviews
    Kebotix is a pioneering technology platform focused on the development of new chemicals and materials, heralding a transformative era of rapid innovation through the integration of artificial intelligence and robotic automation. The company has introduced the world's first autonomous laboratory dedicated to materials discovery, driven by AI and robotics, which revolutionizes traditional research methods. By greatly enhancing the exploration, discovery, utilization, and production of novel molecules and materials, Kebotix aims to address some of the most pressing challenges faced globally. Collaborate with us to expedite the market introduction of your products while leveraging our cutting-edge material design technologies that are enabled by our self-driving lab. Kebotix propels your research and development efforts into the new digital frontier by offering tailored enterprise AI solutions specifically designed for materials discovery. With our automated learning system that improves with each cycle of predict-produce-prove, we empower you to deliver superior products to market more swiftly than ever before. This innovative approach not only saves time but also significantly enhances the efficiency of the research process.
  • 37
    Ansys Lumerical Multiphysics Reviews
    Ansys Lumerical Multiphysics serves as advanced software for simulating photonic components, allowing for the integrated design of these elements by effectively capturing the interplay of various multiphysics phenomena such as optical, thermal, electrical, and quantum well interactions, all within a cohesive design platform. Designed specifically for engineering workflows, this user-friendly product design software enhances the user experience, enabling quick design iterations and delivering in-depth insights into actual product performance. By merging real-time physics with precise high-fidelity simulations in an accessible interface, it promotes a shorter time-to-market for innovative designs. Among its key offerings are a finite element design environment, integrated multiphysics workflows, extensive material models, and robust automation and optimization capabilities. The suite of solvers and streamlined processes in Lumerical Multiphysics effectively reflects the complex interactions of physical effects, facilitating accurate modeling of both passive and active photonic components. This comprehensive approach not only enhances design efficiency but also leads to improved product reliability and performance evaluations.
  • 38
    SOFiSTiK Reviews
    SOFiSTiK offers a robust suite of software specifically designed for structural engineering, equipped with sophisticated tools for finite element analysis, design, detailing, CAD, and BIM workflows that facilitate the planning, analysis, and documentation of various infrastructure projects such as buildings, bridges, and tunnels. The software enables a complete engineering workflow that encompasses everything from model creation and structural analysis to detailed design, reinforcement planning, and comprehensive documentation, featuring specialized modules for 3D modeling and BIM integration with widely used software like Autodesk Revit and AutoCAD. Additionally, it supports open interfaces like IFC and SAF to promote effortless data exchange and collaboration among project teams. With its powerful FEM packages, SOFiSTiK provides advanced solvers capable of handling both linear and nonlinear analysis, as well as dynamic and static load scenarios while ensuring compliance with industry-standard code checks. By utilizing SOFiSTiK, engineering teams are empowered to produce dependable and well-coordinated designs and documentation, enhancing project efficiency and effectiveness throughout all phases of construction. This software ultimately contributes to improved project outcomes and better resource management across the entire lifecycle of construction initiatives.
  • 39
    Khimera Reviews
    Khimera serves as a tool for determining the kinetic parameters associated with microscopic processes, as well as the thermodynamic and transport characteristics of various substances and their mixtures within gases, plasmas, and at the gas-solid interface. Its main users include engineers and researchers who focus on developing kinetic models and engaging in thermodynamic and kinetic simulations pertinent to fields such as chemical engineering, combustion, catalysis, metallurgy, and microelectronics. This software is particularly well-suited for multi-scale modeling, as it connects the fundamental molecular properties of individual molecules with the ensemble-averaged characteristics of the reactive medium, encompassing thermodynamic and transport properties along with the rates of chemical reactions. Additionally, Khimera allows for the integration of quantum-chemical simulation results, enabling users to derive properties without requiring any experimental data from their side. By bridging the gap between different scales of modeling, Khimera enhances the understanding of complex systems in various scientific domains.
  • 40
    RIBTEC Reviews
    In times of tight schedules or limited resources, integrated solutions are crucial. RIBTEC provides many synergies in calculation design, construction, and design. In the context of Building Information Modeling (BIM), you can benefit from a faster data flow that streamlines the entire process of structural design. RIB's software solutions are available for structural engineers. They include building, ground, and finite element calculations as well as tunnel and bridge construction as well as the drawing of formwork or reinforcement plans. Since 1961, RIB has been a pioneer in structural design and FEM. Over 5,000 engineering offices, inspection and construction engineers, as well as planning departments from the public and private sectors use the RIBTEC programs. RIBTEC covers all aspects of structural design with more than 100 programs.
  • 41
    Grantu EduPack Reviews
    Ansys Granta EduPack, previously known as CES EduPack, is an exceptional collection of educational materials aimed at assisting educators in enriching courses focused on materials in engineering, design, science, and sustainable development. This resource serves to bolster undergraduate education in materials science, offering a comprehensive database of materials and processes, selection tools, and various supplementary resources. The program is structured into three distinct levels, allowing students to engage with the appropriate depth of information as they advance through their academic journey. Furthermore, Granta EduPack accommodates a diverse range of teaching methodologies, catering to both design-oriented and science-driven approaches, as well as problem-based learning environments. As students progress from pre-university to postgraduate studies, they can utilize the database and tools tailored to their educational stage, ensuring effective learning at every level. This thoughtful organization makes Granta EduPack an invaluable asset for educators and students alike.
  • 42
    SIMHEAT Reviews
    Induction heat treatment simulation offers detailed insights into the temperature variations from the outer surface to the core and identifies specific regions where phase changes take place. With SIMHEAT®, users can assess how factors like current frequency, coil design, and the positioning of concentrators influence the heat-affected zone. The material modeling aspect accounts for the electrical and magnetic characteristics that vary with temperature. Moreover, SIMHEAT® can operate independently or work in conjunction with Transvalor software, ensuring a flawless transfer of results between the two platforms. This high level of interoperability guarantees that users can rely on consistent and accurate outcomes. Furthermore, all the features and functionalities available in SIMHEAT® are also incorporated into our FORGE® software, which is tailored for simulating hot, semi-hot, and cold forming processes, thereby expanding its utility in various manufacturing applications.
  • 43
    Ansys Sherlock Reviews
    Ansys Sherlock stands out as the sole reliability physics-based tool for electronics design that delivers quick and precise life expectancy assessments for electronic components, boards, and systems during the initial design phases. By automating the design analysis process, Ansys Sherlock enables the rapid generation of life predictions, thus eliminating the "test-fail-fix-repeat" cycle that often hampers development. Designers can effectively model the interactions between silicon–metal layers, semiconductor packaging, printed circuit boards (PCBs), and assemblies, allowing for accurate predictions of potential failure risks stemming from thermal, mechanical, and manufacturing stresses, all prior to creating prototypes. Additionally, Sherlock's extensive libraries, which house over 500,000 components, facilitate the seamless transformation of electronic computer-aided design (ECAD) files into computational fluid dynamics (CFD) and finite element analysis (FEA) models. Each of these models is equipped with precise geometries and material properties, ensuring that stress information is accurately conveyed for reliable predictions. This capability not only enhances design efficiency but also significantly reduces the risk of costly errors in the later stages of product development.
  • 44
    CONSELF Reviews
    By utilizing CONSELF, you can harness the power of Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) to enhance your product designs: reduce drag and losses related to fluid dynamics, boost efficiency, optimize heat exchange capabilities, assess pressure loads, confirm material strength, analyze deformation in component shapes, compute natural frequencies and modes, among various other functions. The platform offers both static and dynamic simulations for Structural Mechanics, accommodating the behavior of materials under elastic and plastic conditions. Additionally, it enables modal and frequency analyses, starting from widely used CAD neutral file formats, ensuring a seamless integration into your design workflow. This comprehensive approach allows for innovative solutions to complex engineering challenges.
  • 45
    Schrödinger Reviews
    Revolutionize the fields of drug discovery and materials research through cutting-edge molecular modeling techniques. Our computational platform, grounded in physics, combines unique solutions for predictive modeling, data analysis, and collaboration, facilitating swift navigation of chemical space. This innovative platform is employed by leading industries globally, serving both drug discovery initiatives and materials science applications across various sectors including aerospace, energy, semiconductors, and electronic displays. It drives our internal drug discovery projects, overseeing processes from target identification through hit discovery and lead optimization. Additionally, it enhances our collaborative research efforts aimed at creating groundbreaking medicines to address significant public health challenges. With a dedicated team of over 150 Ph.D. scientists, we commit substantial resources to research and development. Our contributions to the scientific community include more than 400 peer-reviewed publications that validate the efficacy of our physics-based methodologies, and we remain at the forefront of advancing computational modeling techniques. We are steadfast in our mission to innovate and expand the possibilities within our field.