Google Cloud BigQuery
BigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises.
Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently.
Learn more
DataBuck
Big Data Quality must always be verified to ensure that data is safe, accurate, and complete. Data is moved through multiple IT platforms or stored in Data Lakes. The Big Data Challenge: Data often loses its trustworthiness because of (i) Undiscovered errors in incoming data (iii). Multiple data sources that get out-of-synchrony over time (iii). Structural changes to data in downstream processes not expected downstream and (iv) multiple IT platforms (Hadoop DW, Cloud). Unexpected errors can occur when data moves between systems, such as from a Data Warehouse to a Hadoop environment, NoSQL database, or the Cloud. Data can change unexpectedly due to poor processes, ad-hoc data policies, poor data storage and control, and lack of control over certain data sources (e.g., external providers). DataBuck is an autonomous, self-learning, Big Data Quality validation tool and Data Matching tool.
Learn more
Brewit
Accelerate your data-driven decision-making by tenfold with self-service analytics that seamlessly integrates your databases and data warehouses in a single platform, including options like Postgres, MySQL, Snowflake, and BigQuery. Brewit simplifies the process by generating SQL queries and suggesting charts based on your specific data inquiries, while also allowing in-depth analysis. Engage in a conversation with your database, visualize findings, and conduct thorough analyses. With a built-in data catalog, you can guarantee the accuracy and reliability of your answers. An automated semantic layer ensures that Brewit applies the correct business logic in its responses. Managing your data catalog and data dictionary is straightforward, and creating an attractive report is as simple as crafting a document. A narrative brings your data to life, and our Notion-style notebook editor lets you effortlessly compile reports and dashboards, transforming raw data into valuable insights. Furthermore, all organized data products are accessible to anyone with a data-related query, making it easy for users of all technical backgrounds to engage with the information. In this way, Brewit democratizes data accessibility and empowers all users to utilize insights effectively.
Learn more
Anania
Anania is an AI and search analytics platform that provides non-technical users with English search queries with analytical insights.
Anania uses AI and NLP to make big data insights and understanding accessible to all departments of an organization, from marketing to product teams.
Quick Results
In seconds, you can get any insight, report or chart from your data.
It's easy to use
No code, no learning curve. Analytics as easy as Google search.
Zero Setup
Connect data to Anania and you can start using it. No configuration or setup required.
Learn more