Best DeepSWE Alternatives in 2026

Find the top alternatives to DeepSWE currently available. Compare ratings, reviews, pricing, and features of DeepSWE alternatives in 2026. Slashdot lists the best DeepSWE alternatives on the market that offer competing products that are similar to DeepSWE. Sort through DeepSWE alternatives below to make the best choice for your needs

  • 1
    Devstral 2 Reviews
    Devstral 2 represents a cutting-edge, open-source AI model designed specifically for software engineering, going beyond mere code suggestion to comprehend and manipulate entire codebases, which allows it to perform tasks such as multi-file modifications, bug corrections, refactoring, dependency management, and generating context-aware code. The Devstral 2 suite comprises a robust 123-billion-parameter model and a more compact 24-billion-parameter version, known as “Devstral Small 2,” providing teams with the adaptability they need; the larger variant is optimized for complex coding challenges that require a thorough understanding of context, while the smaller version is suitable for operation on less powerful hardware. With an impressive context window of up to 256 K tokens, Devstral 2 can analyze large repositories, monitor project histories, and ensure a coherent grasp of extensive files, which is particularly beneficial for tackling the complexities of real-world projects. The command-line interface (CLI) enhances the model's capabilities by keeping track of project metadata, Git statuses, and the directory structure, thereby enriching the context for the AI and rendering “vibe-coding” even more effective. This combination of advanced features positions Devstral 2 as a transformative tool in the software development landscape.
  • 2
    Amp Reviews
    Amp is a next-generation coding agent engineered for developers working at the frontier of software development. It brings powerful AI agents directly into the terminal and code editors, allowing engineers to build, refactor, review, and explore large codebases with minimal friction. Unlike simple code assistants, Amp operates agentically, running subagents, managing context, and making coordinated changes across dozens of files. It supports multiple state-of-the-art models and continuously evolves with frequent updates, new agents, and performance improvements. Features like agentic code review, clickable diagrams, fast search subagents, and context-aware analysis make Amp feel like a true engineering partner rather than a chat tool. By reducing manual overhead and increasing leverage, Amp enables teams to focus on higher-level design and problem solving. The result is faster iteration, cleaner architectures, and more ambitious builds.
  • 3
    DeepCoder Reviews
    DeepCoder, an entirely open-source model for code reasoning and generation, has been developed through a partnership between Agentica Project and Together AI. Leveraging the foundation of DeepSeek-R1-Distilled-Qwen-14B, it has undergone fine-tuning via distributed reinforcement learning, achieving a notable accuracy of 60.6% on LiveCodeBench, which marks an 8% enhancement over its predecessor. This level of performance rivals that of proprietary models like o3-mini (2025-01-031 Low) and o1, all while operating with only 14 billion parameters. The training process spanned 2.5 weeks on 32 H100 GPUs, utilizing a carefully curated dataset of approximately 24,000 coding challenges sourced from validated platforms, including TACO-Verified, PrimeIntellect SYNTHETIC-1, and submissions to LiveCodeBench. Each problem mandated a legitimate solution along with a minimum of five unit tests to guarantee reliability during reinforcement learning training. Furthermore, to effectively manage long-range context, DeepCoder incorporates strategies such as iterative context lengthening and overlong filtering, ensuring it remains adept at handling complex coding tasks. This innovative approach allows DeepCoder to maintain high standards of accuracy and reliability in its code generation capabilities.
  • 4
    Devstral Small 2 Reviews
    Devstral Small 2 serves as the streamlined, 24 billion-parameter version of Mistral AI's innovative coding-centric model lineup, released under the flexible Apache 2.0 license to facilitate both local implementations and API interactions. In conjunction with its larger counterpart, Devstral 2, this model introduces "agentic coding" features suitable for environments with limited computational power, boasting a generous 256K-token context window that allows it to comprehend and modify entire codebases effectively. Achieving a score of approximately 68.0% on the standard code-generation evaluation known as SWE-Bench Verified, Devstral Small 2 stands out among open-weight models that are significantly larger. Its compact size and efficient architecture enable it to operate on a single GPU or even in CPU-only configurations, making it an ideal choice for developers, small teams, or enthusiasts lacking access to expansive data-center resources. Furthermore, despite its smaller size, Devstral Small 2 successfully maintains essential functionalities of its larger variants, such as the ability to reason through multiple files and manage dependencies effectively, ensuring that users can still benefit from robust coding assistance. This blend of efficiency and performance makes it a valuable tool in the coding community.
  • 5
    CodeMender Reviews
    CodeMender is an innovative AI-driven tool created by DeepMind that automatically detects, analyzes, and corrects security vulnerabilities within software code. By integrating sophisticated reasoning capabilities through the Gemini Deep Think models with various analysis techniques such as static and dynamic analysis, differential testing, fuzzing, and SMT solvers, it effectively pinpoints the underlying causes of issues, generates high-quality fixes, and ensures these solutions are validated to prevent regressions or functional failures. The operation of CodeMender involves proposing patches that comply with established style guidelines and maintain structural integrity, while it also employs critique and verification agents to assess modifications and self-correct if any problems are identified. Additionally, CodeMender can actively refactor existing code to incorporate safer APIs or data structures, such as implementing -fbounds-safety annotations to mitigate the risk of buffer overflows. To date, this remarkable tool has contributed dozens of patches to significant open-source projects, some of which consist of millions of lines of code, showcasing its potential impact on software security and reliability. Its ongoing development promises even greater advancements in the realm of automated code improvement and safety.
  • 6
    Qwen3-Coder Reviews
    Qwen3-Coder is a versatile coding model that comes in various sizes, prominently featuring the 480B-parameter Mixture-of-Experts version with 35B active parameters, which naturally accommodates 256K-token contexts that can be extended to 1M tokens. This model achieves impressive performance that rivals Claude Sonnet 4, having undergone pre-training on 7.5 trillion tokens, with 70% of that being code, and utilizing synthetic data refined through Qwen2.5-Coder to enhance both coding skills and overall capabilities. Furthermore, the model benefits from post-training techniques that leverage extensive, execution-guided reinforcement learning, which facilitates the generation of diverse test cases across 20,000 parallel environments, thereby excelling in multi-turn software engineering tasks such as SWE-Bench Verified without needing test-time scaling. In addition to the model itself, the open-source Qwen Code CLI, derived from Gemini Code, empowers users to deploy Qwen3-Coder in dynamic workflows with tailored prompts and function calling protocols, while also offering smooth integration with Node.js, OpenAI SDKs, and environment variables. This comprehensive ecosystem supports developers in optimizing their coding projects effectively and efficiently.
  • 7
    Qwen3-Coder-Next Reviews
    Qwen3-Coder-Next is a language model with open weights, crafted for coding agents and local development, which excels in advanced coding reasoning, adept tool usage, and effective handling of long-term programming challenges with remarkable efficiency, utilizing a mixture-of-experts framework that harmonizes robust capabilities with a resource-efficient approach. This model enhances the coding prowess of software developers, AI system architects, and automated coding processes, allowing them to generate, debug, and comprehend code with a profound contextual grasp while adeptly recovering from execution errors, rendering it ideal for autonomous coding agents and applications focused on development. Furthermore, Qwen3-Coder-Next achieves impressive performance on par with larger parameter models, but does so while consuming fewer active parameters, thus facilitating economical deployment for intricate and evolving programming tasks in both research and production settings, ultimately contributing to a more streamlined development process.
  • 8
    Qwen2.5-Max Reviews
    Qwen2.5-Max is an advanced Mixture-of-Experts (MoE) model created by the Qwen team, which has been pretrained on an extensive dataset of over 20 trillion tokens and subsequently enhanced through methods like Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). Its performance in evaluations surpasses that of models such as DeepSeek V3 across various benchmarks, including Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also achieving strong results in other tests like MMLU-Pro. This model is available through an API on Alibaba Cloud, allowing users to easily integrate it into their applications, and it can also be interacted with on Qwen Chat for a hands-on experience. With its superior capabilities, Qwen2.5-Max represents a significant advancement in AI model technology.
  • 9
    DeepScaleR Reviews
    DeepScaleR is a sophisticated language model comprising 1.5 billion parameters, refined from DeepSeek-R1-Distilled-Qwen-1.5B through the use of distributed reinforcement learning combined with an innovative strategy that incrementally expands its context window from 8,000 to 24,000 tokens during the training process. This model was developed using approximately 40,000 meticulously selected mathematical problems sourced from high-level competition datasets, including AIME (1984–2023), AMC (pre-2023), Omni-MATH, and STILL. Achieving an impressive 43.1% accuracy on the AIME 2024 exam, DeepScaleR demonstrates a significant enhancement of around 14.3 percentage points compared to its base model, and it even outperforms the proprietary O1-Preview model, which is considerably larger. Additionally, it excels on a variety of mathematical benchmarks such as MATH-500, AMC 2023, Minerva Math, and OlympiadBench, indicating that smaller, optimized models fine-tuned with reinforcement learning can rival or surpass the capabilities of larger models in complex reasoning tasks. This advancement underscores the potential of efficient modeling approaches in the realm of mathematical problem-solving.
  • 10
    Phi-4-reasoning Reviews
    Phi-4-reasoning is an advanced transformer model featuring 14 billion parameters, specifically tailored for tackling intricate reasoning challenges, including mathematics, programming, algorithm development, and strategic planning. Through a meticulous process of supervised fine-tuning on select "teachable" prompts and reasoning examples created using o3-mini, it excels at generating thorough reasoning sequences that optimize computational resources during inference. By integrating outcome-driven reinforcement learning, Phi-4-reasoning is capable of producing extended reasoning paths. Its performance notably surpasses that of significantly larger open-weight models like DeepSeek-R1-Distill-Llama-70B and nears the capabilities of the comprehensive DeepSeek-R1 model across various reasoning applications. Designed for use in settings with limited computing power or high latency, Phi-4-reasoning is fine-tuned with synthetic data provided by DeepSeek-R1, ensuring it delivers precise and methodical problem-solving. This model's ability to handle complex tasks with efficiency makes it a valuable tool in numerous computational contexts.
  • 11
    QwQ-Max-Preview Reviews
    QwQ-Max-Preview is a cutting-edge AI model based on the Qwen2.5-Max framework, specifically engineered to excel in areas such as complex reasoning, mathematical problem-solving, programming, and agent tasks. This preview showcases its enhanced capabilities across a variety of general-domain applications while demonstrating proficiency in managing intricate workflows. Anticipated to be officially released as open-source software under the Apache 2.0 license, QwQ-Max-Preview promises significant improvements and upgrades in its final iteration. Additionally, it contributes to the development of a more inclusive AI environment, as evidenced by the forthcoming introduction of the Qwen Chat application and streamlined model versions like QwQ-32B, which cater to developers interested in local deployment solutions. This initiative not only broadens accessibility but also encourages innovation within the AI community.
  • 12
    Qwen3 Reviews
    Qwen3 is a state-of-the-art large language model designed to revolutionize the way we interact with AI. Featuring both thinking and non-thinking modes, Qwen3 allows users to customize its response style, ensuring optimal performance for both complex reasoning tasks and quick inquiries. With the ability to support 119 languages, the model is suitable for international projects. The model's hybrid training approach, which involves over 36 trillion tokens, ensures accuracy across a variety of disciplines, from coding to STEM problems. Its integration with platforms such as Hugging Face, ModelScope, and Kaggle allows for easy adoption in both research and production environments. By enhancing multilingual support and incorporating advanced AI techniques, Qwen3 is designed to push the boundaries of AI-driven applications.
  • 13
    Qwen3-Max Reviews
    Qwen3-Max represents Alibaba's cutting-edge large language model, featuring a staggering trillion parameters aimed at enhancing capabilities in tasks that require agency, coding, reasoning, and managing lengthy contexts. This model is an evolution of the Qwen3 series, leveraging advancements in architecture, training methods, and inference techniques; it integrates both thinker and non-thinker modes, incorporates a unique “thinking budget” system, and allows for dynamic mode adjustments based on task complexity. Capable of handling exceptionally lengthy inputs, processing hundreds of thousands of tokens, it also supports tool invocation and demonstrates impressive results across various benchmarks, including coding, multi-step reasoning, and agent evaluations like Tau2-Bench. While the initial version prioritizes instruction adherence in a non-thinking mode, Alibaba is set to introduce reasoning functionalities that will facilitate autonomous agent operations in the future. In addition to its existing multilingual capabilities and extensive training on trillions of tokens, Qwen3-Max is accessible through API interfaces that align seamlessly with OpenAI-style functionalities, ensuring broad usability across applications. This comprehensive framework positions Qwen3-Max as a formidable player in the realm of advanced artificial intelligence language models.
  • 14
    Tülu 3 Reviews
    Tülu 3 is a cutting-edge language model created by the Allen Institute for AI (Ai2) that aims to improve proficiency in fields like knowledge, reasoning, mathematics, coding, and safety. It is based on the Llama 3 Base and undergoes a detailed four-stage post-training regimen: careful prompt curation and synthesis, supervised fine-tuning on a wide array of prompts and completions, preference tuning utilizing both off- and on-policy data, and a unique reinforcement learning strategy that enhances targeted skills through measurable rewards. Notably, this open-source model sets itself apart by ensuring complete transparency, offering access to its training data, code, and evaluation tools, thus bridging the performance divide between open and proprietary fine-tuning techniques. Performance assessments reveal that Tülu 3 surpasses other models with comparable sizes, like Llama 3.1-Instruct and Qwen2.5-Instruct, across an array of benchmarks, highlighting its effectiveness. The continuous development of Tülu 3 signifies the commitment to advancing AI capabilities while promoting an open and accessible approach to technology.
  • 15
    DeepSeek-V3.2 Reviews
    DeepSeek-V3.2 is a highly optimized large language model engineered to balance top-tier reasoning performance with significant computational efficiency. It builds on DeepSeek's innovations by introducing DeepSeek Sparse Attention (DSA), a custom attention algorithm that reduces complexity and excels in long-context environments. The model is trained using a sophisticated reinforcement learning approach that scales post-training compute, enabling it to perform on par with GPT-5 and match the reasoning skill of Gemini-3.0-Pro. Its Speciale variant overachieves in demanding reasoning benchmarks and does not include tool-calling capabilities, making it ideal for deep problem-solving tasks. DeepSeek-V3.2 is also trained using an agentic synthesis pipeline that creates high-quality, multi-step interactive data to improve decision-making, compliance, and tool-integration skills. It introduces a new chat template design featuring explicit thinking sections, improved tool-calling syntax, and a dedicated developer role used strictly for search-agent workflows. Users can encode messages using provided Python utilities that convert OpenAI-style chat messages into the expected DeepSeek format. Fully open-source under the MIT license, DeepSeek-V3.2 is a flexible, cutting-edge model for researchers, developers, and enterprise AI teams.
  • 16
    Sky-T1 Reviews
    Sky-T1-32B-Preview is an innovative open-source reasoning model crafted by the NovaSky team at UC Berkeley's Sky Computing Lab. It delivers performance comparable to proprietary models such as o1-preview on various reasoning and coding assessments, while being developed at a cost of less than $450, highlighting the potential for budget-friendly, advanced reasoning abilities. Fine-tuned from Qwen2.5-32B-Instruct, the model utilized a meticulously curated dataset comprising 17,000 examples spanning multiple fields, such as mathematics and programming. The entire training process was completed in just 19 hours using eight H100 GPUs with DeepSpeed Zero-3 offloading technology. Every component of this initiative—including the data, code, and model weights—is entirely open-source, allowing both academic and open-source communities to not only replicate but also improve upon the model's capabilities. This accessibility fosters collaboration and innovation in the realm of artificial intelligence research and development.
  • 17
    Qwen Code Reviews
    Qwen3-Coder is an advanced code model that comes in various sizes, prominently featuring the 480B-parameter Mixture-of-Experts version (with 35B active) that inherently accommodates 256K-token contexts, which can be extended to 1M, and demonstrates cutting-edge performance in Agentic Coding, Browser-Use, and Tool-Use activities, rivaling Claude Sonnet 4. With a pre-training phase utilizing 7.5 trillion tokens (70% of which are code) and synthetic data refined through Qwen2.5-Coder, it enhances both coding skills and general capabilities, while its post-training phase leverages extensive execution-driven reinforcement learning across 20,000 parallel environments to excel in multi-turn software engineering challenges like SWE-Bench Verified without the need for test-time scaling. Additionally, the open-source Qwen Code CLI, derived from Gemini Code, allows for the deployment of Qwen3-Coder in agentic workflows through tailored prompts and function calling protocols, facilitating smooth integration with platforms such as Node.js and OpenAI SDKs. This combination of robust features and flexible accessibility positions Qwen3-Coder as an essential tool for developers seeking to optimize their coding tasks and workflows.
  • 18
    GLM-5 Reviews
    GLM-5 is a next-generation open-source foundation model from Z.ai designed to push the boundaries of agentic engineering and complex task execution. Compared to earlier versions, it significantly expands parameter count and training data, while introducing DeepSeek Sparse Attention to optimize inference efficiency. The model leverages a novel asynchronous reinforcement learning framework called slime, which enhances training throughput and enables more effective post-training alignment. GLM-5 delivers leading performance among open-source models in reasoning, coding, and general agent benchmarks, with strong results on SWE-bench, BrowseComp, and Vending Bench 2. Its ability to manage long-horizon simulations highlights advanced planning, resource allocation, and operational decision-making skills. Beyond benchmark performance, GLM-5 supports real-world productivity by generating fully formatted documents such as .docx, .pdf, and .xlsx files. It integrates with coding agents like Claude Code and OpenClaw, enabling cross-application automation and collaborative agent workflows. Developers can access GLM-5 via Z.ai’s API, deploy it locally with frameworks like vLLM or SGLang, or use it through an interactive GUI environment. The model is released under the MIT License, encouraging broad experimentation and adoption. Overall, GLM-5 represents a major step toward practical, work-oriented AI systems that move beyond chat into full task execution.
  • 19
    DeepSeek-V3.1-Terminus Reviews
    DeepSeek has launched DeepSeek-V3.1-Terminus, an upgrade to the V3.1 architecture that integrates user suggestions to enhance output stability, consistency, and overall agent performance. This new version significantly decreases the occurrences of mixed Chinese and English characters as well as unintended distortions, leading to a cleaner and more uniform language generation experience. Additionally, the update revamps both the code agent and search agent subsystems to deliver improved and more dependable performance across various benchmarks. DeepSeek-V3.1-Terminus is available as an open-source model, with its weights accessible on Hugging Face, making it easier for the community to leverage its capabilities. The structure of the model remains consistent with DeepSeek-V3, ensuring it is compatible with existing deployment strategies, and updated inference demonstrations are provided for users to explore. Notably, the model operates at a substantial scale of 685B parameters and supports multiple tensor formats, including FP8, BF16, and F32, providing adaptability in different environments. This flexibility allows developers to choose the most suitable format based on their specific needs and resource constraints.
  • 20
    potpie Reviews

    potpie

    potpie

    $ 1 per month
    Potpie is a collaborative open source platform designed for developers to craft AI agents specifically suited for their codebases, streamlining processes such as debugging, testing, system architecture, onboarding, code evaluations, and documentation. By converting your codebase into an extensive knowledge graph, Potpie equips its agents with a profound contextual understanding that enables them to execute engineering tasks with remarkable accuracy. The platform includes more than five pre-built agents, with some focusing on stack trace analysis and the generation of integration tests. Additionally, developers have the option to create personalized agents through straightforward prompts, ensuring easy incorporation into their established workflows. Potpie also features an intuitive chat interface and offers a VS Code extension for direct integration into development setups. With capabilities like multi-LLM support, developers can incorporate various AI models to enhance performance and adaptability, making Potpie an invaluable tool for modern software engineering. This versatility allows teams to optimize their overall productivity while benefiting from advanced automation techniques.
  • 21
    QwQ-32B Reviews
    The QwQ-32B model, created by Alibaba Cloud's Qwen team, represents a significant advancement in AI reasoning, aimed at improving problem-solving skills. Boasting 32 billion parameters, it rivals leading models such as DeepSeek's R1, which contains 671 billion parameters. This remarkable efficiency stems from its optimized use of parameters, enabling QwQ-32B to tackle complex tasks like mathematical reasoning, programming, and other problem-solving scenarios while consuming fewer resources. It can handle a context length of up to 32,000 tokens, making it adept at managing large volumes of input data. Notably, QwQ-32B is available through Alibaba's Qwen Chat service and is released under the Apache 2.0 license, which fosters collaboration and innovation among AI developers. With its cutting-edge features, QwQ-32B is poised to make a substantial impact in the field of artificial intelligence.
  • 22
    Grok 3 DeepSearch Reviews
    Grok 3 DeepSearch represents a sophisticated research agent and model aimed at enhancing the reasoning and problem-solving skills of artificial intelligence, emphasizing deep search methodologies and iterative reasoning processes. In contrast to conventional models that depend primarily on pre-existing knowledge, Grok 3 DeepSearch is equipped to navigate various pathways, evaluate hypotheses, and rectify inaccuracies in real-time, drawing from extensive datasets while engaging in logical, chain-of-thought reasoning. Its design is particularly suited for tasks necessitating critical analysis, including challenging mathematical equations, programming obstacles, and detailed academic explorations. As a state-of-the-art AI instrument, Grok 3 DeepSearch excels in delivering precise and comprehensive solutions through its distinctive deep search functionalities, rendering it valuable across both scientific and artistic disciplines. This innovative tool not only streamlines problem-solving but also fosters a deeper understanding of complex concepts.
  • 23
    SWE-1.5 Reviews
    Cognition has unveiled SWE-1.5, the newest agent-model specifically designed for software engineering, featuring an expansive "frontier-size" architecture composed of hundreds of billions of parameters and an end-to-end optimization (encompassing the model, inference engine, and agent harness) that enhances both speed and intelligence. This model showcases nearly state-of-the-art coding capabilities and establishes a new standard for latency, achieving inference speeds of up to 950 tokens per second, which is approximately six times quicker than its predecessor, Haiku 4.5, and thirteen times faster than Sonnet 4.5. Trained through extensive reinforcement learning in realistic coding-agent environments that incorporate multi-turn workflows, unit tests, and quality assessments, SWE-1.5 also leverages integrated software tools and high-performance hardware, including thousands of GB200 NVL72 chips paired with a custom hypervisor infrastructure. Furthermore, its innovative architecture allows for more effective handling of complex coding tasks and improves overall productivity for software development teams. This combination of speed, efficiency, and intelligent design positions SWE-1.5 as a game changer in the realm of coding models.
  • 24
    GLM-4.6 Reviews
    GLM-4.6 builds upon the foundations laid by its predecessor, showcasing enhanced reasoning, coding, and agent capabilities, resulting in notable advancements in inferential accuracy, improved tool usage during reasoning tasks, and a more seamless integration within agent frameworks. In comprehensive benchmark evaluations that assess reasoning, coding, and agent performance, GLM-4.6 surpasses GLM-4.5 and competes robustly against other models like DeepSeek-V3.2-Exp and Claude Sonnet 4, although it still lags behind Claude Sonnet 4.5 in terms of coding capabilities. Furthermore, when subjected to practical tests utilizing an extensive “CC-Bench” suite that includes tasks in front-end development, tool creation, data analysis, and algorithmic challenges, GLM-4.6 outperforms GLM-4.5 while nearing parity with Claude Sonnet 4, achieving victory in approximately 48.6% of direct comparisons and demonstrating around 15% improved token efficiency. This latest model is accessible through the Z.ai API, providing developers the flexibility to implement it as either an LLM backend or as the core of an agent within the platform's API ecosystem. In addition, its advancements could significantly enhance productivity in various application domains, making it an attractive option for developers looking to leverage cutting-edge AI technology.
  • 25
    Qwen Reviews
    Qwen is a next-generation AI system that brings advanced intelligence to users and developers alike, offering free access to a versatile suite of tools. Its capabilities include Qwen VLo for image generation, Deep Research for multi-step online investigation, and Web Dev for generating full websites from natural language prompts. The “Thinking” engine enhances Qwen’s reasoning and logical clarity, helping it tackle complex technical, analytical, and academic challenges. Qwen’s intelligent Search mode retrieves web information with precision, using contextual understanding and smart filtering. Its multimodal processing allows it to interpret content across text, images, audio, and video, enabling more accurate and comprehensive responses. Qwen Chat makes these features accessible to everyone, while developers can tap into the Qwen API to build apps, integrate Qwen into workflows, or create entirely new AI-driven experiences. The API follows an OpenAI-compatible format, making migration and adoption seamless. With broad platform support—web, Windows, macOS, iOS, and Android—Qwen delivers a unified, powerful AI ecosystem for all kinds of users.
  • 26
    Step 3.5 Flash Reviews
    Step 3.5 Flash is a cutting-edge open-source foundational language model designed for advanced reasoning and agent-like capabilities, optimized for efficiency; it utilizes a sparse Mixture of Experts (MoE) architecture that activates only approximately 11 billion of its nearly 196 billion parameters per token, ensuring high-density intelligence and quick responsiveness. The model features a 3-way Multi-Token Prediction (MTP-3) mechanism that allows it to generate hundreds of tokens per second, facilitating complex multi-step reasoning and task execution while efficiently managing long contexts through a hybrid sliding window attention method that minimizes computational demands across extensive datasets or codebases. Its performance on reasoning, coding, and agentic tasks is formidable, often matching or surpassing that of much larger proprietary models, and it incorporates a scalable reinforcement learning system that enables continuous self-enhancement. Moreover, this innovative approach positions Step 3.5 Flash as a significant player in the field of AI language models, showcasing its potential to revolutionize various applications.
  • 27
    Devstral Reviews

    Devstral

    Mistral AI

    $0.1 per million input tokens
    Devstral is a collaborative effort between Mistral AI and All Hands AI, resulting in an open-source large language model specifically tailored for software engineering. This model demonstrates remarkable proficiency in navigating intricate codebases, managing edits across numerous files, and addressing practical problems, achieving a notable score of 46.8% on the SWE-Bench Verified benchmark, which is superior to all other open-source models. Based on Mistral-Small-3.1, Devstral boasts an extensive context window supporting up to 128,000 tokens. It is designed for optimal performance on high-performance hardware setups, such as Macs equipped with 32GB of RAM or Nvidia RTX 4090 GPUs, and supports various inference frameworks including vLLM, Transformers, and Ollama. Released under the Apache 2.0 license, Devstral is freely accessible on platforms like Hugging Face, Ollama, Kaggle, Unsloth, and LM Studio, allowing developers to integrate its capabilities into their projects seamlessly. This model not only enhances productivity for software engineers but also serves as a valuable resource for anyone working with code.
  • 28
    Command A Translate Reviews
    Cohere's Command A Translate is a robust machine translation solution designed for enterprises, offering secure and top-notch translation capabilities in 23 languages pertinent to business. It operates on an advanced 111-billion-parameter framework with an 8K-input / 8K-output context window, providing superior performance that outshines competitors such as GPT-5, DeepSeek-V3, DeepL Pro, and Google Translate across various benchmarks. The model facilitates private deployment options for organizations handling sensitive information, ensuring they maintain total control of their data, while also featuring a pioneering “Deep Translation” workflow that employs an iterative, multi-step refinement process to significantly improve translation accuracy for intricate scenarios. RWS Group’s external validation underscores its effectiveness in managing demanding translation challenges. Furthermore, the model's parameters are accessible for research through Hugging Face under a CC-BY-NC license, allowing for extensive customization, fine-tuning, and adaptability for private implementations, making it an attractive option for organizations seeking tailored language solutions. This versatility positions Command A Translate as an essential tool for enterprises aiming to enhance their communication across global markets.
  • 29
    Holo2 Reviews
    The Holo2 model family from H Company offers a blend of affordability and high performance in vision-language models specifically designed for computer-based agents that can navigate, localize user interface elements, and function across web, desktop, and mobile platforms. This new series, which is available in sizes of 4 billion, 8 billion, and 30 billion parameters, builds upon the foundations laid by the earlier Holo1 and Holo1.5 models, ensuring strong grounding in user interfaces while making substantial improvements to navigation abilities. Utilizing a mixture-of-experts (MoE) architecture, the Holo2 models activate only the necessary parameters to maximize operational efficiency. These models have been trained on carefully curated datasets focused on localization and agent functionality, allowing them to seamlessly replace their predecessors. They provide support for effortless inference in environments compatible with Qwen3-VL models and can be easily incorporated into agentic workflows such as Surfer 2. In benchmark evaluations, the Holo2-30B-A3B model demonstrated impressive results, achieving 66.1% accuracy on the ScreenSpot-Pro test and 76.1% on the OSWorld-G benchmark, thereby establishing itself as the leader in the UI localization sector. Additionally, the advancements in the Holo2 models make them a compelling choice for developers looking to enhance the efficiency and performance of their applications.
  • 30
    Microsoft Foundry Models Reviews
    Microsoft Foundry Models centralizes more than 11,000 leading AI models, offering enterprises a single place to explore, compare, fine-tune, and deploy AI for any use case. It includes top-performing models from OpenAI, Anthropic, Cohere, Meta, Mistral AI, DeepSeek, Black Forest Labs, and Microsoft’s own Azure OpenAI offerings. Teams can search by task—such as reasoning, generation, multimodal, or domain-specific workloads—and instantly test models in a built-in playground. Foundry Models simplifies customization with ready-to-use fine-tuning pipelines that require no infrastructure setup. Developers can upload internal datasets to benchmark and evaluate model accuracy, ensuring the right fit for production environments. With seamless deployment into managed instances, organizations get automatic scaling, traffic management, and secure hosting. The platform is backed by Azure’s enterprise-grade security and over 100 compliance certifications, supporting regulated industries and global operations. By integrating discovery, testing, tuning, and deployment, Foundry Models dramatically shortens AI development cycles and speeds time to value.
  • 31
    Llama 3.1 Reviews
    Introducing an open-source AI model that can be fine-tuned, distilled, and deployed across various platforms. Our newest instruction-tuned model comes in three sizes: 8B, 70B, and 405B, giving you options to suit different needs. With our open ecosystem, you can expedite your development process using a diverse array of tailored product offerings designed to meet your specific requirements. You have the flexibility to select between real-time inference and batch inference services according to your project's demands. Additionally, you can download model weights to enhance cost efficiency per token while fine-tuning for your application. Improve performance further by utilizing synthetic data and seamlessly deploy your solutions on-premises or in the cloud. Take advantage of Llama system components and expand the model's capabilities through zero-shot tool usage and retrieval-augmented generation (RAG) to foster agentic behaviors. By utilizing 405B high-quality data, you can refine specialized models tailored to distinct use cases, ensuring optimal functionality for your applications. Ultimately, this empowers developers to create innovative solutions that are both efficient and effective.
  • 32
    Gemini Deep Research Reviews
    The Gemini Deep Research Agent provides an intelligent, automated research workflow that behaves like an “analyst-in-a-box,” capable of planning, searching, reading, and synthesizing information across the public web and proprietary data sources. Using Gemini 3 Pro at its core, it navigates multi-step reasoning tasks and produces long-form, citation-backed reports that traditional LLM calls cannot match. Developers use asynchronous background execution to support research cycles that run for several minutes, with automatic polling and reconnect logic for reliability. Streaming mode offers real-time transparency, surfacing thought summaries and partial findings throughout the process. The agent is steerable through formatting instructions, allowing teams to generate technical reports, competitive analyses, or structured documents with precision. It also supports follow-up questions tied to prior interactions, enabling iterative refinement and deeper exploration. Designed with safety controls, it protects against harmful web content, prompt injection risks, and unintended data exposure. This makes it ideal for organizations seeking to automate sophisticated research workflows while maintaining operational control and trustworthiness.
  • 33
    Qwen2-VL Reviews
    Qwen2-VL represents the most advanced iteration of vision-language models within the Qwen family, building upon the foundation established by Qwen-VL. This enhanced model showcases remarkable capabilities, including: Achieving cutting-edge performance in interpreting images of diverse resolutions and aspect ratios, with Qwen2-VL excelling in visual comprehension tasks such as MathVista, DocVQA, RealWorldQA, and MTVQA, among others. Processing videos exceeding 20 minutes in length, enabling high-quality video question answering, engaging dialogues, and content creation. Functioning as an intelligent agent capable of managing devices like smartphones and robots, Qwen2-VL utilizes its sophisticated reasoning and decision-making skills to perform automated tasks based on visual cues and textual commands. Providing multilingual support to accommodate a global audience, Qwen2-VL can now interpret text in multiple languages found within images, extending its usability and accessibility to users from various linguistic backgrounds. This wide-ranging capability positions Qwen2-VL as a versatile tool for numerous applications across different fields.
  • 34
    Open R1 Reviews
    Open R1 is a collaborative, open-source effort focused on mimicking the sophisticated AI functionalities of DeepSeek-R1 using clear and open methods. Users have the opportunity to explore the Open R1 AI model or engage in a free online chat with DeepSeek R1 via the Open R1 platform. This initiative presents a thorough execution of DeepSeek-R1's reasoning-optimized training framework, featuring resources for GRPO training, SFT fine-tuning, and the creation of synthetic data, all available under the MIT license. Although the original training dataset is still proprietary, Open R1 equips users with a complete suite of tools to create and enhance their own AI models, allowing for greater customization and experimentation in the field of artificial intelligence.
  • 35
    Composer 1 Reviews
    Composer is an AI model crafted by Cursor, specifically tailored for software engineering functions, and it offers rapid, interactive coding support within the Cursor IDE, an enhanced version of a VS Code-based editor that incorporates smart automation features. This model employs a mixture-of-experts approach and utilizes reinforcement learning (RL) to tackle real-world coding challenges found in extensive codebases, enabling it to deliver swift, contextually aware responses ranging from code modifications and planning to insights that grasp project frameworks, tools, and conventions, achieving generation speeds approximately four times faster than its contemporaries in performance assessments. Designed with a focus on development processes, Composer utilizes long-context comprehension, semantic search capabilities, and restricted tool access (such as file editing and terminal interactions) to effectively address intricate engineering inquiries with practical and efficient solutions. Its unique architecture allows it to adapt to various programming environments, ensuring that users receive tailored assistance suited to their specific coding needs.
  • 36
    FLUX.1 Krea Reviews
    FLUX.1 Krea [dev] is a cutting-edge, open-source diffusion transformer with 12 billion parameters, developed through the collaboration of Krea and Black Forest Labs, aimed at providing exceptional aesthetic precision and photorealistic outputs while avoiding the common “AI look.” This model is fully integrated into the FLUX.1-dev ecosystem and is built upon a foundational model (flux-dev-raw) that possesses extensive world knowledge. It utilizes a two-phase post-training approach that includes supervised fine-tuning on a carefully selected combination of high-quality and synthetic samples, followed by reinforcement learning driven by human feedback based on preference data to shape its stylistic outputs. Through the innovative use of negative prompts during pre-training, along with custom loss functions designed for classifier-free guidance and specific preference labels, it demonstrates substantial enhancements in quality with fewer than one million examples, achieving these results without the need for elaborate prompts or additional LoRA modules. This approach not only elevates the model's output but also sets a new standard in the field of AI-driven visual generation.
  • 37
    Smaug-72B Reviews
    Smaug-72B is a formidable open-source large language model (LLM) distinguished by several prominent features: Exceptional Performance: It currently ranks first on the Hugging Face Open LLM leaderboard, outperforming models such as GPT-3.5 in multiple evaluations, demonstrating its ability to comprehend, react to, and generate text that closely resembles human writing. Open Source Availability: In contrast to many high-end LLMs, Smaug-72B is accessible to everyone for use and modification, which encourages cooperation and innovation within the AI ecosystem. Emphasis on Reasoning and Mathematics: This model excels particularly in reasoning and mathematical challenges, a capability attributed to specialized fine-tuning methods developed by its creators, Abacus AI. Derived from Qwen-72B: It is essentially a refined version of another robust LLM, Qwen-72B, which was launched by Alibaba, thereby enhancing its overall performance. In summary, Smaug-72B marks a notable advancement in the realm of open-source artificial intelligence, making it a valuable resource for developers and researchers alike. Its unique strengths not only elevate its status but also contribute to the ongoing evolution of AI technology.
  • 38
    Aardvark Reviews
    Aardvark operates as an autonomous security research agent, utilizing advanced capabilities to mimic the functions of a human security researcher. It consistently examines source code repositories, formulates threat models, scans commits for potential vulnerabilities, tests exploitability within isolated environments, and suggests precise patches for subsequent human evaluation. In contrast to conventional tools that depend solely on techniques like fuzzing or software composition analysis, Aardvark leverages a reasoning pipeline grounded in a large language model to analyze code behavior and seamlessly integrates with current developer workflows, such as those found in GitHub and code review systems, as well as utilizing Codex for generating patches. The agent offers extensive features, including the ability to scan entire repositories upon initial connection, followed by commit-level assessments, automated patch creation and validation, and annotations that can be reviewed by humans for each discovery. Promising preliminary results from internal testing at OpenAI indicate that Aardvark achieves a detection recall rate of 92% when applied to repositories containing either known or artificially created vulnerabilities. As Aardvark continues to evolve, it holds the potential to significantly enhance the security landscape by providing developers with powerful tools for proactive threat management.
  • 39
    Qwen2 Reviews
    Qwen2 represents a collection of extensive language models crafted by the Qwen team at Alibaba Cloud. This series encompasses a variety of models, including base and instruction-tuned versions, with parameters varying from 0.5 billion to an impressive 72 billion, showcasing both dense configurations and a Mixture-of-Experts approach. The Qwen2 series aims to outperform many earlier open-weight models, including its predecessor Qwen1.5, while also striving to hold its own against proprietary models across numerous benchmarks in areas such as language comprehension, generation, multilingual functionality, programming, mathematics, and logical reasoning. Furthermore, this innovative series is poised to make a significant impact in the field of artificial intelligence, offering enhanced capabilities for a diverse range of applications.
  • 40
    ERNIE X1.1 Reviews
    ERNIE X1.1 is Baidu’s latest reasoning AI model, designed to raise the bar for accuracy, reliability, and action-oriented intelligence. Compared to ERNIE X1, it delivers a 34.8% boost in factual accuracy, a 12.5% improvement in instruction compliance, and a 9.6% gain in agentic behavior. Benchmarks show that it outperforms DeepSeek R1-0528 and matches the capabilities of advanced models such as GPT-5 and Gemini 2.5 Pro. The model builds upon ERNIE 4.5 with additional mid-training and post-training phases, reinforced by end-to-end reinforcement learning. This approach helps minimize hallucinations while ensuring closer alignment to user intent. The agentic upgrades allow it to plan, make decisions, and execute tasks more effectively than before. Users can access ERNIE X1.1 through ERNIE Bot, Wenxiaoyan, or via API on Baidu’s Qianfan platform. Altogether, the model delivers stronger reasoning capabilities for developers and enterprises that demand high-performance AI.
  • 41
    Athene-V2 Reviews
    Nexusflow has unveiled Athene-V2, its newest model suite boasting 72 billion parameters, which has been meticulously fine-tuned from Qwen 2.5 72B to rival the capabilities of GPT-4o. Within this suite, Athene-V2-Chat-72B stands out as a cutting-edge chat model that performs comparably to GPT-4o across various benchmarks; it excels particularly in chat helpfulness (Arena-Hard), ranks second in the code completion category on bigcode-bench-hard, and demonstrates strong abilities in mathematics (MATH) and accurate long log extraction. Furthermore, Athene-V2-Agent-72B seamlessly integrates chat and agent features, delivering clear and directive responses while surpassing GPT-4o in Nexus-V2 function calling benchmarks, specifically tailored for intricate enterprise-level scenarios. These innovations highlight a significant industry transition from merely increasing model sizes to focusing on specialized customization, showcasing how targeted post-training techniques can effectively enhance models for specific skills and applications. As technology continues to evolve, it becomes essential for developers to leverage these advancements to create increasingly sophisticated AI solutions.
  • 42
    Claude Opus 4.1 Reviews
    Claude Opus 4.1 represents a notable incremental enhancement over its predecessor, Claude Opus 4, designed to elevate coding, agentic reasoning, and data-analysis capabilities while maintaining the same level of deployment complexity. This version boosts coding accuracy to an impressive 74.5 percent on SWE-bench Verified and enhances the depth of research and detailed tracking for agentic search tasks. Furthermore, GitHub has reported significant advancements in multi-file code refactoring, and Rakuten Group emphasizes its ability to accurately identify precise corrections within extensive codebases without introducing any bugs. Independent benchmarks indicate that junior developer test performance has improved by approximately one standard deviation compared to Opus 4, reflecting substantial progress consistent with previous Claude releases. Users can access Opus 4.1 now, as it is available to paid subscribers of Claude, integrated into Claude Code, and can be accessed through the Anthropic API (model ID claude-opus-4-1-20250805), as well as via platforms like Amazon Bedrock and Google Cloud Vertex AI. Additionally, it integrates effortlessly into existing workflows, requiring no further setup beyond the selection of the updated model, thus enhancing the overall user experience and productivity.
  • 43
    Amazon Nova 2 Pro Reviews
    Nova 2 Pro represents the pinnacle of Amazon’s Nova family, offering unmatched reasoning depth for enterprises that depend on advanced AI to solve demanding operational challenges. It supports multimodal inputs including video, audio, and long-form text, allowing it to synthesize diverse information sources and deliver expert-grade insights. Its performance leadership spans complex instruction following, high-stakes decision tasks, agentic workflows, and software engineering use cases. Benchmark testing shows Nova 2 Pro outperforms or matches the latest Claude, GPT, and Gemini models across numerous intelligence and reasoning categories. Equipped with built-in web search and executable code capability, it produces grounded, verifiable responses ideal for enterprise reliability. Organizations also use Nova 2 Pro as a foundation for training smaller, faster models through distillation, making it adaptable for custom deployments. Its multimodal strengths support use cases like video comprehension, multi-document Q&A, and sophisticated data interpretation. Nova 2 Pro ultimately empowers teams to operate with higher accuracy, faster iteration cycles, and safer automation across critical workflows.
  • 44
    TF-Agents Reviews
    TensorFlow Agents (TF-Agents) is an extensive library tailored for reinforcement learning within the TensorFlow framework. It streamlines the creation, execution, and evaluation of new RL algorithms by offering modular components that are both reliable and amenable to customization. Through TF-Agents, developers can quickly iterate on code while ensuring effective test integration and performance benchmarking. The library features a diverse range of agents, including DQN, PPO, REINFORCE, SAC, and TD3, each equipped with their own networks and policies. Additionally, it provides resources for crafting custom environments, policies, and networks, which aids in the development of intricate RL workflows. TF-Agents is designed to work seamlessly with Python and TensorFlow environments, presenting flexibility for various development and deployment scenarios. Furthermore, it is fully compatible with TensorFlow 2.x and offers extensive tutorials and guides to assist users in initiating agent training on established environments such as CartPole. Overall, TF-Agents serves as a robust framework for researchers and developers looking to explore the field of reinforcement learning.
  • 45
    Composer 1.5 Reviews
    Composer 1.5 is the newest agentic coding model from Cursor that enhances both speed and intelligence for routine coding tasks, achieving a remarkable 20-fold increase in reinforcement learning capabilities compared to its earlier version, which translates to improved performance on real-world programming problems. This model is crafted as a "thinking model," generating internal reasoning tokens that facilitate the analysis of a user's codebase and the planning of subsequent actions, enabling swift responses to straightforward issues while engaging in more profound reasoning for intricate challenges. Additionally, it maintains interactivity and efficiency, making it ideal for daily development processes. To address prolonged tasks, Composer 1.5 features self-summarization, which allows the model to condense information and retain context when it hits limits, thus preserving accuracy across a variety of input lengths. Internal evaluations indicate that Composer 1.5 outperforms its predecessor in coding tasks, particularly excelling in tackling more complex problems, further enhancing its utility for interactive applications within Cursor's ecosystem. Overall, this model represents a significant advancement in coding assistance technology, promising to streamline the development experience for users.